
Suspending Behaviour in Real-Time Embedded
Systems

Prof. Dr. Jian-Jia Chen

TU Dortmund

24,05,2016

Prof. Dr. Jian-Jia Chen (TU Dortmund) 1 / 46

Introduction

Suspension Models

Dynamic Suspending Task Model

Segmented Suspending Task Model

Conclusion

Prof. Dr. Jian-Jia Chen (TU Dortmund) 2 / 46

Outline

Introduction

Suspension Models

Dynamic Suspending Task Model

Segmented Suspending Task Model

Conclusion

Prof. Dr. Jian-Jia Chen (TU Dortmund) 2 / 46

Optimality of RM/DM and EDF

• For uniprocessor scheduling, if there exists a feasible schedule
for ordinary sporadic real-time tasks, scheduling jobs by using
EDF is also feasible.

• EDF scheduling algorithm is optimal

• RM scheduling algorithm is optimal for fixed-priority
scheduling when we consider implicit-deadline (i.e., Ti = Di)
ordinary sporadic tasks

Time Demand Analysis (TDA): Task τk (with Di = Ti) can
be feasibly scheduled by a fixed-priority scheduling algorithm if

∃t with 0 < t ≤ Tk and Ck +
k−1∑
j=1

⌈
t

Tj

⌉
Cj ≤ t.

(This talk will implicitly assume k − 1 higher-priority tasks.)

Prof. Dr. Jian-Jia Chen (TU Dortmund) 3 / 46

Optimality of RM/DM and EDF

• For uniprocessor scheduling, if there exists a feasible schedule
for ordinary sporadic real-time tasks, scheduling jobs by using
EDF is also feasible.

• EDF scheduling algorithm is optimal

• RM scheduling algorithm is optimal for fixed-priority
scheduling when we consider implicit-deadline (i.e., Ti = Di)
ordinary sporadic tasks

Time Demand Analysis (TDA): Task τk (with Di = Ti) can
be feasibly scheduled by a fixed-priority scheduling algorithm if

∃t with 0 < t ≤ Tk and Ck +
k−1∑
j=1

⌈
t

Tj

⌉
Cj ≤ t.

(This talk will implicitly assume k − 1 higher-priority tasks.)

Prof. Dr. Jian-Jia Chen (TU Dortmund) 3 / 46

Optimality of RM/DM and EDF

• For uniprocessor scheduling, if there exists a feasible schedule
for ordinary sporadic real-time tasks, scheduling jobs by using
EDF is also feasible.

• EDF scheduling algorithm is optimal

• RM scheduling algorithm is optimal for fixed-priority
scheduling when we consider implicit-deadline (i.e., Ti = Di)
ordinary sporadic tasks

Time Demand Analysis (TDA): Task τk (with Di = Ti) can
be feasibly scheduled by a fixed-priority scheduling algorithm if

∃t with 0 < t ≤ Tk and Ck +
k−1∑
j=1

⌈
t

Tj

⌉
Cj ≤ t.

(This talk will implicitly assume k − 1 higher-priority tasks.)

Prof. Dr. Jian-Jia Chen (TU Dortmund) 3 / 46

Reasons for Suspension: Hardware Acceleration

Use FPGA in parallel (suspension aware).

t

CPU

HW 1

HW 2

HW 3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

τ1 arrives τ2 arrives τ3 arrives

τ1 τ2 τ3 τ1 τ2 τ3 τ3

τ1

τ2

τ3

Not use FPGA in parallel (busy waiting).

t

CPU

HW 1

HW 2

HW 3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

τ1 τ1 τ2 τ2 τ3 τ3

τ1

τ2

τ3

Prof. Dr. Jian-Jia Chen (TU Dortmund) 4 / 46

Reasons for Suspension: Computation Offloading

Pseudo-code for this system

set timer to interrupt periodically
with period T ;

at each timer interrupt
do

• perform analog-to-digital
conversion to get y ;

• compute control output u by
using external devices;

• output u and do
digital-to-analog conversion;

od

Control System

A/D

(The system

being controlled)

plant

actuator

D/A
Control−law

computation

sensor

y(t) u(t)

ukyk

Prof. Dr. Jian-Jia Chen (TU Dortmund) 5 / 46

An Example: Unreliable Timing Channels

• Many powerful devices are timing unreliable, which are
forbidden in hard real-time systems.

• Graphics Processing Unit
• Network Servers
• Accelerators

Prof. Dr. Jian-Jia Chen (TU Dortmund) 6 / 46

Compensation Mechanism

• Based on the timing unpredictable behaviour on many
components, we need a local compensation mechanism.

