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2
Terminology and Basic Scheduling Theory

This chapter provides an overview of the algorithmic, task, and system mod-
els that will be used in the book. Task models will be given in Section 2.2.
The concept of different schedules is formally defined in Section 2.3 to cover
uniprocessor and multiprocessor schedulers, which will be widely used in
the book to conduct many proofs. Section 2.4 provides an overview of dif-
ferent classifications and characteristics of scheduling algorithms. We will
extend the well-known triplet notation of scheduling-theoretical problems
to real-time systems in Section 2.5. Section 2.6 provides the overview re-
garding sufficient, necessary, and exact schedulability tests. Metrics that are
adopted for theoretical comparisons of scheduling algorithms and schedu-
lability tests are introduced in Section 2.7. The chapter is concluded with
the scheduling/test anomaly and the needs of sustainable timing analyses in
Section 2.8

2.1 Mathematical Notation

This section provides an overview of the notation used in this book.

• R is the set of real numbers, andN is the set of natural numbers.

• [m] denotes the set of positive integers ranging from 1 to m, i..e, [m] =
{1, 2, . . . ,m}.

• 1condition is a binary indicator. If the condition holds, the value is 1;
otherwise the value is 0. This is widely used in this book to identify
whether a job is executed in a schedule at time t.

• All the variables regarding tasks, jobs, platforms are assumed non-negative.
Deadlines, and periods are assumed positive real numbers.

3



4 2 Terminology and Basic Scheduling Theory

• Although we can informally state that a job is executed from time t to
time t + ∆, this has to be formally defined to avoid confusion. In this
book, an interval of execution is denoted by a mixed (time) interval that
is open at the beginning and closed at the end, i.e., (t, t+∆]. This is very
important when we define the schedules and certain properties. This will
be further clarified in Section 2.3.

2.2 Aperiodic, Sporadic, and Periodic Tasks

The fundamentals of real-time systems start from the model of computa-
tion and the system under consideration. Essentially, we consider a set of
programs that can be concurrently executed. Towards this, we have to first
classify several basic terms. An algorithm is the logical procedure to solve
a certain problem. It informally specifies a sequence of elementary steps
that an execution machine must follow to solve the problem, but it is not
necessarily (and usually not) expressed in a formal programming language.
A program is the implementation of an algorithm in a programming language
and can be executed several times with different inputs. A process or job is
an instance of a program that produces a set of outputs given a sequence of
inputs. A process is launched and managed usually by the operating system.
An operating system (OS) is a program that acts as an intermediary between
a user of a computer and the computer hardware by providing interfaces,
provides an “abstraction” of the physical machine (for example, a file, a vir-
tual page in memory, etc.), manages the access to the physical resources of a
computing machine, makes the computer system convenient to use, executes
user programs and makes solving user problems easier, etc.

In this book, a job is the basic entity for scheduling. The timing parame-
ters of a job Jj include:

• Arrival time aj or release time rj : time the job becomes ready for exe-
cution

• Computation time Cj (or execution time): time necessary to the proces-
sor for executing the job without interruption

• Absolute deadline dj : time at which the job should be completed

• Relative deadline Dj = dj − rj : time between the arrival time and the
absolute deadline

• Start time sj : time the job starts its execution
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• Finishing time fj : time the job finishes its execution

• Response time Rj = fj − rj : time length at which the job finishes its
execution after its arrival

When jobs (usually with the same computation requirement) are released
recurrently, e.g., a control task as illustrated in Figure 2.1, these jobs can
be modeled by a recurrent task. A widely-used deterministic recurrent task
model is the so-called periodic real-time task model, also called the Liu and
Layland task model presented by Liu and Layland [40] in 1973. In such a
model, a periodic task τi releases an infinite number of task instances (jobs)
periodically under a given period Ti, where the first job of task τi is released
at its phase (or offset )Oi. Due to the recurrent releases, all the jobs of task τi
should have an abstraction of the execution time. This is typically character-
ized by its worst-case execution time (WCET) Ci without any interruption.
The basic assumption is that the jobs of a task are from a finite set of exe-
cutable program instances. Therefore, it is possible to derive an upper bound
on their execution times to have a succinct timing model. How to derive the
worst-case execution time of a program safely will be discussed in Chapter 6.
Each periodic task also associates with a relative deadline Di. When a job of
task τi arrives at time t, its absolute deadline is t+Di.

In contrast, the sporadic real-time task model defined by Mok [42] is
more flexible, in which any two consecutive releases of jobs of task τi are
temporally separated by at least the minimum inter-arrival time Ti of task
τi. Under the sporadic real-time task model, it is unnecessary to specify the
phase of task τi, as the release pattern is not deterministic.

A periodic/sporadic task set T is called with 1) implicit deadlines, ifDi =
Ti holds for any τi in T, 2) constrained deadlines, if Di ≤ Ti holds for any τi
in T, and 3) arbitrary deadlines, otherwise. Since it is possible that Di > Ti,
it is possible that there are more than one job of task τi in the ready queue.
In general, we assume that the jobs of a sporadic/periodic task are executed
in the first-come-first-serve (FCFS) manner. Otherwise, a job released earlier
by task τi may starve if the subsequent jobs of task τi can be executed before
it. This assumption is very natural in uniprocessor systems.

The utilization Ui = Ci/Ti of task τi defines the percentage of time a
processor has to execute task τi when a sufficient number of jobs of task τi
arrive periodically. In general, for hard real-time systems, we will implicitly
assume that Ci ≤ max{Di, Ti}; otherwise, there is no chance to meet the
deadline of task τi in the worst case. For a periodic/sporadic task set T, we
can define the hyper-period of T, which is the least common multiple (LCM)
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Control System
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Figure 2.1: A periodic/sporadic control task

of the minimum inter-arrival times (periods) of the tasks in T. In this book, we
will also implicitly assume that the hyper-period of T exists. For periodic task
systems, the hyper-period can be used to repeat the same job arrival pattern
every hyper-period. It is not obvious why we also need this definition now for
sporadic task systems, since the argument of the repetitive pattern does not
hold. But, we will touch this topic later in Chapter 4.

