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Backgrounds

• Real-Time Calculus can be regarded as a worst-case/best-case
variant of classical queuing theory. It is a formal method for
the analysis of distributed real-time embedded systems.

• Related Work:
• Min-Plus Algebra: F. Baccelli, G. Cohen, G. J. Olster, and J.

P. Quadrat, Synchronization and Linearity - An Algebra for
Discrete Event Systems, Wiley, New York, 1992.

• Network Calculus: J.-Y. Le Boudec and P. Thiran, Network
Calculus - A Theory of Deterministic Queuing Systems for the
Internet, Lecture Notes in Computer Science, vol. 2050,
Springer Verlag, 2001.
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Plus-Times and Min-Plus Algebras

• Algebraic structure

• a set of (finite or infinite) elements S
• one or more operators defined on the elements of this set

• Plus-Times Algebra: Two operators + and ×, denoted by (S ,+,×)

• Min-Plus Algebra

• Two operators ⊕ (min) and ⊗ (plus), denoted by
(S ∪ {+∞} , inf,+)

• Infimum:
• The infimum of a subset of some set is the greatest element,

not necessarily in the subset, that is less than or equal to all
other elements of the subset.

• For example, inf{[a, b]} = a, inf{(a, b]} = a, where
min{[a, b]} = a, min{(a, b]} = undefined.

• Supremum:
• The supremum of a subset of some set is the smallest

element, not necessarily in the subset, that is more than or
equal to all other elements of the subset.

• For example, sup{[a, b]} = b, sup{[a, b)} = b, where
max{[a, b]} = b, max{[a, b)} = undefined.
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Min-Plus Algebra: Properties for ⊗
Suppose that a, b, c ∈ S . We have

• Closure: a⊗ b ∈ S

• Associativity: a⊗ (b ⊗ c) = (a⊗ b)⊗ c

• Commutativity: a⊗ b = b ⊗ a

• Existence of identity element: ∃ν : a⊗ ν = a.

• Existence of negative element: ∃a−1 : a⊗ a−1 = ν.

• Distributivity of ⊗ with respect to ⊕:
a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c)

Examples

• plus-times: a× (b + c) = a× b + a× c

• min-plus: a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) = inf{a + b, a + c}.
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Min-Plus Algebra: Properties for ⊕
Suppose that a, b, c ∈ S . We have

• Closure: a⊕ b ∈ S

• Associativity: a⊕ (b ⊕ c) = (a⊕ b)⊕ c

• Commutativity: a⊕ b = b ⊕ a

• Existence of identity element: ∃ε : a⊕ ε = a.

• Property of ε regarding ⊗: a⊗ ε = ε.

Examples:

• plus-times: ∃0 : a + 0 = a.

• min-plus: a⊕ a = a.
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Definition of Arrival Curves and Service Curves

• For a specific trace:
• Data streams: R(t) = number of events in [0, t)
• Resource stream: C (t) = available resource in [0, t)

• For the worst cases and the best cases in any interval with
length ∆:
• Arrival Curve [αl , αu]:

αl(∆) = inf
λ≥0,∀R

{R(∆ + λ)− R(λ)}

αu(∆) = sup
λ≥0,∀R

{R(∆ + λ)− R(λ)}

• Service Curve [βl , βu]:

βl(∆) = inf
λ≥0,∀C

{C (∆ + λ)− C (λ)}

βu(∆) = sup
λ≥0,∀C

{C (∆ + λ)− C (λ)}
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Arrival Curve: An Example

Use a sliding window to get the upper bound of the number of
events in a specified interval length.

time
0 2 4 6 8 10 12 14

interval length (∆)

workload

0 2 4 6 8 10 12

maximum events in 3 units

minimum events in 3 units

possi
ble

events
in

3 units
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Service Curve: An Example

Resource
Availability

Service Curves
β = [β l , βu]

2.5 ms t (ms)

availability

t

2.5 ms

service

∆ (ms)

βu

βl

∆
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Example 1: Periodic with Jitter

A common event pattern that is used in literature can be specified
by the parameter triple (p, j , d), where p denotes the period, j the
jitter, and d the minimum inter-arrival distance of events in the
modeled stream.
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Example 1: Periodic with Jitter

Periodic

αu(∆) =

⌈
∆

p

⌉
αl(∆) =

⌊
∆

p

⌋

Periodic with Jitter

αu(∆) =

⌈
∆ + j

p

⌉

αl(∆) =

⌊
∆− j

p

⌋
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Example 1: Periodic with Jitter
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αu(∆) = min

{⌈
∆ + j

p

⌉
,

⌈
∆

d

⌉}

αl(∆) =

⌊
∆− j

p
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More Examples on Arrival Curves
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Example 2: TDMA Resource

• Consider a real-time system consisting of n applications that
are executed on a resource with bandwidth B that controls
resource access using a TDMA (Time Division Multiple
Access) policy.