Ci ,1 Ci ,2Local Compensation

Ci ,1 Ci ,2Receive Results

Prof. Dr. Jian-Jia Chen (TU Dortmund) 7 / 46

Reasons for Suspension: I/O- or Memory-Intensive

• An I/O-intensive task may have to use DMA to transfer a
large amount of data.

• This can take up to a few microseconds to milliseconds.

• Execution pattern of a job is as follows:

• executes for a certain amount of time,
• then initiates an I/O activity, and suspends itself.
• is resumed to the ready queue to be (re)-eligible for execution

once the I/O activity completes.

• Such latency can become much more dynamic and larger
when we consider multicore platforms with shared memory.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 8 / 46

Reasons for Suspension: DAG Structure

0.5

3

4

7

2

t

Proc. 1

Proc. 2

0 1 2 3 4 5 6 7 8 9 10 11 12

.5

3 4

7

2

suspension

suspension suspension

• A task may be parallelized such that it can be executed
simultaneously on some processors to perform independent
computation.

• To this end, we can use a directed acyclic graph (DAG) to
model the dependency of the subtasks in a sporadic task.

• Each vertex in the DAG represents a subtask

Prof. Dr. Jian-Jia Chen (TU Dortmund) 9 / 46

Reasons for Self-Suspensions: Locking Protocols

• Semaphores in uniprocessor systems: cause additional
blocking due to the mutual exclusion

• Semaphores in multiprocessor systems: cause remote blocking
due to the mutual exclusion

• Suppose that J1 and J2 are on two different processors
• If J1 locks the semaphore, J2 has to wait and the processor

that runs J2 may have to idle.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 10 / 46

Reasons for Self-Suspensions: Locking Protocols

• Semaphores in uniprocessor systems: cause additional
blocking due to the mutual exclusion

• Semaphores in multiprocessor systems: cause remote blocking
due to the mutual exclusion

• Suppose that J1 and J2 are on two different processors
• If J1 locks the semaphore, J2 has to wait and the processor

that runs J2 may have to idle.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 10 / 46

Reasons for Self-Suspensions: Physical Resource Sharing

t

Shared
Resource

Core 2

Core 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

τ2 τ2 τ2

τ1 τ1 τ1 τ1

τ1 τ1 τ1 τ1τ2 τ2 τ2

c-execution
c-suspension

r-execution
r-suspension

• Multiple cores may share a bus

• The contention on the bus can be considered as a suspension
problem (with respect to the bus access)

Prof. Dr. Jian-Jia Chen (TU Dortmund) 11 / 46

Outline

Introduction

Suspension Models

Dynamic Suspending Task Model

Segmented Suspending Task Model

Conclusion

Prof. Dr. Jian-Jia Chen (TU Dortmund) 12 / 46

Possible Self Suspensions

• 1-Segmented self-suspension: 2 computation segments separated by a
suspension interval

• Segmented self-suspension: f computation segments separated by f − 1
suspension intervals

• Dynamic self-suspension: the suspension pattern is unknown and can be
arbitrary

Prof. Dr. Jian-Jia Chen (TU Dortmund) 13 / 46

Terminologies

• Ci ,j or C j
i : the worst-case execution time for task τi in the

j-th computation segment

• Ci : the worst-case execution time for task τi

• Si ,j or S j
i : the self-suspension time for task τi in the j-th

suspension interval

• Si : the self-suspension time for task τi

• Ti : period of task τi

• Di : relative deadline of task τi . I will implicitly assume
Ti = Di , unless it is specified.

• Ui : utilization of task τi , defined as Ci
Ti

Prof. Dr. Jian-Jia Chen (TU Dortmund) 14 / 46

Counterexample for RM and EDF

• C1 = 1, S1 = 0, D1 = 5, T1 =∞.

• C2,1 = 1, S2 = 8, C2,2 = 1, D2 = 10, T2 = 10.

Efficient Design, Analysis, and Implementation of
Complex Multiprocessor Real-Time Systems

suspensioncomputation

0 10

τ1

τ2

• We can easily extend to let S2 to be very large.

• EDF and Rate-Monotonic are in general not good.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 15 / 46

Counterexample for RM and EDF

• C1 = 1, S1 = 0, D1 = 5, T1 =∞.

• C2,1 = 1, S2 = 8, C2,2 = 1, D2 = 10, T2 = 10.