We now take a closer look into the implementation of such recurrent tasks.
In List 2.1, the body of the control task in Figure 2.1 is implemented as a loop.
To realize the periodic release of two jobs with a period T , the programmer
intends to calculate the remaining amount of time “timeToSleep” until the
next release. This may seem to create a periodic task, but the resulting release
pattern is however not periodic but sporadic. The issue here is that this recur-
rent task may be preempted by other higher-priority jobs/tasks (or interrupted
by hardware interrupts) between the two statements “end := get the system
tick;” and “sleep timeToSleep”. Such occurence would lead to wrong sleep
amount of time being called. However, if timeToSleep is always non-negative,
the resulting release pattern would be sporadic with the minimum inter-arrival
time T .
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whi le ( t r u e ) {
s t a r t := g e t t h e sys tem t i c k ;
pe r fo rm a n a l o g t o d i g i t a l c o n v e r s i o n t o g e t y ;
compute c o n t r o l o u t p u t u ;
o u t p u t u and do d i g i t a l t o a n a l o g c o n v e r s i o n ;
end := g e t t h e sys tem t i c k ;
t imeToS leep := T−(end−s t a r t ) ;
s l e e p t imeToS leep ;

}

Listing 2.1: Sporadic Control System

To resolve the above problem due to preemptions and interrupts, one pos-
sibility to create a periodic task is to use a system call sleepUntil(), which
suspends the task until the next release, as shown in List 2.2. Such a system
call typically exists in real-time operating systems with similar names, e.g.,
vTaskDelayUntil() in FreeRTOS. This creates a periodic pattern as long as
the time when sleepUntil() is called is always no more than the corresponding
nextRelease. Otherwise, the job may be released too late. The key issue here
is the overrun handling in real-time operating systems. If the current time
t > nextRelease, some RTOSes may discard the next released job as this is
considered to be too late, whilst some RTOSes may still release the next job
even though it is already late.

For periodic real-time tasks, dropping the release of a job would result
in incorrect semantics, especially when we consider arbitrary-deadline task
systems, i.e., Di > Ti for some task τi. For uniprocessor systems, it is not
problematic if a job of task τi is not released before all its previous jobs of
task τi finish their executions since we assume their executions are based on
the FCFS policy.

whi le ( t r u e ) {
pe r fo rm a n a l o g t o d i g i t a l c o n v e r s i o n t o g e t y ;
compute c o n t r o l o u t p u t u ;
o u t p u t u and do d i g i t a l t o a n a l o g c o n v e r s i o n ;
n e x t R e l e a s e := phase + p e r i o d T ;
s l e e p U n t i l n e x t R e l e a s e ;

}

Listing 2.2: Periodic Control System: sleepUntil

Another possibility to implement a periodic task is to set a periodic timer
to interrupt the operating system periodically, as illustrated in List 2.3. How-
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ever, such an implementation requires additional effort to maintain the poten-
tial multiple activations of the same program at the same time and to ensure
the FCFS policy for the jobs of a periodic task when Di > Ti.

s e t t i m e r t o i n t e r r u p t p e r i o d i c a l l y wi th p e r i o d T ;
a t each t i m e r i n t e r r u p t {

pe r fo rm a n a l o g t o d i g i t a l c o n v e r s i o n t o g e t y ;
compute c o n t r o l o u t p u t u ;
o u t p u t u and do d i g i t a l t o a n a l o g c o n v e r s i o n ;

}

Listing 2.3: Periodic Control System: Periodic Timer

We should also keep in mind that it is in general impossible to allocate
a unique hardware timer for a periodic task as modern computers only have
limited hardware timers. In most RTOSes, usually only one hardware timer
is allocated to handle the job releases, and all the periodic/sporadic tasks
should share the hardware timer. Implementations like List 2.2 can be found
in FreeRTOS, and implementations like List 2.3 can be found in RTEMS.
Discussions about overrun handling ifDi > Ti for a certain task τi in RTEMS
and FreeRTOS can be found in [16].

Figure 2.2 provides examples of the above two recurrent task models. We
will discuss more fine-grained recurrent task models in Chapter 9.

release deadline

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

τi τi τi τi τi

(a) Periodic task τi = {Ci = 2, Ti = Di = 6, Oi = 2}

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

τi τi τi τi

(b) Sporadic task τi = {Ci = 2, Ti = Di = 6}

Figure 2.2: Examples of periodic and sporadic task models
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ready executing terminated
activate

schedule

preempt

completion

Figure 2.3: Job States

2.3 Schedules

Since the execution entities (tasks, processes, threads, etc.) are competing
with each other, scheduling policies are needed to decide when to sched-
ule an entity, which entity to schedule, and how to schedule entities. So,
what is a scheduling algorithm (scheduler)? To answer this question, we will
first discuss the schedules and scheduling algorithms with respect to jobs in
uniprocessor systems and multiprocessor systems in Sections 2.3.1 and 2.3.2,
respectively. Then, we extend the concept to periodic and sporadic real-time
task systems in Section 2.3.3. Moreover, in Sections 2.3.1, 2.3.2, and 2.3.3,
we focus on hard real-time guarantees to define the feasibility of schedules
and the schedulability of the set of jobs or tasks. We then extend the defini-
tion to worst-case response time analyses in Section 2.3.4 and soft real-time
systems in Section 2.3.5.

2.3.1 Scheduler: Uniprocessor Job-Level Perspectives

For uniprocessor systems, we assume that at most one job is executed at
a time. Therefore, a scheduling algorithm (or scheduler) determines the
order that jobs execute on the processor, call a schedule. Particularly, jobs (in
a simplified version) may be in one of three states listed in Figure 2.3.

A schedule is an assignment of the given jobs to the processor, such
that each job is executed (not necessarily consecutively) until completion.
Suppose that J = {J1, J2, . . . Jn} is a set of n given jobs. A schedule for
J can be defined as a function σ : R → J ∪ {⊥}, where σ(t) = Jj denotes
that job Jj is executed at time t, and σ(t) = ⊥ denotes that the system is idle
at time t.

If σ(t) changes its value at some time t, the processor performs a context
switch at time t. For a schedule σ to be valid with respect to the arrival time,
the absolute deadline, and the execution time of the given jobs, we need to
have the following conditions for each Jj in J for hard real-time guarantees:
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• σ(t) 6= Jj for any t ≤ rj and t > dj and,

•
∫ dj
rj
1σ(t)=Jjdt = Cj , where 1σ(t)=Jj evaluates to 1 if σ(t) = Jj and 0

otherwise.

Note that the integration
∫

of 1σ(t)=certain job over time used in this
book is only a symbolic representation for summation. If the above condi-
tions are satisfied, we say that the schedule is feasible for the set J of jobs
with respect to specified timing constraints for hard real-time guarantees. A
set J of jobs is schedulable if there exists a feasible schedule for the set of
jobs. A scheduling algorithm is optimal for hard real-time guarantees if it
always produces a feasible schedule when one exists (under any scheduling
algorithm).

We sometimes informally state that a job is executed from time t to time
t+ ∆. To keep the notion consistent, in this book, an interval of execution is
denoted by a mixed (time) interval that is open at the beginning and closed
at the end, i.e., (t, t + ∆]. For example, in the schedule in Figure 2.4, job J1

is executed in time interval (1, 3], job J2 is executed in time interval (3, 5.5],
and job J3 is executed in time interval (6, 9.5].