• Analogously, we could consider a distributed system with n
communicating nodes, that communicate via a shared bus
with bandwidth B, with a bus arbitrator that implements a
TDMA policy.

• TDMA policy: In every TDMA cycle of length c̄ , one single
resource slot of length si is assigned to application i .

app 1 app 2 app n app 1 app 2 app n app 1 app 2 app n

sn sn sn
c̄ c̄ c̄
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Example 2: TDMA Resource

βu(∆) = B min

{⌈
∆

c̄

⌉
si ,∆−

⌊
∆

c̄

⌋
(c̄ − si )

}
βl(∆) = B max

{⌊
∆

c̄

⌋
si ,∆−

⌈
∆

c̄

⌉
(c̄ − si )

}
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More Examples on Service Curves
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Greedy Processing Component (GPC)

• Component is triggered by incoming events.

• A fully preemptable task is instantiated at every event arrival
to process the incoming event.

• Active tasks are processed in a greedy fashion in FIFO order.

• Processing is restricted by the availability of resources.
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GPC

By conservation law:

C (t) = C ′(t) + R ′(t)

B(t) = R(t)− R ′(t)
Therefore,

R ′(t) = inf
0≤λ≤t

{R(λ) + C (t)− C (λ)} and C ′(t) = sup
0≤λ≤t

{C (λ)− R(λ)}

time

C (t)

R(t)

R ′(t)
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Analysis on GPC

• By conservation law: R ′(λ) ≤ R(λ) for any λ ≥ 0.

• Since the output cannot be larger than the available resource,
we also have R ′(t) ≤ R ′(λ) + C (t)− C (λ).

• By the two items above, we know
R ′(t) ≤ R(λ) + C (t)− C (λ).

• Suppose that λ∗ is the latest time before t such that the
buffer is empty. That is, R ′(λ∗) = R(λ∗) and
R ′(t) = R ′(λ∗) + C (t)− C (λ∗) = R(λ∗) + C (t)− C (λ∗).

• As a result, we know that

R ′(t) = inf
0≤λ≤t

{R(λ) + C (t)− C (λ)}

• The analysis is similar for

C ′(t) = sup
0≤λ≤t

{C (λ)− R(λ)}
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Convolutions

• Plus-times system theory: signals f , impulse response g ,
convolution in time domain:

h(t) = (f × g)(t) =

∫ t

0
f (t − s)g(s)ds,

where f , g can be thought of as signals and impulse response,
respectively.

• Min-Plus system theory: streams R, variability curves g ,
convolution in time-interval domain:

R ′(t) ≥ (R ⊗ g)(t) = inf
0≤λ≤t

{R(t − λ) + g(λ)}.
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Abstraction
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Convolution and De-convolution

• f ⊗ g is called min-plus convolution

(f ⊗ g)(t) = inf
0≤λ≤t

{f (t − λ) + g(λ)}

• f � g is called min-plus de-convolution

(f � g)(t) = sup
0≤λ
{f (t + λ)− g(λ)}

• f ⊗̄g is called max-plus convolution

(f ⊗̄g)(t) = sup
0≤λ≤t

{f (t − λ) + g(λ)}

• f �̄g is called max-plus de-convolution

(f �̄g)(t) = inf
0≤λ
{f (t + λ)− g(λ)}

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 25 / 39



Arrival and Service Curves Revisit

αl(t − s) ≤ R(t)− R(s) ≤ αu(t − s) ∀s ≤ t.

βl(t − s) ≤ C (t)− C (s) ≤ βu(t − s) ∀s ≤ t.

Therefore, by using the convolution and de-convolution, we know
that

αu = R � R; αl = R�̄R; βu = C � C ; βl = C �̄C ;

The proof for αu:

αu(∆) = sup
λ≥0
{R(∆ + λ)− R(λ)} ≥ R(∆ + λ)− R(λ), ∀λ ≥ 0.
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Tight Curves

A curve f is sub-additive, if

f (a) + f (b) ≥ f (a + b) ∀a, b ≥ 0.