Efficient Design, Analysis, and Implementation of
Complex Multiprocessor Real-Time Systems

suspensioncomputation

0 10

τ1

τ2

• We can easily extend to let S2 to be very large.

• EDF and Rate-Monotonic are in general not good.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 15 / 46

Wait, What does this Mean?

• The gain by offloading can be completely useless

• The remote blocking and synchronization can completely
destroy the feasibility

• Existing scheduling algorithms are not going to work very well

• Suspension has triggered a new dimension for designing
systems

• If suspension is not handled carefully, the suspension may be
harmful to the system utilization

• So, the key is to utilize and analyze the suspension impact
well.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 16 / 46

Wait, What does this Mean?

• The gain by offloading can be completely useless

• The remote blocking and synchronization can completely
destroy the feasibility

• Existing scheduling algorithms are not going to work very well

• Suspension has triggered a new dimension for designing
systems

• If suspension is not handled carefully, the suspension may be
harmful to the system utilization

• So, the key is to utilize and analyze the suspension impact
well.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 16 / 46

Outline

Introduction

Suspension Models

Dynamic Suspending Task Model

Segmented Suspending Task Model

Conclusion

Prof. Dr. Jian-Jia Chen (TU Dortmund) 17 / 46

The Golden Critical Instant Theorem for FP Scheduling

τ1

τ2

τ3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

τ4

• Release the higher-priority tasks at the same time as the task
(here τk) under analysis

• The following jobs of a higher-priority task should be released
then by following the period constraint

∃t with 0 < t ≤ Tk and Ck +
k−1∑
j=1

⌈
t

Tj

⌉
Cj ≤ t.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 18 / 46

Suspension Induces Jitter

τ1

τ2

τ3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

τ4

• The response time of task τ4 becomes 27− 5 = 22. (It was 21
if there is no suspension.)

• Is this the worst case if only task τ1 suspends itself?

Prof. Dr. Jian-Jia Chen (TU Dortmund) 19 / 46

Periodic Tasks with Jitter (pjd Tasks)

A common event pattern (that is not purely periodic) can be
specified by the parameter triple (p, j , d), where p denotes the
period, j the jitter, and d the minimum inter-arrival distance of
events in the modeled stream.

courtesy slide from Lothar Thiele.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 20 / 46

Suspension Creates Jitter (cont.)

τ1

τ2

τ3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

τ4

• A self-suspending task τi is a PJD task

• Period is Ti

• Jitter is Si
• Minimum inter-arrival time is Ci (I will not use this constraint.)

• Schedulability test of task τk :

∃t with 0 < t ≤ Tk and Ck + Sk +
k−1∑
j=1

⌈
t + Sj
Tj

⌉
Cj ≤ t.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 21 / 46

Suspension Creates Jitter (cont.)

τ1

τ2

τ3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

τ4

• A self-suspending task τi is a PJD task

• Period is Ti

• Jitter is Si
• Minimum inter-arrival time is Ci (I will not use this constraint.)

• Schedulability test of task τk :

∃t with 0 < t ≤ Tk and Ck + Sk +
k−1∑
j=1

⌈
t + Sj
Tj

⌉
Cj ≤ t.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 21 / 46

Suspension-Aware Schedulability Analysis

The following papers are based on this observation

• Meng, RTCSA 1994

• Kim et al., RTCSA 1995

• Audsley and Bletsas, ECRTS 2004

• Audsley and Bletsas, RTAS 2004

• Lakshmannan and Rajkumar, RTSS 2009 for multiprocessor
synhchronization problems

• Several other papers (10+) that are based on Lakshmannan
and Rajkumar in RTSS 2009.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 22 / 46

An Example

The above analysis

t-6 -4 -2 0 2 4 6 8 10 12 14 16

τ3

12

τ2

τ1

Worst Case

t0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

τ3

22− 5ε

τ2

ε 5ε

τ1

Prof. Dr. Jian-Jia Chen (TU Dortmund) 23 / 46

τi Ci Si Ti

τ1 1 0 2

τ2 5 5 20

τ3 1 0 ∞

An Example

The above analysis

t-6 -4 -2 0 2 4 6 8 10 12 14 16

τ3

12

τ2

τ1

Worst Case

t0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

τ3

22− 5ε

τ2

ε 5ε

τ1

Prof. Dr. Jian-Jia Chen (TU Dortmund) 23 / 46

τi Ci Si Ti

τ1 1 0 2

τ2 5 5 20

τ3 1 0 ∞

What was the Misconception?

The above analysis is incorrect.

Too optimistic!

• The setting of jitter to Si is too optimistic.