Some other constraints may also be introduced. In such cases, the sched-
ule should also respect to those constraints. For example, we can consider the
non-preemptive and preemptive schedules. A schedule is non-preemptive
if a job cannot be preempted by any other jobs, i.e., only one interval with
σ(t) = Jj for every job Jj in J. A schedule is preemptive if a job can be
preempted, i.e., more than one interval with σ(t) = Jj for any job Jj in J are
allowed. Figure 2.4 illustrates a preemptive and a non-preemptive schedule.

As we have already introduced the concept of worst-case execution times,
it is also possible that we do not know the exact execution time of a job but
its WCET. Therefore, depending on the actual execution times of the jobs, a
scheduling algorithm may produce different schedules. For example, consider
three jobs J1 = {r1 = 0, d1 = 10, C1 = 3}, J2 = {r2 = 3, d2 = 5, C2 = 2},
and J3 = {r3 = 2, d3 = 8, C3 = 3} scheduled by a simple algorithm which
schedules the job with the lowest index in the ready queue in a non-preemptive
manner whenever the processor idles. Figure 2.5 presents two resulting sched-
ules of the above scheduling algorithm. In Figure 2.5a, J1 finishes at time 2.
Since J3 is the only job in the ready queue at time 2, J3 is executed non-
preemptively until it finishes at time 5. Although job J2 arrives at time 3 and
has a higher priority than J3, job J2 has to wait until time 5 to start its execu-
tion since the schedule is non-preemptive. In Figure 2.5b, J1 finishes at time
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J1 J2 J3

0 1 2 3 4 5 6 7 8 9 10

σ(t)

J1

J2

J3

⊥

s1 s2 = f1 f2
s3 f3

Context
Switches

(a) A Non-Preemptive Schedule

J1 J2 J1 J3

0 1 2 3 4 5 6 7 8 9 10

σ(t)

J1

J2

J3

⊥

s1 s2 f2 f1
s3 f3

Context
Switches

(b) A Preemptive Schedule

Figure 2.4: Preemptive and non-preemptive schedules

0 1 2 3 4 5 6 7 8 9 10

σ(t)

J1

J2

J3

⊥

(a) Non-Preemptive: J1 runs for 2 time units

0 1 2 3 4 5 6 7 8 9 10

σ(t)

J1

J2

J3

⊥

(b) Non-Preemptive: J1 runs for 3 time units

Figure 2.5: Non-preemptive schedules: J1 has a higher priority than J2 and
J2 has a higher priority than J3, where r1 = 0, d1 = 10, C1 = 3, r2 =
3, d2 = 5, C2 = 2, and r3 = 2, d3 = 8, C3 = 3. The scheduler executes the
highest-priority job in the ready queue.

3. Since J2 and J3 are both in the ready queue at time 3, the higher-priority
job J2 is executed non-preemptively until it finishes at time 5.

In the above example, job J2 misses its deadline in the schedule in Fig-
ure 2.5a and the schedule in Figure 2.5b is feasible. As demonstrated above,
a scheduling algorithm may produce a feasible schedule when all the jobs are
executed in their worst-case execution times. Therefore, we would have to
alter the definition of feasibility and schedulability of a scheduling algorithm
a bit to handle such cases.
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I Definition 2.1. Suppose that we are given a set J of jobs, in whichCj is the
worst-case execution time, rj is the arrival time, dj is the absolute deadline
of job Jj in J. A schedule σ is feasible for hard real-time guarantees when
the actual execution time of Jj is C ′j (i.e., 0 ≤ C ′j ≤ Cj) for each Jj in J if

• σ(t) 6= Jj for any t ≤ rj and t > dj and,

•
∫ dj
rj
1σ(t)=Jjdt = C ′j .

The set J of jobs is schedulable for hard real-time guarantees under a schedul-
ing algorithm if the resulting schedule is always feasible for any combinations
of the actual execution time 0 ≤ C ′j ≤ Cj of job Jj in J. A scheduling algo-
rithm is optimal for hard real-time guarantees if it always produces feasible
schedule(s) when the set J is schedulable under a scheduling algorithm. J

2.3.2 Scheduler: Multiprocessor Job-Level Perspectives

In multiprocessor platforms, a schedule also involves an assignment of the
given jobs to the processors, such that each job is executed until completion.
In this section, we assume that we are given m processors. For the simplicity
of presentation, these m processors are supposed to be identical (homoge-
neous) in this section. Suppose that J = {J1, J2, . . . Jn} is a set of n given
jobs. A schedule for J can be defined as a function σ : R× [m]→ J ∪ {⊥},
where σ(t, `) = Jj denotes that job Jj is executed on processor ` at time t,
and σ(t, `) = ⊥ denotes that processor ` is idle at time t.

In the book, we do not allow parallel execution of a job. That is, a job
cannot be executed on two processors at the same time. (This constraint will
be relaxed when we visit the DAG task model in Chapter 15.) Since we
assume that the execution of a job must be sequential, we know that at most
one processor ` ∈ [m] can have σ(t, `) = Jj at any time point t.

For a partitioned multiprocessor schedule, a job has to be executed only
on one processor. That is, if σ(t, `) = Jj for a certain t and `, then σ(t′, `′) 6=
Jj for any t′ and `′ 6= `. For a global multiprocessor schedule, a job can be
executed on different processors. Therefore, it is possible that σ(t, `) = Jj
and σ(t′, `′) = Jj for some t 6= t′ and ` 6= `′.

Now, we can extend the definition of schedulability and optimality of
scheduling algorithms in Definition 2.1 for multiprocessor systems.

I Definition 2.2. We are given m identical processors and a set J of jobs,
in which Cj is the worst-case execution time, rj is the arrival time, dj is the
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absolute deadline of job Jj in J. A schedule σ is feasible for hard real-time
guarantees when the actual execution time of Jj is C ′j (i.e., 0 ≤ C ′j ≤ Cj)
for each Jj in J if

• at most one processor ` ∈ [m] has σ(t, `) = Jj at any t ∈ R,

• σ(t, `) 6= Jj for any t ≤ rj , t > dj , and ` ∈ [m], and

•
∑

`∈[m]

∫ dj
rj
1σ(t,`)=Jjdt = C ′j .