The sub-additive closure f of a curve f is the largest sub-additive
curve with f ≤ f and is computed as

f = min{f , (f ⊗ f ), (f ⊗ f ⊗ f ), . . .}.

If f is interpreted as an arrival curve, then any trace R that is upper
bounded by f is also upper bounded by the sub-additive closure f .

A tight upper arrival curve should satisfy the
sub-additive property.
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Some Relations

• The output stream of a component satisfies:

R ′(t) ≥ (R ⊗ βl)(t)

Proof: R ′(t) = inf
0≤λ≤t

{R(λ) + C (t)− C (λ)}

≥ inf
0≤λ≤t

{
R(λ) + βl(t − λ)

}
= (R ⊗ βl)(t).

• The output upper arrival curve of a component satisfies

αu ′ ≤ (αu � βl)

with a simple and pessimistic calculation.

• The remaining lower service curve of a component satisfies

βl ′(∆) = sup
0≤λ≤∆

(βl(λ)− αu(λ))
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Remaining Service Curve

βl ′(∆) = sup
0≤λ≤∆

(βl(λ)− αu(λ))

C ′(t)− C ′(s) = sup
0≤a≤t

{C (a)− R(a)} − sup
0≤b≤s

{C (b)− R(b)}

= inf
0≤b≤s

{
sup

0≤a≤t
{C (a)− C (b)− (R(a)− R(b))}

}
= inf

0≤b≤s

{
sup

0≤a−b≤t−b
{C (a)− C (b)− (R(a)− R(b))}

}

≥ inf
0≤b≤s

{
sup

0≤λ≤t−b

{
βl(λ)− αu(λ)

}}
≥ sup

0≤λ≤t−s

{
βl(λ)− αu(λ)

}
= sup

0≤λ≤∆
(βl(λ)− αu(λ)).
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Tighter Bounds

αu′ = [(αu ⊗ βu)� βl ] ∧ βu

αl ′ = [(αu � βl)⊗ βl ] ∧ βl

βu
′

= (βu − αl)�̄0

βl
′

= (βl − αu)⊗̄0

Without formal proofs....

GPC

[βl, βu]

[βl′, βu′
]

[αl′, αu′
][αl, αu]
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Graphical Interpretation

GPC

[βl, βu]

[βl′, βu′
]

[αl′, αu′
][αl, αu]

interval length (∆)

workload

0 2 4 6 8 10 12

Maximum buffer B

Maximum response time D

B = sup
t≥0
{R(t)− R ′(t)} ≤ sup

λ≥0
{αu(λ)− βl(λ)}

D = sup
t≥0
{inf{τ ≥ 0 : R(t) ≤ R ′(t + τ)}}

= sup
∆≥0
{inf{τ ≥ 0 : αu(∆) ≤ βl(∆ + τ)}}
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Proof of Buffer Size

interval length (∆)

workload

0 2 4 6 8 10 12

Maximum buffer B B(t) = R(t)− R ′(t)

= R(t)− inf
0≤u≤t

{R(u) + C (t)− C (u)}

= sup
0≤u≤t

{R(t)− R(u)− C (t) + C (u)}

= sup
0≤u≤t

{R(t)− R(u)− (C (t)− C (u))}

≤ sup
0≤u≤t

{αu(t − u)− βl(t − u)}

≤ sup
0≤λ
{αu(λ)− βl(λ)}
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System Composition

GPC

GPC GPC

GPCGPC

CPU

RM TDMA

BUS DSP

Concrete Instance

Scheduling

How to Interconnect service?
βCPU βBUS βDSP

α

α′
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Scheduling and Arbitration
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Mixed Hierarchical Scheduling
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Complete System Composition
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Extending the Framework

• New HW behavior

• New SW behavior

• New scheduling
schemes

• New · · · · · · · · ·

The hard part...

Find new relations

α′(∆) = fα(α, β)

β′(∆) = fβ(α, β)
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RTC Toolbox (http://www.mpa.ethz.ch/Rtctoolbox)
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Advantages and Disadvantages of RTC and MPA

• Advantages
• More powerful abstraction than “classical” real-time analysis
• Resources are first-class citizens of the method
• Allows composition in terms of (a) tasks, (b) streams, (c)

resources, (d) sharing strategies.

• Disadvantages
• Needs some effort to understand and implement
• Extension to new arbitration schemes not always simple
• Not applicable for schedulers that change the scheduling

policies dynamically.
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