• The impact: the following papers are based on this
observation

• Meng, RTCSA 1994 (flawed)
• Kim et al., RTCSA 1995 (flawed)
• Audsley and Bletsas, ECRTS 2004 (flawed)
• Audsley and Bletsas, RTAS 2004 (flawed)
• Lakshmannan and Rajkumar, RTSS 2009 (flawed) for

multiprocessor synhchronization problems
• Several other papers (10+) that are based on Lakshmannan

and Rajkumar in RTSS 2009.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 24 / 46

How to Fix It? Be Pessimistic!

ak dk

τi τi τi τi

head body tail

ak dk

τi

bursty

τi τi τi

Prof. Dr. Jian-Jia Chen (TU Dortmund) 25 / 46

How to Fix It? Be Pessimistic!

ak dk

τi τi τi τi

head body tail

ak dk

τi

bursty

τi τi τi

Prof. Dr. Jian-Jia Chen (TU Dortmund) 25 / 46

How to Fix It? Be Pessimistic!

ak dk

τi τi τi τi

head body tail

ak dk

τi

bursty

τi τi τi

Prof. Dr. Jian-Jia Chen (TU Dortmund) 25 / 46

Time-Demand Schedulability Analysis

Task τk is schedulable under fixed-priority scheduling in a
self-suspension task set, if

∃t with 0 < t ≤ Tk and Ck + Sk +
k−1∑
i=1

Wi (t) ≤ t,

where

Wi (t) =

(⌈
t

Ti

⌉
− 1

)
Ci + 2Ci .

Or, equivalently, the jitter of a higher-priority task τi is Ti .

ak dk

τi

bursty=2Ci

τi τi τi

Prof. Dr. Jian-Jia Chen (TU Dortmund) 26 / 46

Time-Demand Schedulability Analysis

Task τk is schedulable under fixed-priority scheduling in a
self-suspension task set, if

∃t with 0 < t ≤ Tk and Ck + Sk +
k−1∑
i=1

Wi (t) ≤ t,

where

Wi (t) =

(⌈
t

Ti

⌉
− 1

)
Ci + 2Ci .

Or, equivalently, the jitter of a higher-priority task τi is Ti .

ak dk

τi

bursty=2Ci

τi τi τi

Prof. Dr. Jian-Jia Chen (TU Dortmund) 26 / 46

Time-Demand Schedulability Analysis

Task τk is schedulable under fixed-priority scheduling in a
self-suspension task set, if

∃t with 0 < t ≤ Tk and Ck + Sk +
k−1∑
i=1

Wi (t) ≤ t,

where

Wi (t) =

(⌈
t

Ti

⌉
− 1

)
Ci + 2Ci .

Or, equivalently, the jitter of a higher-priority task τi is Ti .

ak dk

τi

bursty=2Ci

τi τi τi

Prof. Dr. Jian-Jia Chen (TU Dortmund) 26 / 46

Utilization-Based Analysis

Theorem (Bini et al. in ECRTS 2001)

Any sporadic task set is schedulable under
RM if the following conditions hold:

∀1 ≤ k ≤ n, Uk ≤ 1− (1 + 1) ·

(
1− 1∏k−1

i=1 (Ui + 1)

)
. (1)

Theorem (Liu and Layland JACM 1973)

Any sporadic task set is schedulable under
RM if the following conditions hold:

∀1 ≤ k ≤ n, Uk +
k−1∑
i=1

Ui ≤ k

(1 + 1

1

) 1
k

− 1

 (2)

Prof. Dr. Jian-Jia Chen (TU Dortmund) 27 / 46

Utilization-Based Analysis

Theorem (Liu and Chen in RTSS 2014)

Any sporadic self − suspending task set is schedulable under

RM if the following conditions hold:

∀1 ≤ k ≤ n, Uk +
Sk
Tk
≤ 1− (2 + 1) ·

(
1− 1∏k−1

i=1 (Ui + 1)

)
. (1)

Theorem (Liu and Chen in RTSS 2014)

Any sporadic self − suspending task set is schedulable under

RM if the following conditions hold:

∀1 ≤ k ≤ n,Uk +
Sk
Tk

+
k−1∑
i=1

Ui ≤ k

(2 + 1

2

) 1
k

− 1

 (2)

Prof. Dr. Jian-Jia Chen (TU Dortmund) 27 / 46

Calculating Suspension Time Can Be Also Tricky

• The original analysis in distributed priority ceiling protocol
(DPCP by Rajkumar in ICDCS 1990)

• Non-nested critical sections
• Critical sections guarded by one semaphore are always

executed on one dedicated processor
• Three tasks, each of them assigned on one processor, using

one binary semaphore on Proc0.

