## Real-Time Calculus and Module Performance Analysis

#### Prof. Dr. Jian-Jia Chen

## LS 12, TU Dortmund

14 June 2016







#### Abstract Models for Real-Time Calculus





## Abstract Models for Module Performance Analysis







# System ViewModule Performance Analysis (MPA)Math. ViewReal-Time Calculus (RTC)Min-Plus Calculus, Max-Plus Calculus





## Backgrounds

- Real-Time Calculus can be regarded as a worst-case/best-case variant of classical queuing theory. It is a formal method for the analysis of distributed real-time embedded systems.
- Related Work:
  - Min-Plus Algebra: F. Baccelli, G. Cohen, G. J. Olster, and J. P. Quadrat, Synchronization and Linearity - An Algebra for Discrete Event Systems, Wiley, New York, 1992.
  - Network Calculus: J.-Y. Le Boudec and P. Thiran, Network Calculus - A Theory of Deterministic Queuing Systems for the Internet, Lecture Notes in Computer Science, vol. 2050, Springer Verlag, 2001.

## Plus-Times and Min-Plus Algebras

- Algebraic structure
  - a set of (finite or infinite) elements S
  - one or more operators defined on the elements of this set
- Plus-Times Algebra: Two operators + and imes, denoted by (S,+, imes)
- Min-Plus Algebra
  - Two operators  $\oplus$  (min) and  $\otimes$  (plus), denoted by  $(S \cup \{+\infty\}, \inf, +)$
  - Infimum:
    - The infimum of a subset of some set is the greatest element, not necessarily in the subset, that is less than or equal to all other elements of the subset.
    - For example, inf{[a, b]} = a, inf{(a, b]} = a, where min{[a, b]} = a, min{(a, b]} = undefined.
  - Supremum:
    - The supremum of a subset of some set is the smallest element, not necessarily in the subset, that is more than or equal to all other elements of the subset.
    - For example, sup{[a, b]} = b, sup{[a, b)} = b, where max{[a, b]} = b, max{[a, b)} = undefined.

#### Min-Plus Algebra: Properties for $\otimes$

Suppose that  $a, b, c \in S$ . We have

- Closure:  $a \otimes b \in S$
- Associativity:  $a \otimes (b \otimes c) = (a \otimes b) \otimes c$
- Commutativity:  $a \otimes b = b \otimes a$
- Existence of identity element:  $\exists \nu : a \otimes \nu = a$ .
- Existence of negative element:  $\exists a^{-1} : a \otimes a^{-1} = \nu$ .
- Distributivity of ⊗ with respect to ⊕:
   a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c)

Examples

che universität

- plus-times:  $a \times (b + c) = a \times b + a \times c$
- min-plus:  $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c) = \inf\{a + b, a + c\}.$

### Min-Plus Algebra: Properties for $\oplus$

Suppose that  $a, b, c \in S$ . We have

- Closure:  $a \oplus b \in S$
- Associativity:  $a \oplus (b \oplus c) = (a \oplus b) \oplus c$
- Commutativity:  $a \oplus b = b \oplus a$
- Existence of identity element:  $\exists \epsilon : a \oplus \epsilon = a$ .
- Property of  $\epsilon$  regarding  $\otimes$ :  $a \otimes \epsilon = \epsilon$ .

Examples:

- plus-times:  $\exists 0 : a + 0 = a$ .
- min-plus:  $a \oplus a = a$ .

## Definition of Arrival Curves and Service Curves

- For a specific trace:
  - Data streams: R(t) = number of events in [0, t)
  - Resource stream: C(t) = available resource in [0, t)
- For the worst cases and the best cases in any interval with length  $\Delta\colon$ 
  - Arrival Curve [α<sup>I</sup>, α<sup>u</sup>]:

$$lpha'(\Delta) = \inf_{\lambda \ge 0, orall R} \{ R(\Delta + \lambda) - R(\lambda) \}$$

$$\alpha^{u}(\Delta) = \sup_{\lambda \ge 0, \forall R} \{ R(\Delta + \lambda) - R(\lambda) \}$$

