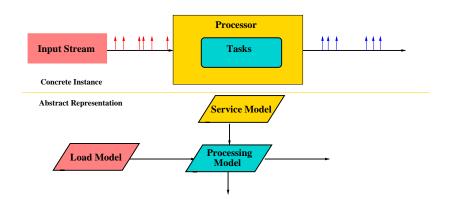
Real-Time Calculus and Module Performance Analysis

Prof. Dr. Jian-Jia Chen

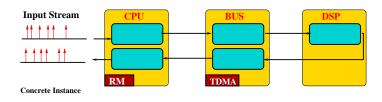
LS 12, TU Dortmund

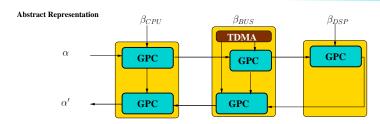
14 June 2016

Abstract Models for Real-Time Calculus



Abstract Models for Module Performance Analysis





Overview

System View Module Performance Analysis (MPA)

Math. View Real-Time Calculus (RTC)

Min-Plus Calculus, Max-Plus Calculus

Backgrounds

- Real-Time Calculus can be regarded as a worst-case/best-case variant of classical queuing theory. It is a formal method for the analysis of distributed real-time embedded systems.
- Related Work:
 - Min-Plus Algebra: F. Baccelli, G. Cohen, G. J. Olster, and J. P. Quadrat, Synchronization and Linearity - An Algebra for Discrete Event Systems, Wiley, New York, 1992.
 - Network Calculus: J.-Y. Le Boudec and P. Thiran. Network Calculus - A Theory of Deterministic Queuing Systems for the Internet, Lecture Notes in Computer Science, vol. 2050, Springer Verlag, 2001.

Plus-Times and Min-Plus Algebras

- Algebraic structure
 - a set of (finite or infinite) elements S
 - one or more operators defined on the elements of this set
- ullet Plus-Times Algebra: Two operators + and imes, denoted by $(\mathcal{S},+, imes)$
- Min-Plus Algebra
 - Two operators \oplus (min) and \otimes (plus), denoted by $(S \cup \{+\infty\}, \inf, +)$
 - Infimum:
 - The infimum of a subset of some set is the greatest element, not necessarily in the subset, that is less than or equal to all other elements of the subset.
 - For example, inf{[a, b]} = a, inf{(a, b]} = a, where min{[a, b]} = a, min{(a, b]} = undefined.
 - Supremum:
 - The supremum of a subset of some set is the smallest element, not necessarily in the subset, that is more than or equal to all other elements of the subset.
 - For example, sup{[a, b]} = b, sup{[a, b)} = b, where max{[a, b]} = b, max{[a, b)} = undefined.

Min-Plus Algebra: Properties for \otimes

Suppose that $a, b, c \in S$. We have

- Closure: $a \otimes b \in S$
- Associativity: $a \otimes (b \otimes c) = (a \otimes b) \otimes c$
- Commutativity: $a \otimes b = b \otimes a$
- Existence of identity element: $\exists \nu : a \otimes \nu = a$.
- Existence of negative element: $\exists a^{-1} : a \otimes a^{-1} = \nu$.
- Distributivity of \otimes with respect to \oplus : $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$

Examples

- plus-times: $a \times (b+c) = a \times b + a \times c$
- min-plus: $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c) = \inf\{a + b, a + c\}.$

Min-Plus Algebra: Properties for \oplus

Suppose that $a, b, c \in S$. We have

- Closure: $a \oplus b \in S$
- Associativity: $a \oplus (b \oplus c) = (a \oplus b) \oplus c$
- Commutativity: $a \oplus b = b \oplus a$
- Existence of identity element: $\exists \epsilon : a \oplus \epsilon = a$.
- Property of ϵ regarding \otimes : $a \otimes \epsilon = \epsilon$.

Examples:

- plus-times: $\exists 0 : a + 0 = a$.
- min-plus: $a \oplus a = a$.