The set J of jobs is schedulable for hard real-time guarantees under a schedul-
ing algorithm if the resulting schedule is always feasible for any combinations
of the actual execution time 0 ≤ C ′j ≤ Cj of job Jj in J. A scheduling algo-
rithm is optimal for hard real-time guarantees if it always produces feasible
schedule(s) when the set J is schedulable under a scheduling algorithm. J

2.3.3 Scheduler: Sporadic/Periodic Tasks’ Perspectives

The definitions of schedulers and scheduling algorithms in the previous sub-
sections are based on the jobs’ perspective. We now extend these definitions
to sporadic and periodic task systems. For a given sporadic task set T, each
task τi in T can generate an infinite number of jobs as long as the temporal
conditions of arrival times of the jobs generated by task τi can satisfy the
minimum inter-arrival time constraint.

Suppose that the jth job generated by task τi is denoted as Ji,j . Let the set
of jobs generated by task τi be denoted as FJi. A feasible set of jobs generated
by a sporadic real-time task τi should satisfy the following conditions:

• By the definition of the WCET of task τi, the actual execution time Ci,j
of job Ji,j is no more than Ci, i.e., Ci,j ≤ Ci.

• By the definition of the relative deadline of task τi, we have di,j = ri,j+
Di for any integer j with j ≥ 1.

• By the minimum inter-arrival time constraint, we have ri,j ≥ ri,j−1 +Ti
for any integer j with j ≥ 2.

A feasible set of jobs generated by a periodic real-time task τi should satisfy
the first two conditions above and the following condition:

• By periodic releases, we have ri,1 = Oi and ri,j = ri,j−1 + Ti for any
integer j with j ≥ 2.
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A feasible collection FJ of jobs generated by a task set T is the union
of the feasible sets of jobs generated by the sporadic (or periodic) tasks in
T, i.e., FJ = ∪τi∈TFJi. It should be obvious that there are infinite feasible
collections of jobs generated by a sporadic real-time task set T.

For a feasible collection FJ of jobs generated by T, a uniprocessor sched-
ule for FJ can be defined as a function σ : R→ FJ∪{⊥}, where σ(t) = Ji,j
denotes that job Ji,j is executed at time t, and σ(t) = ⊥ denotes that the
system is idle at time t. Recall that we assume that the jobs of task τi should
be executed in the FCFS manner. Therefore, if σ(t) = Ji,j then σ(t′) /∈
{Ji,h|h = 1, 2, . . . , j − 1}, for any t′ > t and j ≥ 2.

Similar to Definition 2.1, the feasibility and optimality of scheduling al-
gorithms should be defined based on all possible feasible collections of jobs
generated by T.

I Definition 2.3. Suppose that we are given a set T of sporadic real-time
tasks on a uniprocessor system. A schedule σ of a feasible collection FJ of
jobs generated by T is feasible for hard real-time guarantees if the following
conditions hold for each Ji,j in FJ:

• σ(t) 6= Ji,j for any t ≤ ri,j and t > di,j ,

•
∫ di,j
ri,j

1σ(t)=Ji,jdt = Ci,j , and

• if σ(t) = Ji,j then σ(t′) /∈ {Ji,h|h = 1, 2, . . . , j − 1}, for any t′ > t
and j ≥ 2.

A sporadic real-time task set T is schedulable for hard real-time guarantees
under a scheduling algorithm if the resulting schedule of any feasible collec-
tion FJ of jobs generated by T is always feasible. A scheduling algorithm
is optimal for hard real-time guarantees if it always produces feasible sched-
ule(s) when the task set T is schedulable under a scheduling algorithm. J

The definition regarding schedulability and optimality for periodic task sys-
tems is the same. The definition is not presented explicitly.

We can also extend the concept to multiprocessor systems. Again, here,
we assume that we have m identical (homogeneous) processors. For a fea-
sible collection FJ of jobs generated by T, a schedule for FJ can be defined
as a function σ : R × [m] → FJ ∪ {⊥}, where σ(t, `) = Ji,j denotes that
job Ji,j is executed on processor ` at time t, and σ(t, `) = ⊥ denotes that
the processor ` is idle at time t. Recall that we assume that the jobs of task
τi should be executed in the FCFS manner. Therefore, if σ(t, `) = Ji,j then
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σ(t′, ∗) /∈ {Ji,h|h = 1, 2, . . . , j − 1}, for any t′ > t and j ≥ 2, where ∗
implies any of the m processors.

For a partitioned multiprocessor schedule, all jobs generated by a task
have to be executed only on one processor. That is, if σ(t, `) = Ji,j for a
certain t and `, then σ(t′, `′) 6= Ji,h for any t′, integer `′ 6= `, and integer
h. For a clustered multiprocessor schedule, all jobs generated by a task have
to be executed only on a subset of processors. For a global multiprocessor
schedule, a job can be executed on different processors.

2.3.4 Scheduler: Worst-Case Response Time Analyses

In some cases, the relative deadlines of the sporadic/periodic tasks do not
have to be specified. Or, alternatively, even with a deadline miss, the designer
is interested to know the worst-case response time (WCRT) of a task, which is
the upper bound on the response times of the jobs generated by a sporadic/pe-
riodic task under a given scheduling algorithm. In this case, the feasibility and
optimality of scheduling algorithms cannot be defined as described above
since the relative deadlines can be absent. We therefore need to define the
worst-case response time (WCRT) here as well.

I Definition 2.4. Suppose that we are given a set T of sporadic real-time
tasks on a uniprocessor system. A schedule σ of a feasible collection FJ of
jobs generated by T has a worst-case response time (WCRT) Ri of a task τi
if the following conditions hold for each Ji,j in FJ:

• σ(t) 6= Ji,j for any t ≤ ri,j and t > ri,j +Ri,

•
∫ ri,j+Ri
ri,j

1σ(t)=Ji,jdt = Ci,j , and

• if σ(t) = Ji,j then σ(t′) /∈ {Ji,h|h = 1, 2, . . . , j − 1}, for any t′ > t
and j ≥ 2.

The WCRT of a task τi in T under a scheduling algorithm is Ri if the above
condition holds in the resulting schedule of any feasible collection FJ of jobs
generated by T. J

The above definition is for sporadic real-time tasks on uniprocessor sys-
tems, which can be easily extended to periodic tasks and multiprocessor
systems.
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2.3.5 Scheduler: Soft Real-Time Perspectives

For soft real-time systems, some occasional deadline misses are possible and
acceptable. In this book, we do not explicitly discuss soft real-time systems,
but it would be meaningful to discuss the difference shortly. One issue is how
to handle a job with a deadline miss. Should the job be aborted or should
the job be continued? If the job is aborted, the actual execution time of the
job may be shorter than its actual execution requirement. However, this may
result in an inconsistent system state. The subsequent computation or control
may be incorrect. If the job is continued, other subsequent jobs may also miss
their deadlines. This may result in overloading of the system. In both cases,
a schedule remains feasible if

∫ ri,j+Di
ri,j

1σ(t)=Ji,jdt < Ci,j . For the former
case, σ(t) 6= Ji,j for any t ≤ ri,j and t > ri,j + Di. For the latter case, it is
possible that σ(t) = Ji,j for some t > ri,j +Di.