Service Curve [β<sup>I</sup>, β<sup>u</sup>]:

che universität

$$\beta^{I}(\Delta) = \inf_{\lambda \ge 0, \forall C} \{ C(\Delta + \lambda) - C(\lambda) \}$$
$$\beta^{u}(\Delta) = \sup_{\lambda \ge 0, \forall C} \{ C(\Delta + \lambda) - C(\lambda) \}$$

#### Abstract Models for Real-Time Calculus





## Arrival Curve: An Example

Use a sliding window to get the upper bound of the number of events in a specified interval length.







## Example 1: Periodic with Jitter

A common event pattern that is used in literature can be specified by the parameter triple (p, j, d), where p denotes the period, j the jitter, and d the minimum inter-arrival distance of events in the modeled stream.





fi fakultät für

technische universität



#### Example 1: Periodic with Jitter



Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 15 / 39

#### More Examples on Arrival Curves



16 / 39

## Example 2: TDMA Resource

- Consider a real-time system consisting of *n* applications that are executed on a resource with bandwidth *B* that controls resource access using a TDMA (Time Division Multiple Access) policy.
- Analogously, we could consider a distributed system with *n* communicating nodes, that communicate via a shared bus with bandwidth *B*, with a bus arbitrator that implements a TDMA policy.
- TDMA policy: In every TDMA cycle of length  $\bar{c}$ , one single resource slot of length  $s_i$  is assigned to application i.



#### Example 2: TDMA Resource

fakultät für

informatik

technische universität dortmund



$$eta^u(\Delta) = B \min\left\{ \left[ rac{\Delta}{\overline{c}} 
ight] s_i, \Delta - \left[ rac{\Delta}{\overline{c}} 
ight] (\overline{c} - s_i) 
ight\}$$
 $eta^l(\Delta) = B \max\left\{ \left[ rac{\Delta}{\overline{c}} 
ight] s_i, \Delta - \left[ rac{\Delta}{\overline{c}} 
ight] (\overline{c} - s_i) 
ight\}$ 

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 18 / 39

### More Examples on Service Curves

technische universität

dortmund

fakultät für

informatik



# Greedy Processing Component (GPC)



• Component is triggered by incoming events.

che universität

- A fully preemptable task is instantiated at every event arrival to process the incoming event.
- Active tasks are processed in a greedy fashion in FIFO order.
- Processing is restricted by the availability of resources.

By conservation law:

$$C(t) = C'(t) + R'(t)$$
  
$$B(t) = R(t) - R'(t)$$

Therefore,

$$R'(t) = \inf_{0 \leq \lambda \leq t} \left\{ R(\lambda) + C(t) - C(\lambda) \right\} \text{ and } C'(t) = \sup_{0 \leq \lambda \leq t} \left\{ C(\lambda) - R(\lambda) \right\}$$



## Analysis on GPC

- By conservation law:  $R'(\lambda) \leq R(\lambda)$  for any  $\lambda \geq 0$ .
- Since the output cannot be larger than the available resource, we also have  $R'(t) \leq R'(\lambda) + C(t) C(\lambda)$ .
- By the two items above, we know  $R'(t) \leq R(\lambda) + C(t) C(\lambda)$ .
- Suppose that  $\lambda^*$  is the latest time before t such that the buffer is empty. That is,  $R'(\lambda^*) = R(\lambda^*)$  and  $R'(t) = R'(\lambda^*) + C(t) C(\lambda^*) = R(\lambda^*) + C(t) C(\lambda^*)$ .

$$R'(t) = \inf_{0 \le \lambda \le t} \{R(\lambda) + C(t) - C(\lambda)\}$$

• The analysis is similar for

che universität

$$C'(t) = \sup_{0 \le \lambda \le t} \{C(\lambda) - R(\lambda)\}$$

## Convolutions

che universität

• Plus-times system theory: signals *f*, impulse response *g*, convolution in time domain:

$$h(t) = (f \times g)(t) = \int_0^t f(t-s)g(s)ds,$$

where f, g can be thought of as signals and impulse response, respectively.

