Scheduling Aperiodic Jobs on Uniprocessor Systems

Prof. Dr. Jian-Jia Chen

LS 12, TU Dortmund

25 April 2016

Aperiodic Job (Task) Models (Revisited)

A job J is characterized as follows:

- Arrival time (a_j) or release time (r_j) is the time at which the job becomes ready for execution
- Computation (execution) time (C_j) is the time necessary to the processor for executing the job without interruption (= WCET).
- Absolute deadline (d_j) is the time at which the job should be completed.

Earliest Due Date Algorithm

Theorem

Given a set of n independent jobs that arrive synchronously (release time is 0), any algorithm that executes tasks in order of nondecreasing absolute deadlines is optimal with respect to minimizing the maximum lateness.

Denoted as Earliest Due Date (EDD) Algorithm [Jackson, 1955]

Proof

Let σ be the schedule for J produced by scheduling algorithm A. We can transform A to EDD schedule A' without increasing L_{max} . Details are in the textbook by Buttazzo [Theorem 3.1].

A Sketched Proof

EDD is optimal for minimizing the maximum lateness: Given a set of n independent tasks, any algorithm that executes the tasks in order of non-decreasing (absolute) deadlines is optimal with respect to minimizing the maximum lateness.

Proof (Buttazzo, 2002):

- Let S be a schedule produced by any algorithm A
- If $S \neq$ the schedule of EDD $\rightarrow \exists J_a, J_b: d_a \leq d_b, J_b$ immediately precedes J_a in S.
- Let S' be the schedule obtained by exchanging J_a and J_b

A Sketched Proof (contd.)

Exchanging J_a and J_b cannot increase lateness Max. lateness for J_a and J_b in S is $L_{max}(a, b) = f_a - d_a$ Max. lateness for J_a and J_b in S' is $L_{max}(a, b) = max(L'_a, L'_b)$

Two possible cases:

L'_a ≥ L'_b :→ L'_{max}(a, b) = f'_a - d_a < f_a - d_a = L_{max}(a, b) since J_a starts earlier in schedule S'.
 L'_a < L'_b :→ L'_{max}(a, b) = f'_b - d_b = f_a - d_b ≤ f_a - d_a = L_{max}(a, b) since f_a = f'_b and d_a ≤ D_b
 L'_{max}(a, b) ≤ L_{max}(a, b)

Optimality of EDF

Theorem

Given a set of n independent aperiodic tasks (jobs) with arbitrary arrival times, if the aperiodic task set is feasible on a single processor then any algorithm that executes tasks with earliest deadline (among the set of active tasks) is guaranteed to meet all tasks' deadlines.

- Several proofs of optimality exist: Liu and Layland (1973), Horn (1974), and Dertouzos (1974).
- Similar to Jackson Algorithm proof of optimality, but need to account for preemption. (The steps are almost the same as the previous slide, by accounting for preemptions. I leave this proof out.)

Exact Schedulability Test for EDF

Theorem

A set of aperiodic tasks is schedulable (by EDF) if and only if

$$orall a_i < d_k, \sum_{ au_j: a_i \leq a_j \ and \ d_j \leq d_k} C_j \leq d_k - a_i$$

- Proof for only if (necessary test): this simply comes from the fact that the demand must be no more than the available time
- Now: Proof for if (sufficient test): use contrapositive: $A \rightarrow B \Leftrightarrow \overline{B} \rightarrow \overline{A}$

Proof: Sufficient Schedulability Test for EDF

Proof

ne universität

Proof by contrapositive:

- Suppose that EDF schedule does not meet the deadline
- Let au_k be the first task which misses its absolute deadline d_k
- Let t_0 be the last instant before d_k , at which either the processor is idle or the processor executes a task with absolute deadline larger than d_k
- By EDF, t_0 must be an arrival time of a job, called τ_i
- Therefore, t_0 is equal to a_i
- The processor executes only the jobs arriving no earlier than a_i and with absolute deadline less than or equal to d_k
- Therefore, we conclude the proof by showing that

$$\exists a_i < d_k, \sum_{ au_j: a_i \leq a_j ext{ and } d_j \leq d_k} C_j > d_k - a_i$$

Link this to DBF

Theorem

Define demand bound function $dbf(\tau_i, t)$ as

$$dbf(\tau_i, t) = \max\left\{0, \left\lfloor \frac{t+T_i - D_i}{T_i}
ight
brace
ight\} C_i = \max\left\{0, \left\lfloor \frac{t-D_i}{T_i}
ight
brace+1
ight\} C_i.$$

A task set \mathcal{T} of independent, preemptable, periodic tasks can be feasibly scheduled (under EDF) on one processor if and only if $\forall L \geq 0, \sum_{i=1}^{n} dbf(\tau_i, L) \leq L$.

Least Laxity First

technische universität

fakultät für

Priorities = decreasing function of the laxity (lower laxity = higher priority); changing priority; preemptive.