This is not going to be further discussed in the book.

2.4 Classification of Scheduling Algorithms

In this section, we briefly review different classes of scheduling algorithms.
The classification here is not meant to be complete. For classical scheduling
theory, please refer to the book by Pinedo [47].

2.4.1 Preemptive vs. Non-preemptive

The scheduling algorithm can use preemptive or non-preemptive scheduling
policies. A schedule σ is non-preemptive if a job cannot be preempted by
any other jobs, i.e., only one interval with σ(t) = Jj for every job Jj in J.
A schedule σ is preemptive if a job can be preempted, i.e., more than one
interval with σ(t) = Jj for any job Jj in J are allowed (but not enforced).
The difference has been illustrated in Figure 2.4. Note that a preemptive
scheduling algorithm may produce a non-preemptive schedule, depending on
the job arrivals.

When preemptions are allowed, the scheduler can allocate the proces-
sor to jobs that need to finish as early as possible to meet their deadlines.
However, under non-preemptive scheduling, such jobs may experience long
blocking times and miss their deadlines due to non-preemptive scheduling.
Therefore, (optimal) preemptive scheduling algorithms usually have better
performance than (optimal) non-preemptive scheduling algorithms. More-
over, sometimes a problem can be easily handled with preemptions, whilst
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non-preemptive execution can be very difficult to deal with. We will demon-
strate such a gap of optimality in Chapter 3. However, to date, there is no guar-
antee that a problem with preemptions is always easier than the corresponding
problem without preemptions, see for example Figure 2.7 by Pinedo [47].

Although preemptive scheduling algorithms may be preferred at the first
glance. In practice, preemptions create additional context switch overhead
and may destroy the worst-case execution time analysis. The correct calcula-
tion of the WCET of a task is not easy if preemption is allowed, as preemption
introduces additional overhead to the system, including suspending the task,
inserting it into the ready queue, flushing the processor pipeline, and dispatch-
ing the new incoming task. Non-preemptive scheduling may also be enforced
by the hardware. For example, messages in control area network (CAN) buses
are not preemptable.

Therefore, both of them are widely used in academia and industry, de-
pending on the execution platforms and the tolerance of the context switch
overheads. In this book, both of them will be detailed.

2.4.2 Work-Conserving

The scheduling algorithm can use work-conserving or non-work-conserving
scheduling policies. A schedule σ is work-conserving if one of the jobs in
the ready queue is always executed. In uniprocessor systems, σ(t) 6= ⊥ if
there is at least a job in the ready queue at time t. In multiprocessor systems
under global scheduling, σ(t, `) 6= ⊥ if there is a job in the ready queue at
time t but not executed at time t (also called list scheduling in multiprocessor
systems). In contrast, a schedule σ is non-work-conserving if the schedule
does not execute any job even if there is already one ready job in the ready
queue.

The intuition behind work-conserving scheduling algorithms is quite ob-
vious. If there is any work to be done and the processor is idle, we should just
perform some work instead of letting the processor idle. Work-conserving
scheduling algorithms are implemented in modern real-time operating sys-
tems. However, this does not mean that work-conserving scheduling algo-
rithms are always the best. In some scenarios, work-conserving scheduling
algorithms in fact are not the best strategies. Let us recall the example used
in Figure 2.5. The schedule in Figure 2.5a is work-conserving, and job J2

misses its deadline. If we simply let the processor idle from 2 to 3 even when
J1 finishes at time 2, the resulting schedule is feasible for all the three jobs.
We will discuss this in more detail in Section 3.3.
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2.4.3 Fixed-priority (Static-priority) vs. Dynamic-priority

Under dynamic-priority scheduling, the priority of a task may change over
time. Under fixed-priority (FP) scheduling, each task is assigned a unique
priority before execution and does not change over time. The jobs generated
by a task always have the same priority defined by the task under FP schedul-
ing. Under dynamic-priority or fixed-priority scheduling, the schedulability
policy is very simple. Whenever there are jobs in the ready queue, the highest-
priority job in the ready queue is executed. Such an execution of a job can be
preemptive or non-preemptive.

Well-known dynamic-priority scheduling algorithms are earliest-deadline-
first (EDF) and least-laxity-first (LLF) scheduling algorithms (to be analyzed
in Chapter 3). In EDF, the job whose absolute deadline is the earliest has the
highest priority. Therefore, it is possible that a job of task τ1 has a higher
priority than a job of task τ2 and another job of task τ1 has a lower priority
than the same job of task τ2.

Well-known fixed-priority assignments are rate-monotonic (RM) priority
ordering and deadline-monotonic (DM) priority ordering (to be analyzed in
Chapter 4). For example, under RM priority ordering, priorities are assigned
to tasks according to their request rates. That is, tasks with higher request
rates (i.e., shorter periods) have higher priorities, in which ties are broken
arbitrarily.

For FP scheduling, in this book, we assume that there are sufficient pri-
ority levels offered by the operating system so that each task has a unique
priority. When task τi has a higher priority than task τj , we denote their pri-
ority relationship as τi > τj . Since the priority levels are unique, the priority
assignment is a total order. We will use the following three task sets:
• hp(τk) is the set of higher-priority tasks than task τk,
• hep(τk) is hp(τk) ∪ {τk}, and
• lp(τk) is the set of lower-priority tasks than task τk.
It can be easily shown that preemptive fixed-priority (FP-P) scheduling is

in fact not optimal with respect to schedulability of real-time tasks. Consider
the following periodic real-time tasks: τ1 = {C1 = 2, T1 = D1 = 4, O1 = 0}
and τ2 = {C2 = 5, T2 = D2 = 10, O2 = 0}. Since there are only two peri-
odic tasks, we have only two different priority orderings.
• Case 1: τ1 > τ2, in this case, the first job of τ2 misses its deadline since

only 4 units of its execution time is executed in time intervals (2, 4] and
(6, 8].
• Case 2: τ2 > τ1, in this case, the first job of τ1 misses its deadline.
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Figure 2.6: FP-Scheduling is not optimal

Therefore, no matter which priority assignment is used, one of the two tasks
misses its deadline. However, the EDF schedule (demonstrated in Figure 2.6)
shows that the task set is in fact schedulable under a dynamic-priority schedul-
ing policy, which assigns a higher priority to the first job of τ2 than the third
job of τ1.