Definition of Arrival Curves and Service Curves

- For a specific trace:
 - Data streams: R(t) = number of events in [0, t)
 - Resource stream: C(t) = available resource in [0, t)
- \bullet For the worst cases and the best cases in any interval with length $\Delta\colon$
 - Arrival Curve $[\alpha^I, \alpha^u]$:

$$\alpha'(\Delta) = \inf_{\lambda \ge 0, \forall R} \{ R(\Delta + \lambda) - R(\lambda) \}$$

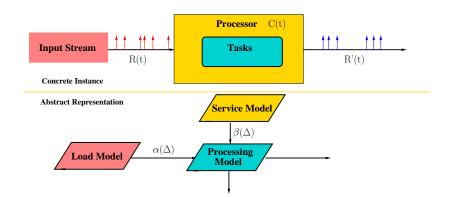
$$\alpha^{u}(\Delta) = \sup_{\lambda \ge 0, \forall R} \{ R(\Delta + \lambda) - R(\lambda) \}$$

• Service Curve $[\beta^I, \beta^u]$:

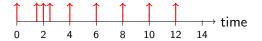
$$\beta^{I}(\Delta) = \inf_{\lambda > 0, \forall C} \{ C(\Delta + \lambda) - C(\lambda) \}$$

$$\beta^{u}(\Delta) = \sup_{\lambda > 0 \ \forall C} \{ C(\Delta + \lambda) - C(\lambda) \}$$

Abstract Models for Real-Time Calculus



Use a sliding window to get the upper bound of the number of events in a specified interval length.

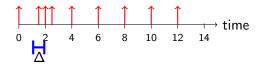


Use a sliding window to get the upper bound of the number of events in a specified interval length.

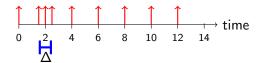


Use a sliding window to get the upper bound of the number of events in a specified interval length.

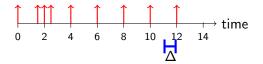
Use a sliding window to get the upper bound of the number of events in a specified interval length.



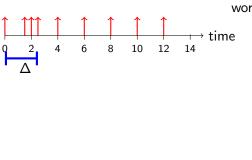
Use a sliding window to get the upper bound of the number of events in a specified interval length.

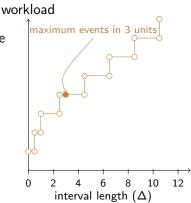


Use a sliding window to get the upper bound of the number of events in a specified interval length.

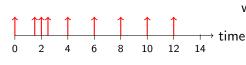


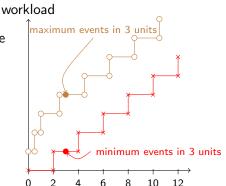
Use a sliding window to get the upper bound of the number of events in a specified interval length.





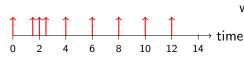
Use a sliding window to get the upper bound of the number of events in a specified interval length.

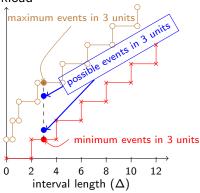




interval length (Δ)

Use a sliding window to get the upper bound of the number of events in a specified interval length.

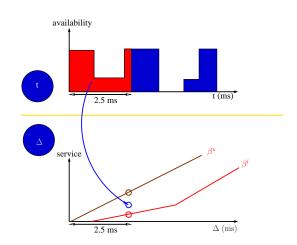




Service Curve: An Example

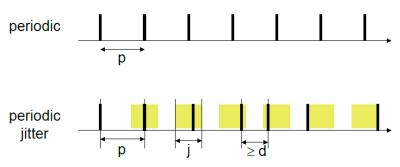
Resource Availability

Service Curves $\beta = [\beta^I, \beta^u]$

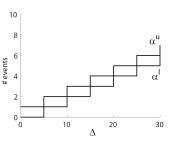


Example 1: Periodic with Jitter

A common event pattern that is used in literature can be specified by the parameter triple (p, j, d), where p denotes the period, j the jitter, and d the minimum inter-arrival distance of events in the modeled stream.