• Min-Plus system theory: streams *R*, variability curves *g*, convolution in time-interval domain:

$$R'(t) \geq (R \otimes g)(t) = \inf_{0 \leq \lambda \leq t} \{R(t - \lambda) + g(\lambda)\}.$$

## Abstraction





## Convolution and De-convolution

•  $f \otimes g$  is called *min-plus convolution* 

$$(f \otimes g)(t) = \inf_{0 \leq \lambda \leq t} \{f(t - \lambda) + g(\lambda)\}$$

•  $f \oslash g$  is called *min-plus de-convolution* 

$$(f \oslash g)(t) = \sup_{0 \le \lambda} \{f(t + \lambda) - g(\lambda)\}$$

•  $f \bar{\otimes} g$  is called *max-plus convolution* 

$$(f \overline{\otimes} g)(t) = \sup_{0 \le \lambda \le t} \{f(t - \lambda) + g(\lambda)\}$$

•  $f \bar{\oslash} g$  is called *max-plus de-convolution* 

che universität

$$(f \bar{\oslash} g)(t) = \inf_{0 \leq \lambda} \{f(t + \lambda) - g(\lambda)\}$$

fakultät für informatik

technische universität

$$lpha^{\prime}(t-s) \leq R(t) - R(s) \leq lpha^{\prime\prime}(t-s) \quad \forall s \leq t.$$
  
 $eta^{\prime}(t-s) \leq C(t) - C(s) \leq eta^{\prime\prime}(t-s) \quad \forall s \leq t.$ 

Therefore, by using the convolution and de-convolution, we know that

$$\begin{aligned} \alpha^{u} &= R \oslash R; \qquad \alpha^{l} = R \bar{\oslash} R; \qquad \beta^{u} = C \oslash C; \qquad \beta^{l} = C \bar{\oslash} C; \\ \text{The proof for } \alpha^{u}: \\ \alpha^{u}(\Delta) &= \sup_{\lambda \ge 0} \left\{ R(\Delta + \lambda) - R(\lambda) \right\} \ge R(\Delta + \lambda) - R(\lambda), \ \forall \lambda \ge 0. \end{aligned}$$

A curve f is sub-additive, if

$$f(a) + f(b) \ge f(a+b) \quad \forall a, b \ge 0.$$

The sub-additive *closure*  $\overline{f}$  of a curve f is the largest sub-additive curve with  $\overline{f} \leq f$  and is computed as

$$\overline{f} = \min\{f, (f \otimes f), (f \otimes f \otimes f), \ldots\}.$$

If f is interpreted as an arrival curve, then any trace R that is upper bounded by f is also upper bounded by the sub-additive closure  $\overline{f}$ .

A tight upper arrival curve should satisfy the sub-additive property.

## Some Relations

• The output stream of a component satisfies:

Proof:  

$$\begin{aligned} R'(t) &\geq (R \otimes \beta')(t) \\ \text{Proof:} \qquad R'(t) &= \inf_{\substack{0 \leq \lambda \leq t}} \left\{ R(\lambda) + C(t) - C(\lambda) \right\} \\ &\geq \inf_{\substack{0 \leq \lambda \leq t}} \left\{ R(\lambda) + \beta'(t-\lambda) \right\} = (R \otimes \beta')(t). \end{aligned}$$

• The output upper arrival curve of a component satisfies

$$\alpha^{u\prime} \leq (\alpha^u \oslash \beta^\prime)$$

with a simple and pessimistic calculation.