τi Proc(τi) Ci Ti (= Di) Nk Li
τ1 Proc1 6 10 1 2
τ2 Proc2 11 18 1 4
τ3 Proc3 8 20 3 1

• Ci : worst-case execution time (including the critical section
length)

• Ti : the period
• Ni : the number of critical sections per job invocation
• Li : the worst-case critical section length (per critical section).

Prof. Dr. Jian-Jia Chen (TU Dortmund) 28 / 46

Calculating Suspension Time Can Be Tricky

τi Proc(τi) Ci Ti (= Di) Nk Li
τ1 Proc1 6 10 1 2
τ2 Proc2 11 18 1 4
τ3 Proc3 8 20 3 1

• Multi-tasking only takes place on Proc0

• The original analysis argues that the additional delay Bk due
to DPCP on Proc0 for task τk is upper bounded by Bk

≤ Nk ·(maxj>k Lj) +
∑

i=1
k−1

⌈
Tk
Ti

⌉
Li Ni .

• The first term is due to the fact that each critical section
access can be blocked by a lower-priority task.

• The second term is due to the interference from the
higher-priority tasks under the critical instant theorem.

Therefore,
• B1 is upper bounded by 4,
• B2 is upper bounded by 1 + 2 · 2 = 5, and
• B3 is upper bounded by 0 + 2 · 2 + 4 · 2 = 12.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 29 / 46

Something Went Wrong

τi Proc(τi) Ci Ti (= Di) Nk Li
τ1 Proc1 6 10 1 2
τ2 Proc2 11 18 1 4
τ3 Proc3 8 20 3 1

t

P3: τ3

P2: τ2

P1: τ1

P0: Aq

0 2 4 6 8 10 12 14 16 18 20 22 24 26

job release normal execution critical section waiting for critical sections

τ1 τ1 τ1τ2 τ2τ3 τ3 τ3

miss deadline

A job of task τ3: run 0.5 time unit on Proc3, critical section 1 time unit, run 1
time unit on Proc3, access the critical section for 1 time unit, run 3.5 time
units on Proc3, and access the critical section for 1 time unit

Prof. Dr. Jian-Jia Chen (TU Dortmund) 30 / 46

Impact

• This wrong quantification of suspension time was used by

• R. Rajkumar, L. Sha, and J. Lehoczky, in RTSS 1988.
• R. Rajkumar, in ICDCS 1990.
• B. Victor and G. Kang, IEEE Transactions on Software

Engineering, vol. 21, no. 10, pp. 834-844, 1995.
• Lakshmannan and Rajkumar, RTSS 2009
• P. Hsiu, D. Lee, and T. Kuo, in EMSOFT 2011.
• F. Nemati, M. Behnam, and T. Nolte, in ECRTS 2011.

• Correct settings of jitter can solve this problem

Prof. Dr. Jian-Jia Chen (TU Dortmund) 31 / 46

Can We Do Better? Suspension as Blocking

• In the textbook ”Real-Time Systems” by Jane W. S. Liu, she
proposed to model the extra delay as blocking denoted as Bk :

• The blocking time contributed from task τk is Sk .
• A higher-priority task τi can only block the execution of task
τk by at most min(Ci ,Si).

Bk = Sk +
k−1∑
i=1

min(Ci , Si).

If the argument is correct, we can revise the analysis:

∃t | 0 < t ≤ Tk , Ck + Bk +
k−1∑
i=1

⌈
t

Ti

⌉
Ci ≤ t.

This was also used by Rajkumar et al. in RTSS 1988 and ICDCS 1990.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 32 / 46

Can We Do Better? Suspension as Blocking

• In the textbook ”Real-Time Systems” by Jane W. S. Liu, she
proposed to model the extra delay as blocking denoted as Bk :

• The blocking time contributed from task τk is Sk .
• A higher-priority task τi can only block the execution of task
τk by at most min(Ci ,Si).

Bk = Sk +
k−1∑
i=1

min(Ci , Si).

If the argument is correct, we can revise the analysis:

∃t | 0 < t ≤ Tk , Ck + Bk +
k−1∑
i=1

⌈
t

Ti

⌉
Ci ≤ t.

This was also used by Rajkumar et al. in RTSS 1988 and ICDCS 1990.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 32 / 46

Can We Do Better? Suspension as Blocking

• In the textbook ”Real-Time Systems” by Jane W. S. Liu, she
proposed to model the extra delay as blocking denoted as Bk :

• The blocking time contributed from task τk is Sk .
• A higher-priority task τi can only block the execution of task
τk by at most min(Ci ,Si).