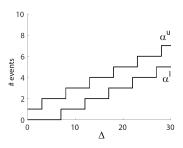
Example 1: Periodic with Jitter



$$\alpha^{u}(\Delta) = \left\lceil \frac{\Delta}{p} \right\rceil$$

$$\alpha'(\Delta) = \left| \frac{\Delta}{p} \right|$$

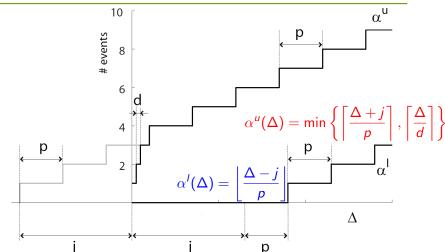
Periodic with Jitter



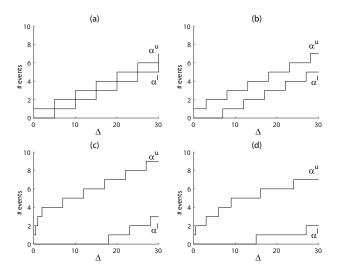
$$\alpha^{u}(\Delta) = \left\lceil \frac{\Delta + j}{p} \right\rceil$$

$$\alpha'(\Delta) = \left| \frac{\Delta - j}{p} \right|$$

Example 1: Periodic with Jitter

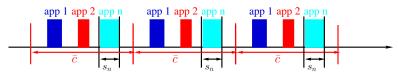


More Examples on Arrival Curves

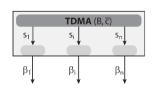


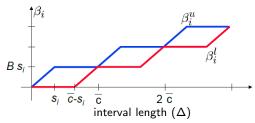
Example 2: TDMA Resource

- Consider a real-time system consisting of n applications that are executed on a resource with bandwidth B that controls resource access using a TDMA (Time Division Multiple Access) policy.
- Analogously, we could consider a distributed system with n communicating nodes, that communicate via a shared bus with bandwidth B, with a bus arbitrator that implements a TDMA policy.
- TDMA policy: In every TDMA cycle of length \bar{c} , one single resource slot of length s_i is assigned to application i.



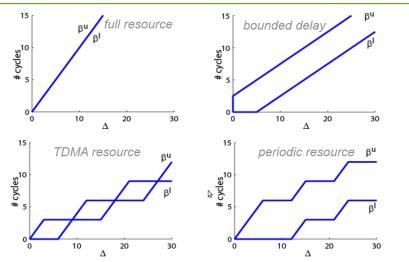
Example 2: TDMA Resource



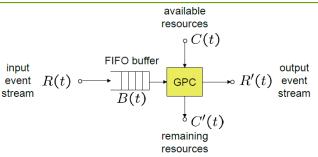


$$\beta^{u}(\Delta) = B \min \left\{ \left\lceil \frac{\Delta}{\overline{c}} \right\rceil s_{i}, \Delta - \left\lfloor \frac{\Delta}{\overline{c}} \right\rfloor (\overline{c} - s_{i}) \right\}$$
$$\beta^{l}(\Delta) = B \max \left\{ \left\lfloor \frac{\Delta}{\overline{c}} \right\rfloor s_{i}, \Delta - \left\lfloor \frac{\Delta}{\overline{c}} \right\rfloor (\overline{c} - s_{i}) \right\}$$

More Examples on Service Curves



Greedy Processing Component (GPC)



- Component is triggered by incoming events.
- A fully preemptable task is instantiated at every event arrival to process the incoming event.
- Active tasks are processed in a greedy fashion in FIFO order.
- Processing is restricted by the availability of resources.

GPC

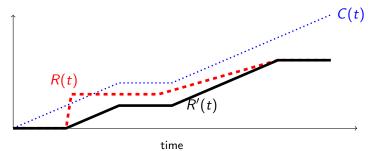
By conservation law:

$$C(t) = C'(t) + R'(t)$$

Therefore,

$$B(t) = R(t) - R'(t)$$

$$R'(t) = \inf_{0 \leq \lambda \leq t} \left\{ R(\lambda) + C(t) - C(\lambda) \right\} \text{ and } C'(t) = \sup_{0 \leq \lambda \leq t} \left\{ C(\lambda) - R(\lambda) \right\}$$