• The remaining lower service curve of a component satisfies

$$\beta^{\prime\prime}(\Delta) = \sup_{0 \le \lambda \le \Delta} (\beta^{\prime}(\lambda) - \alpha^{\prime\prime}(\lambda))$$

fakultät für

informatik

CS

2 computer science 12

technische universität dortmund

$$\beta^{\prime\prime}(\Delta) = \sup_{0 \le \lambda \le \Delta} (\beta^{\prime}(\lambda) - \alpha^{u}(\lambda))$$

$$C^{\prime}(t) - C^{\prime}(s) = \sup_{0 \le a \le t} \{C(a) - R(a)\} - \sup_{0 \le b \le s} \{C(b) - R(b)\}$$

$$= \inf_{0 \le b \le s} \left\{ \sup_{0 \le a \le t} \{C(a) - C(b) - (R(a) - R(b))\} \right\}$$

$$= \inf_{0 \le b \le s} \left\{ \sup_{0 \le a - b \le t - b} \{C(a) - C(b) - (R(a) - R(b))\} \right\}$$

$$\geq \inf_{0 \le b \le s} \left\{ \sup_{0 \le \lambda \le t - b} \{\beta^{\prime}(\lambda) - \alpha^{u}(\lambda)\} \right\}$$

$$\geq \sup_{0 \le \lambda \le t - s} \left\{ \beta^{\prime}(\lambda) - \alpha^{u}(\lambda) \right\} = \sup_{0 \le \lambda \le \Delta} (\beta^{\prime}(\lambda) - \alpha^{u}(\lambda)).$$

$$\begin{aligned} \alpha^{u'} &= \left[ \left( \alpha^{u} \otimes \beta^{u} \right) \oslash \beta^{l} \right] \land \beta^{u} \\ \alpha^{l'} &= \left[ \left( \alpha^{u} \oslash \beta^{l} \right) \otimes \beta^{l} \right] \land \beta^{l} \\ \beta^{u'} &= \left( \beta^{u} - \alpha^{l} \right) \overline{\oslash} \mathbf{0} \\ \beta^{l'} &= \left( \beta^{l} - \alpha^{u} \right) \overline{\bigotimes} \mathbf{0} \end{aligned}$$

Without formal proofs....







## Graphical Interpretation



### Proof of Buffer Size

ische universität



## System Composition







## Scheduling and Arbitration



## Mixed Hierarchical Scheduling



Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 35 / 39

## Complete System Composition





computer



## Extending the Framework

- New HW behavior
- New SW behavior
- New scheduling schemes
- New · · · · · · · ·



#### Find new relations

technische universität

$$lpha'(\Delta) = f_{lpha}(lpha, eta)$$
  
 $eta'(\Delta) = f_{eta}(lpha, eta)$ 

fakultät für

informatik



# RTC Toolbox (http://www.mpa.ethz.ch/Rtctoolbox)

| Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TC Toolbox<br>0 Conversions<br>0 Downshad<br>1 Downshad<br>1 Downshad<br>P RA<br>P RA<br>10 Ser Coulde<br>10 Oversive<br>10 Ove | Real-Time Calculus Toolbox                                                                                                                       | Latest News<br>(2010 0-03) (2015 0-05) (2016 and/ork load.)<br>(2000 0-103) (2016 contents for 4 microsoft load.)<br>(2000 1-03) (2016 New Yorkin 1, 2016 News<br>(2000 1-03) (2016 New Yorkin 1, 2016 News<br>(2000 0-103) (2016 New Yorkin 1, 2016 News<br>(2000 0-03) (2016 New Yorkin 1, 2016 News<br>(2006 0-03) (2016 New Yorkin 1, 2016 News<br>(2006 0-03) (2016 New Yorkin 1, 2016 News<br>(2006 0-03) (2016 New Yorkin 1, 2016 New York |
| Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Overview                                                                                                                                         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Student Theses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The Real-Time Calculus (RTC) Toolbox is a free Matlab toolbox 🏠 system-level performance analysis of distributed real-time and embedded systems. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |







## Advantages and Disadvantages of RTC and MPA

- Advantages
  - More powerful abstraction than "classical" real-time analysis
  - Resources are first-class citizens of the method
  - Allows composition in terms of (a) tasks, (b) streams, (c) resources, (d) sharing strategies.
- Disadvantages
  - Needs some effort to understand and implement
  - Extension to new arbitration schemes not always simple
  - Not applicable for schedulers that change the scheduling policies dynamically.