2.4.4 Offline vs. Online

Scheduling algorithms can also be classified into offline (static) and online
(dynamic) scheduling algorithms. For an offline (static) scheduling algorithm,
the scheduling decisions take a priori knowledge about arrival times, execu-
tion times, and deadlines into account. The dispatcher allocates the processor
when it is interrupted by the timer. The schedule is stored in a table, and the
timers controlled by the table are generated at design time. For an online
(dynamic) scheduling algorithm, the scheduling decisions are based on the
jobs that have arrived to the system and do not have any knowledge about
the jobs that will be released in the future. An online algorithm assumes that
the knowledge of a job is revealed once it arrives. (Here, we probably still do
not know the actual execution time of a job, but we can assume that a safe
worst-case execution time is revealed when a job arrives.)

For offline scheduling algorithms, the context switches and scheduling
decisions are usually time-triggered. According to Kopetz [32], “In an en-
tirely time-triggered system, the temporal control structure of all tasks is
established a priori by off-line support-tools. This temporal control structure
is encoded in a Task-Descriptor List (TDL) that contains the cyclic schedule
for all activities of the node. This schedule considers the required precedence
and mutual exclusion relationships among the tasks such that an explicit co-
ordination of the tasks by the operating system at run time is not necessary.
. . . The dispatcher is activated by the synchronized clock tick. It looks at the
TDL, and then performs the action that has been planned for this instant.”
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Scheduling Algorithms

Static Scheduling
(offline, or clock-driven)

Dynamic Scheduling
(online, or priority-driven)

Static-Priority Scheduling Dynamic-Priority Scheduling

Figure 2.7: Classification of Scheduling Algorithms

The disadvantage of offline scheduling algorithms is that the response to
sporadic or aperiodic events may be poor.

Online scheduling is the only option if the future workload is unpre-
dictable. For sporadic real-time task systems, the actual inter-arrival time
of two jobs of task τi is in fact unknown. Therefore, offline scheduling is
only applicable with high response time. Since online scheduling is based
on the jobs/events that arrive to the system, such scheduling algorithms are
usually event-triggered. Both dynamic-priority and fixed-priority scheduling
strategies are online scheduling.

In scheduling theory, a clairvoyant algorithm is a (hypothetical) algo-
rithm that knows the future and makes the best possible decisions regardless
of the required time/space complexity. Although such a clairvoyant algorithm
may not always exist, it can be used for comparing the performance of real
algorithms against the best possible one.

2.5 Definition of Scheduling Problems

Over the last sixty years, there has been a considerable amount of research
effort on scheduling aperiodic tasks. In the domain of scheduling theory, a
scheduling problem is described by a triplet Field1|Field2|Field3.

• Field1: describes the machine environment.

• Field2: specifies the processing characteristics and constraints.

• Field3: presents the objective to be optimized.

Since the machine environment is unique, the Field1 field contains only one
entry. The Field2 field can have multiple entries if there are multiple con-
straints or characteristics. The Field3 field often has a single entry.
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2.5.1 Notation of Scheduling Theoretical Problems

Since the real-time system community and the scheduling theory commu-
nity use different terminologies, it would be meaningful to provide a unified
notation in this book to avoid unnecessary confusion.

Field1

In this book, we consider the following possible machine environments:

• 1: indicates a single processor

• Pm: indicates m identical (also called homogeneous) parallel proces-
sors, in which allm processors have the same characteristics. That is, the
execution time of a job is independent from the processor it is executed
on.

• Qm: indicates m related (also called uniform) processors with different
but related performances. The performance of a processor is defined by
a scaling factor of the speed. That is, the execution time of a job Jj on
a processor ` is Cj/s`, where s` is the speed scaling factor of processor
`. The amount of work done in time interval (rj , dj ] in a schedule σ() is∑

`∈[m]

∫ dj
rj
s`1σ(t,`)=Jjdt.

• Rm: indicates m unrelated (also called heterogeneous) processors with
different and unrelated performance. The execution time of a job Jj on
a processor ` is defined as Cj,`. There is no assumption regarding the
relative performance. A processor can be faster to run a certain job and
slower for another job. Such a setting is important to model processors
with different instruction set architectures (ISA).

• Fm: indicates m processors in series, called flow shop. Each job has to
be processed on processor 1, then on processor 2, etc., on processor m.
Flow shop scheduling is one of the most fundamental scheduling theory.

Field2

In this book, we consider the following execution constraints and charac-
teristics:

• prmp: The scheduling policy is preemptive scheduling.

• rj : The aperiodic jobs have specified arrival times (as well as absolute
deadlines in our context).
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• dj : The aperiodic jobs have specified absolute deadlines.

• fp: The scheduling policy is fixed-priority scheduling.

• period: The task set is periodic real-time task systems (potentially with
different offsets if Oi = 0 is not specified).

• Oi = 0: The tasks in a set have the same offset.

• spor: The task set is sporadic real-time task systems.

• harmonic: Harmonic task systems [34] represent a special case of spo-
radic/periodic real-time task systems. In a harmonic task system, for any
two tasks τi and τj , the minimum inter-arrival time (or period) Ti is an
integer multiple of Tj if Ti > Tj . As presented by Kramer et al. [33],
the periods of the control applications in automotive systems can be
modified to be harmonic with minor changes.

• impl: The task set is an implicit-deadline task set.

• cons: The task set is a constrained-deadline task set.

• arb: The task set is an arbitrary-deadline task set.

• prec: The jobs/tasks have precedence constraints.

• mutex: The tasks/jobs are not independent. Shared resources are guarded
by using mutual exclusion locks (mutex) or binary semaphores.

• global: The scheduling policy is multiprocessor global scheduling.

• partitioned: The scheduling policy is multiprocessor partitioned schedul-
ing.

• cluster: The scheduling policy is multiprocessor clustered scheduling.

Note that we use the following default characteristics in this book:

• It is assumed to be aperiodic jobs if spor or period is not specified.

• It is assumed to be non-preemptive if prmp is not specified.

• It is assumed to allow dynamic-priority scheduling if fp is not specified.
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• Periodic tasks are assumed to have different offsets if period is present
and Oi = 0 is not specified.

• Tasks/jobs are assumed independent from each other unless mutex or
prec is specified.

Field3

In this book, we consider the following objectives:

• Cmax: The objective is to minimize the completion time of the jobs,
called makespan in scheduling theory. This is not compatible with peri-
odic/sporadic task systems in general. But, in multiprocessor scheduling,
we will translate the task partition problem for implicit-deadline spo-
radic real-time tasks to a similar setting to the well-known makespan
problem.

• Lmax: The objective is to minimize the maximum lateness among the
given jobs. The lateness of a job Jj is its finishing time fj minus its
absolute deadline dj , i.e., fj−dj . The goal is to minimize maxJj fj−dj .