Bk = Sk +
k−1∑
i=1

min(Ci , Si).

If the argument is correct, we can revise the analysis:

∃t | 0 < t ≤ Tk , Ck + Bk +
k−1∑
i=1

⌈
t

Ti

⌉
Ci ≤ t.

This was also used by Rajkumar et al. in RTSS 1988 and ICDCS 1990.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 32 / 46

Can We Do Better? Suspension as Blocking

• In the textbook ”Real-Time Systems” by Jane W. S. Liu, she
proposed to model the extra delay as blocking denoted as Bk :

• The blocking time contributed from task τk is Sk .
• A higher-priority task τi can only block the execution of task
τk by at most min(Ci ,Si).

Bk = Sk +
k−1∑
i=1

min(Ci , Si).

If the argument is correct, we can revise the analysis:

∃t | 0 < t ≤ Tk , Ck + Bk +
k−1∑
i=1

⌈
t

Ti

⌉
Ci ≤ t.

This was also used by Rajkumar et al. in RTSS 1988 and ICDCS 1990.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 32 / 46

The analysis is correct!

Jian-Jia Chen, Geoffrey Nelissen and Wen-Hung Huang, ”A Unifying Response Time

Analysis Framework for Dynamic Self-Suspending Tasks”, in ECRTS 2016.

Outline

Introduction

Suspension Models

Dynamic Suspending Task Model

Segmented Suspending Task Model

Conclusion

Prof. Dr. Jian-Jia Chen (TU Dortmund) 33 / 46

Segmented Suspension

• Arbitrary suspension model provides an easy way to specify
suspending systems

• suffers from the poor schedulability
• using arbitrary suspension blindly is too pessimistic

• When the suspension patterns are known (or are specified with
certain guarantees), it is better to use segmented suspensions.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 34 / 46

Period Enforcer

• Rajkumar in 1991 proposed the period enforcer algorithm

• It is a technique to control the processor demand.

• The key idea: artificially delay the execution of computation
segments if a job resumes too soon.

• The period enforcer algorithm determines for each
computation segment an eligibility time.

• If a segment resumes before its eligibility time, the execution
of the segment is delayed until the eligibility time is reached.

• You can imagine that this is like a sporadic server.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 35 / 46

Period Enforcer

• Rajkumar in 1991 proposed the period enforcer algorithm

• It is a technique to control the processor demand.

• The key idea: artificially delay the execution of computation
segments if a job resumes too soon.

• The period enforcer algorithm determines for each
computation segment an eligibility time.

• If a segment resumes before its eligibility time, the execution
of the segment is delayed until the eligibility time is reached.

• You can imagine that this is like a sporadic server.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 35 / 46

Period Enforcer: An Example

151050 time20

⌧2

⌧1

⌧3

release

completion

deadline

scheduled

self-suspended

151050 time20

⌧2

⌧1

⌧3

release

completion

deadline

scheduled

self-suspended

ineligible
(period enforcement)

Prof. Dr. Jian-Jia Chen (TU Dortmund) 36 / 46

(C 1
i ,S

1
i ,C

2
i) Di = Ti

τ1 (3, 0, 0) 10
τ2 (1, 4, 2) 10
τ3 (3, 0, 0) 10

Period Enforcement Can Induce Deadline Misses

(C 1
i , S

1
i ,C

2
i) Di = Ti

τ1 (2, 0, 0) 10
τ2 (1, 6, 1) 11

151050 time2520

⌧2

⌧1

release

completion

deadline

scheduled

self-suspended

151050 time2520

⌧2

⌧1

release

completion

deadline

scheduled

self-suspended

ineligible
(period enforcement)

Prof. Dr. Jian-Jia Chen (TU Dortmund) 37 / 46

Critical Instant?

Let’s consider the simplest case under fixed-priority scheduling:

• τk is the lowest priority task

• all the higher priority tasks are sporadic and
non-self-suspending

Lakshmanan and Rajkumar (in RTAS 2010) proved that the
critical instant of task τk is as follows:

• every task releases a job simultaneously with τk ;

• the jobs of higher priority tasks that are eligible to be released
during the self-suspension interval of τk are delayed to be
aligned with the release of the subsequent computation
segment of τk ; and

• all the remaining jobs of the higher priority tasks are released
with their minimum inter-arrival time.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 38 / 46

Critical Instant?

