
Programming Languages for Real-Time Systems

Prof. Dr. Jian-Jia Chen

LS 12, TU Dortmund

20 June 2016

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 41

References

Slides are based on Prof. Wang Yi, Prof. Peter Marwedel, and Prof.
Alan Burns.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 2 / 41

Terminologies

• Time-aware system makes explicit reference to time (e.g.
open vault door at 9.00)

• Reactive system must produce output within a relative
deadline (as measured from input)

• Control systems are reactive systems
• Required to constraint input and output (time) variability,

input jitter and output jitter control

• Time-triggered computation is triggered by the passage of
time

• Release activity at 9.00
• Release activity every 25ms, called a periodic activity

• Event-trigger computation is triggered by an external or
internal event

• The released activity is called sporadic, if there is a lower
bound on the arrival interval of the event

• The released activity is called aperiodic, if there is no such
bound

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 3 / 41

Concurrent Programming

• The name given to programming notation and techniques for
expressing potential parallelism and solving the resulting
synchronization and communication problems

• Implementation of parallelism is a topic in computer systems
(hardware and software) that is essentially independent of
concurrent programming

• Concurrent programming is important because it provides an
abstract setting to study parallelism without getting bogged
down in the implementation details

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 4 / 41

Why We Need It

• The alternative is to use sequential programming techniques

• The programmer must construct the system so that it involves
the cyclic execution of a program sequence to handle the
various concurrent activities

• This complicates the programmer’s already difficult task and
involves him/her in considerations of structures which are
irrelevant to the control of the activities in hand

• The resulting programs will be more obscure and inelegant

• It makes decomposition of the problem more complex

• Parallel execution of the program on more than one processor
will be much more difficult to achieve

• The placement of code to deal with faults is more problematic

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 5 / 41

Programming Languages for Real-Time Systems

• Normally require operating system support
• Assembly languages
• Sequential systems implementation languages, e.g. C.

• No operating system support
• High-level concurrent languages
• For example, Ada, Real-Time Java, Real-Time POSIX, etc.

• Synchronous programming languages
• Esterel, Lustre, Signal, etc.

• Model-based programming languages (from models to code)
• Giotto, Real-Time UML, SimuLink, etc.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 6 / 41

Real-Time Languages and OSes

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 7 / 41

Should concurrency be in a language or in the OS?

• Arguments for language-based concurrency:
• It leads to more readable and maintainable programs
• There are many different types of OSs; the language approach

makes the program more portable
• An embedded computer may not have any resident OS
• Some compiler optimizations are invalid if using OS

concurrency
• It is easier to verify the satisfactions of the timing and safety

requirements

• Arguments against:
• It is easier to compose programs from different languages if

they all use the same OS model
• It may be difficult to implement a language’s model of

concurrency efficiently on top of an OSs model
• OS standards are beginning to emerge

• The Ada/Java philosophy is that the advantages outweigh the
disadvantages

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 8 / 41

Outline

Ada

Real-Time Java

Model-Based Design and Synchronous Programming

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 9 / 41

Ada

• After Ada Lovelace (regarded to be the 1st female
programmer)

• The US Department of Defense (DoD) wanted to avoid
multitude of programming languages obsolete or
hardware-dependent

• Reduced the number of programming languages used in these
applications (fell from 450 in 1983 to 37 in 1996 by wiki)

• Definition of requirements by a high order language working
group

• Selection of a language from a set of competing designs
• selected design based on PASCAL
• It has become a language for general-purpose computing with

concurrent requirement

• Ada2005 now supports EDF, Fixed-Priority Scheduling,
PIP/PCP, non-preemptive scheduling, Round-Robin, etc.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 10 / 41

Real Time Programming: we need support for

• Concurrency (Ada tasking)

• Communication & synchronization (Ada Rendezvous)

• Consistency in data sharing (Ada protected data type)

• Real time facilities (Ada real time packages and delay
statements)

• accessing system time so that the passage of time can be
measured

• delaying processes until some future time
• Timeouts: waiting for or running some action for a given time

period

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 11 / 41

System Time

• A timer circuit programmed to interrupt the processor at a
fixed rate.

• Each time interrupt is called a system tick (time resolution):
• Normally, the tick can vary 1-50ms (or even microseconds) in

RTOS
• The tick may be selected by the user
• All time parameters for tasks should be a multiple of the tick
• System time = 32 bits

• One tick = 1ms: system can run 50 days
• One tick = 20ms: system can run 1000 days = 2.5 years
• One tick = 50ms: system can run 2500 days= 7 years

• In Ada95 it is required that the system time should last at
least 50 years

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 12 / 41

Real-Time Support in Ada

• Two pre-defined packages to access the system clock
Ada.Calendar and Ada.Real Time

• Both based on the same hardware clock

• There are two delay-statements
• Delay time (in seconds)
• Delay until time

• The delay statements can be used together with select to
program timeouts, timed entry etc.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 13 / 41

Ada.Calendar

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 14 / 41

Ada.Calendar (cont.)

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 15 / 41

Ada.Real Time

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 16 / 41

Ada.Real Time (cont.)