• ≤D: The objective is to meet the deadlines of the jobs/tasks.

• RT : The objective is to analyze the safe worst-case response time (WCRT)
of the jobs/tasks for the given Field1 and Field2 setting.

2.5.2 Examples of Scheduling Theoretical Notation

The following examples illustrate the notation:

I Example 2.5. 1|prmp|Lmax: This problem deals with a uniprocessor sys-
tem. The input is a set of jobs released at time 0 with different absolute
deadlines. The schedule can be preemptive. The objective is to minimize the
maximum lateness. J

I Example 2.6. 1|rj |Lmax: This problem deals with a uniprocessor system.
The input is a set of jobs with different release times and different absolute
deadlines. The schedule is non-preemptive. The objective is to minimize the
maximum lateness. J

I Example 2.7. 1|period, impl, prmp|≤D: This problem deals with a unipro-
cessor system. The input is a set of implicit-deadline periodic real-time tasks
with different offsets. The schedule can be preemptive. The objective is to
meet the deadlines of all the jobs generated by the periodic tasks. J
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I Example 2.8. 1|spor, impl, prmp, fp|≤D: This problem deals with a unipro-
cessor system. The input is a set of implicit-deadline sporadic real-time tasks.
The schedule is preemptive fixed-priority (FP-P). The objective is to meet the
deadlines of all the jobs generated by the sporadic real-time tasks. J

I Example 2.9. Pm||Cmax: This problem deals with an identical (homoge-
neous) multiprocessor system. The input has m identical processors and a set
of jobs released at time 0. The objective is to find a partitioned multiprocessor
schedule so that the makespan is minimized. J

I Example 2.10. Pm|prec|Cmax: This problem deals with an identical (ho-
mogeneous) multiprocessor system. The input has m identical processors
and a set of jobs released at time 0 under precedence constraints. The ob-
jective is to find a partitioned multiprocessor schedule so that the makespan
is minimized. J

I Example 2.11. Pm|spor, impl, prmp, partitioned|≤D: This problem deals
with an identical (homogeneous) multiprocessor system. The input has m
identical processors and a set of implicit-deadline sporadic real-time tasks.
The objective is to find a partitioned multiprocessor schedule so that all the
jobs generated by the sporadic real-time tasks can meet their deadlines. J

2.6 Schedulability Tests

Two separate but co-related problems are studied in real-time systems: 1) how
to design scheduling policies to feasibly schedule the tasks, referred to as the
scheduler design problem as mentioned above already, and 2) how to validate
the schedulability of a scheduling algorithm, referred to as the schedulability
test problem.

A schedulability test of a scheduling algorithm validates whether a given
task system is schedulable by the scheduling algorithm. A schedulability test
is referred to as sufficient if all of the task systems that it deems schedula-
ble are in fact schedulable. Similarly, a schedulability test is referred to as
necessary if all of the task systems that it deems unschedulable are in fact
unschedulable. Schedulability tests that are both sufficient and necessary are
referred to as exact. Exact schedulability tests provide the most precise clas-
sification of task systems; however, they are typically more difficult to derive
and may have much higher computational complexity than generally simpler
sufficient tests or necessary tests. We can rephrase the above definitions as
follows:
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• Sufficient schedulability test C: if condition C holds for the input task
set T on the platform, then T is schedulable under the schedulability
algorithm on the platform.

• Necessary schedulability test C′: if T is schedulable under the schedu-
lability algorithm on the platform, then condition C holds for the input
task set T on the platform.

• Exact schedulability test C∗: the input task set T is schedulable under
the schedulability algorithm on the platform if and only if condition C∗
holds for the input task set T on the platform.

Therefore, for a fixed scheduling algorithm and a fixed platform, we can
conclude that 1) a task set that can pass a necessary schedulability test C′ also
passes an exact schedulability test C∗, and 2) a task set that can pass an exact
schedulability test C∗ also passes a sufficient schedulability test C.

2.7 Theoretical Comparisons of Scheduling Algorithms and
Schedulability Tests

The performance of schedulability tests and scheduling algorithms for real-
time systems can be compared in a number of different ways. These can be
broadly classified into two categories:

• Theoretical methods include deriving dominance relationships, utiliza-
tion bounds, and various forms of resource augmentation factors, such
as speedup factors, capacity augmentation bounds, or approximation ra-
tios. These approaches typically give a worst-case comparison against a
specific competitor, i.e., against an alternative schedulability test for the
same or a different scheduling algorithm.

• Empirical methods include simulation of the scheduling algorithm, eval-
uation of the schedulability test on synthetic task sets, case studies,
and experiments on real hardware. These approaches typically facilitate
an average-case comparison against a number of different scheduling
algorithms or schedulability tests. See [19] for a review.

In this section, theoretical methods are presented for comparing the per-
formance of different schedulability tests and scheduling algorithms for real-
time systems. The main approaches are outlined in more detail below. Note,
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when discussing comparisons between scheduling algorithms, we are nor-
mally referring to comparisons between exact schedulability tests for those al-
gorithms. Comparisons are also possible using sufficient schedulability tests,
thus evaluating the performance of different approximations.

• Dominance Relationships are used to indicate if one scheduling algo-
rithm or schedulability test always outperforms another. For example,
schedulability test X is said to dominate test Y if every task set that
is schedulable according to test Y is also schedulable according to test
X , and there are some task sets that are schedulable according to X
but not according to Y . Proving a dominance relationship shows that
the dominant method is always better, at least in terms of schedulabil-
ity; however, no indication is given as to how good the schedulability
tests (or algorithms) actually are; a dominant test may still have poor
performance, just not quite as poor as that of the test that it dominates.

• Utilization Bounds [2, 4, 26, 40] provide a simple way of comparing
different scheduling algorithms or schedulability tests. The utilization
bound is the minimum total utilization of any unschedulable task set for
a given scheduling algorithm and task model. Thus any task set with a
total utilization Usum =

∑
τi∈T Ui no greater than the bound is guar-

anteed to be schedulable. In Chapter 4, we will prove the Liu and Lay-
land bounds for the problem 1|spor, impl, prmp|≤D under the earliest-
deadline-first preemptive (EDF-P) scheduler (the bound is Usum ≤ 1.0)
and for the problem 1|spor, impl, prmp, fp|≤D under fixed-priority
preemptive (FP-P) scheduling with rate-monotonic priority assignment
(also called rate-monotonic (RM) scheduling) (the bound is Usum ≤
ln 2 ≈ 0.693). We note that there are also utilization-based schedula-
bility tests that make use of task utilizations in hyperbolic or quadratic
forms [7, 8, 12, 13, 28].