Let’s consider the simplest case under fixed-priority scheduling:

• τk is the lowest priority task

• all the higher priority tasks are sporadic and
non-self-suspending

Lakshmanan and Rajkumar (in RTAS 2010) proved that the
critical instant of task τk is as follows:

• every task releases a job simultaneously with τk ;

• the jobs of higher priority tasks that are eligible to be released
during the self-suspension interval of τk are delayed to be
aligned with the release of the subsequent computation
segment of τk ; and

• all the remaining jobs of the higher priority tasks are released
with their minimum inter-arrival time.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 38 / 46

Critical Instant?

Let’s consider the simplest case under fixed-priority scheduling:

• τk is the lowest priority task

• all the higher priority tasks are sporadic and
non-self-suspending

Lakshmanan and Rajkumar (in RTAS 2010) proved that the
critical instant of task τk is as follows:

• every task releases a job simultaneously with τk ;

• the jobs of higher priority tasks that are eligible to be released
during the self-suspension interval of τk are delayed to be
aligned with the release of the subsequent computation
segment of τk ; and

• all the remaining jobs of the higher priority tasks are released
with their minimum inter-arrival time.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 38 / 46

An Example

(C 1
i ,S

1
i ,C

2
i) Di = Ti

τ1 (1, 0, 0) 4
τ2 (1, 0, 0) 9
τ3 (1, 2, 3) 9

(a) Lakshmannan’s Critical Instant.

(b) Do not release jobs synchronously.

t0 2 4 6 8 10

τ3

9

τ2

τ1

Counterexample provided by Nelissen et al. in ECRTS 2015.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 39 / 46

An Example

(C 1
i ,S

1
i ,C

2
i) Di = Ti

τ1 (1, 0, 0) 4
τ2 (1, 0, 0) 9
τ3 (1, 2, 3) 9

(a) Lakshmannan’s Critical Instant. (b) Do not release jobs synchronously.

t0 2 4 6 8 10

τ3

9

τ2

τ1

t0 2 4 6 8 10

τ3

10

τ2

τ1

Counterexample provided by Nelissen et al. in ECRTS 2015.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 39 / 46

Fixed-Relative-Deadline (FRD) Approaches

t t + Di ,1 t + Di ,1 + Si t + Ti

SiCi ,1 Ci ,2

• When a job of task τi arrives at time t,

• the absolute deadline of the job in the first computation phase
is set to t + Di,1

• the suspension has to be finished before t + Di,1 + Si ,
• the release time of the second subjob (the second computation

phase) is t + Di,1 + Si
• the absolute deadline of the second subjob is t + Ti

Prof. Dr. Jian-Jia Chen (TU Dortmund) 40 / 46

Proportional Fixed-Relative Deadline Assignments

Liu et al. in DAC 2014 for only one suspension interval per task.

• Di ,1 =
Ci,1

Ci,1+Ci,2
(Ti − Si)

• Di ,2 =
Ci,2

Ci,1+Ci,2
(Ti − Si)

• Therefore, we have
Ci,1

Di,1
=

Ci,2

Di,2
=

Ci,1+Ci,2

Ti−Si

• Is Proportional FRD Good?

• It can be proved that this does not yield good analytical
bounds.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 41 / 46

Equal-Deadline Assignment (EDA)

Chen and Liu in RTSS 2014

Di ,1 = Di ,2 =
Ti − Si

2
.

Remarks

sounds very pessimistic, but the first sound method (with
approximation/speedup guarantee). Originally proposed only for
dynamic-priority scheduling.

Remarks

Huang and Chen (DATE 2016): extended to fixed-priority
scheduling and multiple suspension intervals.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 42 / 46

Equal-Deadline Assignment (EDA)

Chen and Liu in RTSS 2014

Di ,1 = Di ,2 =
Ti − Si

2
.

Remarks

sounds very pessimistic, but the first sound method (with
approximation/speedup guarantee). Originally proposed only for
dynamic-priority scheduling.

Remarks

Huang and Chen (DATE 2016): extended to fixed-priority
scheduling and multiple suspension intervals.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 42 / 46

Equal-Deadline Assignment (EDA)

Chen and Liu in RTSS 2014

Di ,1 = Di ,2 =
Ti − Si

2
.

Remarks

sounds very pessimistic, but the first sound method (with
approximation/speedup guarantee). Originally proposed only for
dynamic-priority scheduling.