Analysis on GPC

- By conservation law: $R'(\lambda) \le R(\lambda)$ for any $\lambda \ge 0$.
- Since the output cannot be larger than the available resource, we also have $R'(t) \leq R'(\lambda) + C(t) C(\lambda)$.
- By the two items above, we know $R'(t) \le R(\lambda) + C(t) C(\lambda)$.
- Suppose that λ^* is the latest time before t such that the buffer is empty. That is, $R'(\lambda^*) = R(\lambda^*)$ and $R'(t) = R'(\lambda^*) + C(t) C(\lambda^*) = R(\lambda^*) + C(t) C(\lambda^*)$.
- As a result, we know that

$$R'(t) = \inf_{0 \le \lambda \le t} \left\{ R(\lambda) + C(t) - C(\lambda) \right\}$$

Analysis on GPC

- By conservation law: $R'(\lambda) \le R(\lambda)$ for any $\lambda \ge 0$.
- Since the output cannot be larger than the available resource, we also have $R'(t) \leq R'(\lambda) + C(t) C(\lambda)$.
- By the two items above, we know $R'(t) \le R(\lambda) + C(t) C(\lambda)$.
- Suppose that λ^* is the latest time before t such that the buffer is empty. That is, $R'(\lambda^*) = R(\lambda^*)$ and $R'(t) = R'(\lambda^*) + C(t) C(\lambda^*) = R(\lambda^*) + C(t) C(\lambda^*)$.
- As a result, we know that

$$R'(t) = \inf_{0 \le \lambda \le t} \left\{ R(\lambda) + C(t) - C(\lambda) \right\}$$

The analysis is similar for

$$C'(t) = \sup_{0 \le \lambda \le t} \{C(\lambda) - R(\lambda)\}\$$

Convolutions

 Plus-times system theory: signals f, impulse response g, convolution in time domain:

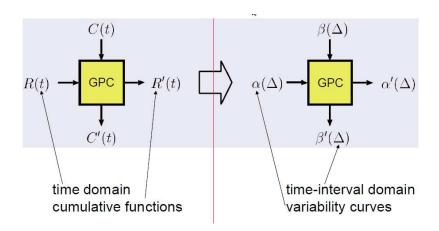
$$h(t) = (f \times g)(t) = \int_0^t f(t-s)g(s)ds,$$

where f, g can be thought of as signals and impulse response, respectively.

 Min-Plus system theory: streams R, variability curves g, convolution in time-interval domain:

$$R'(t) \ge (R \otimes g)(t) = \inf_{0 \le \lambda \le t} \{R(t - \lambda) + g(\lambda)\}.$$

Abstraction



Convolution and De-convolution

f ⊗ g is called min-plus convolution

$$(f \otimes g)(t) = \inf_{0 \le \lambda \le t} \{ f(t - \lambda) + g(\lambda) \}$$

f ⊘ g is called min-plus de-convolution

$$(f \oslash g)(t) = \sup_{0 < \lambda} \{ f(t + \lambda) - g(\lambda) \}$$

• $f \bar{\otimes} g$ is called *max-plus convolution*

$$(f \bar{\otimes} g)(t) = \sup_{0 \leq \lambda \leq t} \{f(t - \lambda) + g(\lambda)\}$$

f \(\bar{\cap}\)g is called max-plus de-convolution

$$(f \bar{\oslash} g)(t) = \inf_{0 \le \lambda} \{f(t + \lambda) - g(\lambda)\}\$$

Arrival and Service Curves Revisit

$$\alpha'(t-s) \le R(t) - R(s) \le \alpha''(t-s) \quad \forall s \le t.$$

 $\beta'(t-s) \le C(t) - C(s) \le \beta''(t-s) \quad \forall s \le t.$

Therefore, by using the convolution and de-convolution, we know that

$$\alpha^{u} = R \oslash R;$$
 $\alpha^{l} = R \bar{\oslash} R;$ $\beta^{u} = C \oslash C;$ $\beta^{l} = C \bar{\oslash} C;$

The proof for α^u :

$$\alpha^{u}(\Delta) = \sup_{\lambda > 0} \left\{ R(\Delta + \lambda) - R(\lambda) \right\} \ge R(\Delta + \lambda) - R(\lambda), \ \forall \lambda \ge 0.$$

Tight Curves

A curve f is sub-additive, if

$$f(a) + f(b) \ge f(a+b) \quad \forall a, b \ge 0.$$

The sub-additive *closure* \overline{f} of a curve f is the largest sub-additive curve with $\overline{f} \leq f$ and is computed as

$$\overline{f} = \min\{f, (f \otimes f), (f \otimes f \otimes f), \ldots\}.$$

If f is interpreted as an arrival curve, then any trace R that is upper bounded by f is also upper bounded by the sub-additive closure \overline{f} .