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 17 / 41

Relative Delays

• Delay the execution of a task for a given period

• Relative delays (using clock access) – busy waiting

S t a r t := Clock ;
l oop
e x i t when (Clock − S t a r t) > 1 0 . 0 ;
end l oop ;
ACTION ;

• To avoid busy-waiting, most languages and Operation
Systems provide some form of delay primitive

• In Ada, this is a delay statement delay 10.0;
• In UNIX, sleep(10);

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 18 / 41

Absolute Delays

• To delay the execution of a task to a specified time point
(using clock access) – busy waiting:

S t a r t := Clock ;
FIRST ACTION ;
l oop
e x i t when Clock > S t a r t +10.0;
end l oop ;
SECOND Act ion ;

• To avoid busy-wait:

S t a r t := Clock ;
FIRST ACTION ;
d e l a y u n t i l START + 10 . 0 ; (t h i s i s by i n t e r r u p t)
SECOND Act ion ;

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 19 / 41

Ada Delay

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 20 / 41

Periodic Task

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 21 / 41

Controller Example

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 22 / 41

Controller Example (cont.)

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 23 / 41

Controller Example (cont.)

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 24 / 41

Outline

Ada

Real-Time Java

Model-Based Design and Synchronous Programming

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 25 / 41

Real-Time Specification for Java (RTSJ)

• Java was designed as a platform-independent language

• Especially the byte-code representation reduces the required space
and can be used for embedded systems

• Java was also designed as a safe language, compared to C/C++,
especially for memory protections

• Standard java is unfortunately not suitable for real-time embedded
systems

• The run-time library is too big
• The garbage collection has to be handled carefully to avoid

impact on the timing properties
• Prioritization among threads is not well specified

• RTSJ

• supports a fixed-priority based threading model
• supports for PIP and PCP to handle priority inversions
• garbage collector has to be run in a predictable way
• Unlike Ada, Real-Time Java explicitly distinguishes between

threads and real-time threads

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 26 / 41

ReleaseParameter Class

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 27 / 41

Release Parameters

• The processing cost for each release and its blocking time

• Its relative deadline

• If the object is periodic or sporadic, then an interval is also
given

• Event handlers can be specified for the situation when the
deadline is missed or the processing cost consumed is larger
than specified

• There is no requirement to monitor the processing time
consumed by a schedulable object

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 28 / 41

An extract from the RealtimeThread Class

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 29 / 41

Remarks

• Scheduling Parameters
• An empty class
• Subclasses allow the priority of the object to be specified and,

potentially, its importance to the overall functioning of the
application

• RTSJ specifies a minimum range of real-time priorities (28)

• MemoryParameters
• the maximum amount of memory used by the object in an

associated memory area
• the maximum amount of memory used in immortal memory
• a maximum allocation rate of heap memory.

• ProcessingGroupParameters
• allows several schedulable objects to be treated as a group and

to have an associated period, cost and deadline

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 30 / 41

PeriodicParameters Class

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 31 / 41

Periodic Task - Parameters

For period 10ms, relative deadline 5ms, execution time 1ms,
starting at absolute time A, we have:

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 32 / 41

Periodic Task - Body

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 33 / 41

Semantics of waitForNextPeriod

• On a DEADLINE MISS
• The RTSJ assumes that in this situation the thread itself will

undertake some corrective action
• If there are no handlers, waitForNextPeriod (wFNP) will not

block the thread in the event of a deadline miss (it returns
false immediately) .

• Where the handler is available, the RTSJ assumes that the
handler will take some corrective action and therefore it
automatically deschedules the thread. If appropriate, the
handler reschedules the thread

• If a deadline is met
• wFNP returns true at the next release time

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 34 / 41

Outline

Ada

Real-Time Java

Model-Based Design and Synchronous Programming

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 35 / 41

RT Programming Languages

• Classic high-level languages with RT extensions e.g.
• Ada
• Real-Time Java, C + RTOS
• SDL

• Synchronous Programming (from 1980s)
• Esterel
• Lustre
• Signal

• Design, Modeling, Validation, and Code Generation (from
models to code)

• Giotto
• Real-Time UML
• SimuLink

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 36 / 41

Esterel

• Synchronous Hypothesis: Ideal systems produce their outputs
synchronously with their inputs

• Hence all computation and communication is assumed to take
zero time (all temporal scopes are executed instantaneously)

module periodic;

input tick;

output result(integer);

var V : integer in

loop

await 10 tick;

-- undertake required computation to set V

emit result(v);

end

end

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 37 / 41

Esterel (cont.)

• One consequence of the synchronous hypothesis is that all
actions are atomic

• This behaviour significantly reduces nondeterminism

• Unfortunately it also leads to potential causality problems

signal S in

present S else emit S end

end

• This program is incoherent: if S is absent then it is emitted;
on the other hand if it were present it would not be emitted

• A formal definition of the behavioral semantics of Esterel
helps to eliminate these problems

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 38 / 41

Giotto

• A language for control applications

• A task may have an arbitrary number of input and output
ports.

• A task may also maintain a state, which can be viewed as a set
of private ports whose values are inaccessible outside the task.

• Giotto tasks are periodic tasks.
• A Giotto program consists of a set of modes, each of which

repeats the invocation of a fixed set of tasks. The Giotto
program is in one mode at a time.

• A mode switch describes the transition from one mode to
another mode. For this purpose, a mode switch specifies a
switch frequency, a target mode, and a driver.

• The periodic invocation of tasks, the reading of sensor values, the
writing of actuator values, and the mode switching are all triggered
by real time.

• A Giotto program does not specify where, how, and when tasks are
scheduled.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 39 / 41

Example of Giotto in One Mode

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 40 / 41

Lifting the Level of Abstraction

modified from Edward Lee’s slides

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 41 / 41

	Ada
	Real-Time Java
	Model-Based Design and Synchronous Programming