Remarks

Huang and Chen (DATE 2016): extended to fixed-priority
scheduling and multiple suspension intervals.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 42 / 46

Different Priority per Computation Segment

(Ci ,1,Si ,1,Ci ,2 Di = Ti

τ1 (10, 0, 0) 30
τ2 (5, 5, 16) 40

• Priority level: C 1
2 − C 1

1 − C 2
2

• One may conclude that the worst-case response time of C 1
2 is 5

and the worst-case response time of C 2
2 is 16 + 10 = 26.

• Since 5 + 5 + 26 = 36 ≤ 40, the lowest-priority segment can
meet the deadline.

t

τ2

τ1

0 5 10 15 20 25 30 35 40

offset miss

C 1
2 C 2

2

• Yes, possible, but pay attention

• This was used by Kim et al. RTSS 2013, and Ding et al. in
IEICE Transactions 2009.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 43 / 46

Different Priority per Computation Segment

(Ci ,1,Si ,1,Ci ,2 Di = Ti

τ1 (10, 0, 0) 30
τ2 (5, 5, 16) 40

• Priority level: C 1
2 − C 1

1 − C 2
2

• One may conclude that the worst-case response time of C 1
2 is 5

and the worst-case response time of C 2
2 is 16 + 10 = 26.

• Since 5 + 5 + 26 = 36 ≤ 40, the lowest-priority segment can
meet the deadline.

t

τ2

τ1

0 5 10 15 20 25 30 35 40

offset miss

C 1
2 C 2

2

• Yes, possible, but pay attention

• This was used by Kim et al. RTSS 2013, and Ding et al. in
IEICE Transactions 2009.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 43 / 46

Different Priority per Computation Segment

(Ci ,1,Si ,1,Ci ,2 Di = Ti

τ1 (10, 0, 0) 30
τ2 (5, 5, 16) 40

• Priority level: C 1
2 − C 1

1 − C 2
2

• One may conclude that the worst-case response time of C 1
2 is 5

and the worst-case response time of C 2
2 is 16 + 10 = 26.

• Since 5 + 5 + 26 = 36 ≤ 40, the lowest-priority segment can
meet the deadline.

t

τ2

τ1

0 5 10 15 20 25 30 35 40

offset miss

C 1
2 C 2

2

• Yes, possible, but pay attention

• This was used by Kim et al. RTSS 2013, and Ding et al. in
IEICE Transactions 2009.

Prof. Dr. Jian-Jia Chen (TU Dortmund) 43 / 46

Outline

Introduction

Suspension Models

Dynamic Suspending Task Model

Segmented Suspending Task Model

Conclusion

Prof. Dr. Jian-Jia Chen (TU Dortmund) 44 / 46

Conclusion

• Suspension can be very harmful if it is not treated well

• Suspension relates to important features in the era of
multicore systems and cyber-physical systems

• Computation offloading
• Shared memory and bus in multicore systems
• Virtual shared resources (like semaphores) in multicore systems
• GPU/FPGA acceleration
• etc.

• This is a non-trivial problem

• Studied already early in 90’s but with quite a few
misconceptions

• Broken literature

Prof. Dr. Jian-Jia Chen (TU Dortmund) 45 / 46

Positive Results

• Wen-Hung Huang and Jian-Jia Chen. Schedulability and Priority
Assignment for Multi-Segment Self-Suspending Real-Time Tasks under
Fixed-Priority Scheduling. under preparation.

• Wen-Hung Huang and Jian-Jia Chen. Self-Suspension Real-Time Tasks
under Fixed-Relative-Deadline Fixed-Priority Scheduling. in DATE, 2016

• Wen-Hung Huang, Jian-Jia Chen, Husheng Zhou and Cong Liu. PASS:
Priority Assignment of Real-Time Tasks with Dynamic Suspending
Behavior under Fixed-Priority Scheduling, in DAC, 2015.

• Jian-Jia Chen, Cong Liu: Fixed-Relative-Deadline Scheduling of Hard
Real-Time Tasks with Self-Suspensions. in RTSS 2014

• Cong Liu, Jian-Jia Chen: Bursty-Interference Analysis Techniques for
Analyzing Complex Real-Time Task Models. in RTSS 2014

• Wei Liu, Jian-Jia Chen, Anas Toma, Tei-Wei Kuo, Qingxu Deng:
Computation Offloading by Using Timing Unreliable Components in
Real-Time Systems. in DAC 2014

Prof. Dr. Jian-Jia Chen (TU Dortmund) 46 / 46

	Introduction
	Suspension Models
	Dynamic Suspending Task Model
	Segmented Suspending Task Model
	Conclusion