Tight Curves

A curve f is sub-additive, if

$$f(a) + f(b) \ge f(a+b) \quad \forall a, b \ge 0.$$

The sub-additive *closure* \overline{f} of a curve f is the largest sub-additive curve with $\overline{f} \leq f$ and is computed as

$$\overline{f} = \min\{f, (f \otimes f), (f \otimes f \otimes f), \ldots\}.$$

If f is interpreted as an arrival curve, then any trace R that is upper bounded by f is also upper bounded by the sub-additive closure \overline{f} .

A tight upper arrival curve should satisfy the sub-additive property.

Some Relations

The output stream of a component satisfies:

$$R'(t) \geq (R \otimes \beta^I)(t)$$

The output upper arrival curve of a component satisfies

$$\alpha^{u\prime} \leq (\alpha^u \oslash \beta^I)$$

with a simple and pessimistic calculation.

The remaining lower service curve of a component satisfies

$$\beta^{I\prime}(\Delta) = \sup_{0 \le \lambda \le \Delta} (\beta^{I}(\lambda) - \alpha^{u}(\lambda))$$

Some Relations

The output stream of a component satisfies:

Proof:
$$R'(t) \ge (R \otimes \beta^I)(t)$$

$$R'(t) = \inf_{0 \le \lambda \le t} \{R(\lambda) + C(t) - C(\lambda)\}$$

$$\ge \inf_{0 < \lambda < t} \{R(\lambda) + \beta^I(t - \lambda)\} = (R \otimes \beta^I)(t).$$

The output upper arrival curve of a component satisfies

$$\alpha^{u\prime} \leq (\alpha^u \oslash \beta^l)$$

with a simple and pessimistic calculation.

The remaining lower service curve of a component satisfies

$$\beta^{\prime\prime}(\Delta) = \sup_{0 < \lambda < \Delta} (\beta^{\prime}(\lambda) - \alpha^{\prime\prime}(\lambda))$$

Remaining Service Curve

$$\beta^{I\prime}(\Delta) = \sup_{0 \le \lambda \le \Delta} (\beta^I(\lambda) - \alpha^u(\lambda))$$

$$C'(t) - C'(s) = \sup_{0 \le a \le t} \{C(a) - R(a)\} - \sup_{0 \le b \le s} \{C(b) - R(b)\}$$

$$= \inf_{0 \le b \le s} \left\{ \sup_{0 \le a \le t} \{C(a) - C(b) - (R(a) - R(b))\} \right\}$$

$$= \inf_{0 \le b \le s} \left\{ \sup_{0 \le a - b \le t - b} \{C(a) - C(b) - (R(a) - R(b))\} \right\}$$

$$\geq \inf_{0 \le b \le s} \left\{ \sup_{0 \le \lambda \le t - b} \{\beta^I(\lambda) - \alpha^u(\lambda)\} \right\}$$

$$\geq \sup_{0 \le \lambda \le t - s} \{\beta^I(\lambda) - \alpha^u(\lambda)\} = \sup_{0 \le \lambda \le \Delta} (\beta^I(\lambda) - \alpha^u(\lambda)).$$

Tighter Bounds

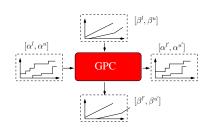
$$\alpha^{u'} = [(\alpha^u \otimes \beta^u) \otimes \beta^l] \wedge \beta^u$$

$$\alpha^{l'} = [(\alpha^u \otimes \beta^l) \otimes \beta^l] \wedge \beta^l$$

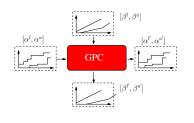
$$\beta^{u'} = (\beta^u - \alpha^l) \bar{\otimes} 0$$

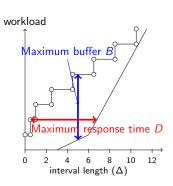
$$\beta^{l'} = (\beta^l - \alpha^u) \bar{\otimes} 0$$

Without formal proofs....



Graphical Interpretation



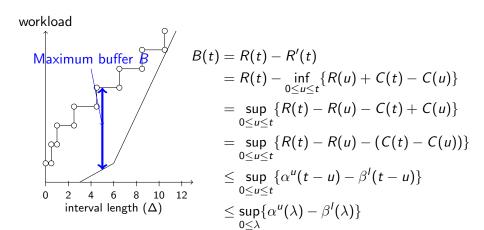


$$B = \sup_{t \ge 0} \{R(t) - R'(t)\} \le \sup_{\lambda \ge 0} \{\alpha^u(\lambda) - \beta^l(\lambda)\}$$

$$D = \sup_{t \ge 0} \{\inf\{\tau \ge 0 : R(t) \le R'(t+\tau)\}\}$$

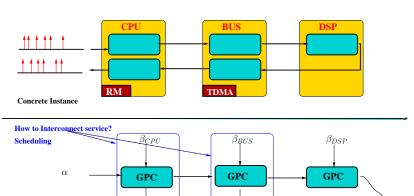
$$= \sup_{\Delta > 0} \{\inf\{\tau \ge 0 : \alpha^u(\Delta) \le \beta^l(\Delta + \tau)\}\}$$

Proof of Buffer Size



System Composition

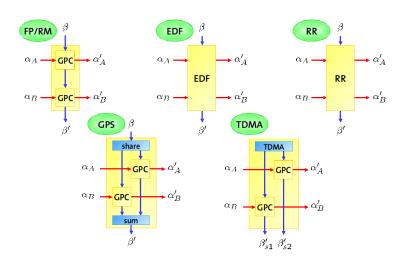
 α'



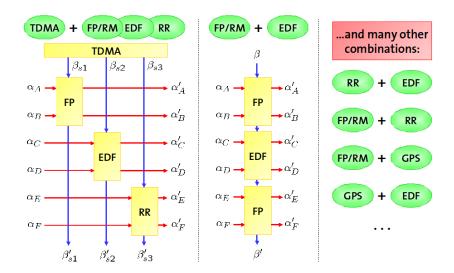
GPC

GPC

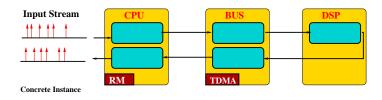
Scheduling and Arbitration

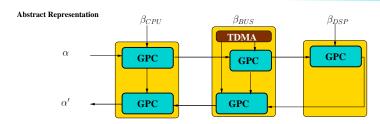


Mixed Hierarchical Scheduling



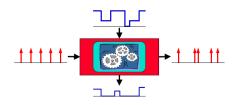
Complete System Composition





Extending the Framework

- New HW behavior
- New SW behavior
- New scheduling schemes
- New · · · · · ·



Extending the Framework

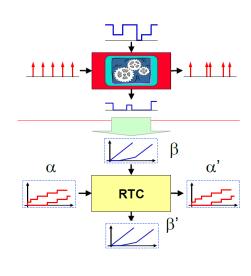
- New HW behavior
- New SW behavior
- New scheduling schemes
- New · · · · · · ·

The hard part...

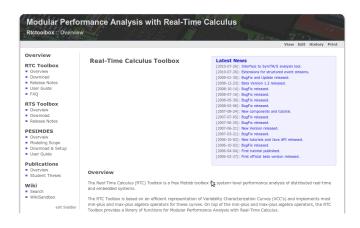
Find new relations

$$\alpha'(\Delta) = f_{\alpha}(\alpha, \beta)$$

 $\beta'(\Delta) = f_{\beta}(\alpha, \beta)$



RTC Toolbox (http://www.mpa.ethz.ch/Rtctoolbox)



Advantages and Disadvantages of RTC and MPA

- Advantages
 - More powerful abstraction than "classical" real-time analysis
 - Resources are first-class citizens of the method
 - Allows composition in terms of (a) tasks, (b) streams, (c) resources, (d) sharing strategies.
- Disadvantages
 - Needs some effort to understand and implement
 - Extension to new arbitration schemes not always simple
 - Not applicable for schedulers that change the scheduling policies dynamically.