• Speedup Factors [31,46] indicate the factor ρ by which the overall speed
of a system would need to be increased so that any task set that was
schedulable under a reference scheduling algorithm B is guaranteed to
be schedulable under scheduling algorithm A. We note that the increase
in speed implies that the worst-case execution time (WCET) of each task
is reduced by a factor of ρ. Speedup factors illustrate the worst-case per-
formance that one scheduling algorithm can have relative to another. If
the reference algorithm B is an optimal scheduling algorithm or an exact
schedulability test, then the quantification ρ is against the optimal result.
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Speedup factors can be used to explore sub-optimality with respect to
an optimal algorithm, e.g. comparing non-preemptive scheduling algo-
rithms against EDF-P [18] or to make relative comparisons between two
non-optimal algorithms, e.g. comparing fixed priority non-preemptive
(FP-NP) and EDF non-preemptive (EDF-NP) scheduling [18, 50]. We
note that the usefulness of speedup factors is diminished, if no schedu-
lability test is available for the reference algorithm.

In this book, we use the negation of the above definition to quantify the
failure of algorithm A: If A fails to ensure that all the task in T meet
their deadlines, then the task set is not schedulable under the (reference)
algorithmB when the system (i.e., each processor) is slowed down to run
at speed 1/ρ. We note that the definition of the speedup factor always
requires a reference algorithm B. If we do not specify any reference
algorithm, then we implicitly imply the comparison against an optimal
scheduling algorithm or an exact schedulability test.

Specifically, for hard real-time systems, since a task set is either schedu-
lable or not schedulable under a scheduling algorithm, it is not possible
to approximation such a binary answer. The speedup factors provide
quantitive metrics to quantify the imperfectness of a scheduling algo-
rithm or a schedulability test.

• Capacity Augmentation Bounds [3, 38, 39] for identical (homogeneous)
multiprocessor systems quantify scheduling algorithms or schedulability
tests via a threshold b, such that the algorithm or test guarantees schedu-
lability of any task set τ provided that maxτi∈τ Ui ≤ 1

b and Usum ≤ m
b ,

where m is the number of identical processors, and Ui is the utilization
of task τi in task set τ with total utilization Usum. The notion of capacity
augmentation bounds was formally introduced in 2013 by Li et al. [38]
to quantify global-EDF scheduling of task sets where each task can be
further characterized using a directed acyclic graph (DAG).

• Approximation Ratios [25,49] for identical (homogeneous) multiproces-
sor systems compare the number of processors needed by (i) scheduling
algorithm A and (ii) an optimal algorithm, to schedule any given task
set, as the number of processors required by the optimal algorithm tends
to infinity. The approximation ratio indicates the maximum value of the
ratio of the number of processors MA(T) required by algorithm A to
schedule any given task set T, compared to the number of processors
MO(T) required by an optimal algorithm, as the number of processors
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required by the optimal algorithm tends to infinity, i.e.,
(

max∀T

(
MA(T)
MO(T)

))
.

Approximation ratios have been used to characterize multiprocessor schedul-
ing.

These bounds and factors can be potentially useful to theoretically quan-
tify the imperfectness of a scheduling algorithm or a schedulability test. Specif-
ically, utilization bounds, speedup factors, and capacity augmentation bounds
have been widely adopted and accepted by the real-time scheduling research
community as the de facto standard theoretical tools for assessing scheduling
algorithms and schedulability tests. A recent study [15] in 2017 shows that
such quantitive metrics should be handled with care. These theoretical met-
rics can provide useful information; however, there are also pitfalls in their
use. Problems can occur when algorithms are designed with speedup factors
in mind, or conclusions are drawn taking a positive perspective solely on the
basis of these results. We will discuss the potential pitfalls at the end of the
book.

2.8 Anomalies and Sustainability of Analyses

A good scheduling algorithm and a good schedulability test should be sus-
tainable. According to Baruah and Burns [5], “A scheduling algorithm or a
schedulability test is defined to be sustainable if any task system determined
to be schedulable remains so if it behaves better than mandated by its system
specifications.” That is, if a sustainable scheduling algorithm derives a feasi-
ble schedule (or a sustainable schedulability test ensures the schedulability of
the input), it should also guarantee the feasibility with less stringent inputs,
e.g.,
• less execution time of a task,
• longer period of a periodic task,
• less number of tasks, or
• more number of processors.
An unsustainable scheduling algorithm or schedulability test may lead

to scheduling anomaly. In Section 2.3.1, we already demonstrated that non-
preemptive work-conserving scheduling algorithms do not behave monoton-
ically, i.e., reducing the execution time of a job can lead to deadline misses.
In addition, we provide two additional cases of such anomaly.
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2.8.1 Extending Periods of Periodic Tasks with Offsets

Baruah and Burns [5] provide the following example to demonstrate that
extending the periods of periodic tasks with offsets may result in unschedu-
lability. Therefore, for such a scenario, sustainable scheduling algorithms
cannot be optimal or sustainable schedulability tests cannot be exact.

I Example 2.12. Consider the following periodic real-time tasks: τ1 =
{C1 = D1 = 1, T1 = 2, O1 = 0} and τ2 = {C2 = D2 = 1, T2 = 2, O2 = 1}.
This task set is perfectly schedulable under any work-conserving algorithm
since the jobs generated by the two tasks have no overlap in their release
times and absolute deadlines at all.

However, if we increase the period of task τ2 from 2 to 3, the task set
becomes not schedulable by any algorithm as both tasks release a job at time
4, and (at least) one of them misses the absolute deadline at time 5. J

2.8.2 Multiprocessor Systems with Precedence Constraints

In 1969, Graham [25] presented the scheduling anomaly for the multipro-
cessor scheduling problem Pm|prec|Cmax: “changing the priority order, in-
creasing the number of processors, reducing execution times, or weakening
precedence constraints can increase the schedule length”. Here, the schedule
length is the makespan and can be considered as the deadline of the jobs. This
is known as the multiprocessor anomaly. One reason behind the multiproces-
sor anomaly is the non-optimality and non-sustainability of work-conserving
schedules. If the scheduling algorithm is static, then such anomaly can be
technically avoided.

Figure 2.8 is the input task set with precedence constraints. A job cannot
be executed unless all its predecessors have finished. We assume a global
scheduling algorithm that is fixed-priority non-preemptive and work-conserving.
The jobs are indexed so that Ji has a higher priority than Jj if i < j. Fig-
ure 2.9 is the resulting global multiprocessor schedule on 3 processors. The
makespan (schedule length) is 12.

Number of processors increased: When the number of processors is 4,
the resulting work-conserving schedule is in Figure 2.10. The makespan is
15 since the jobs J5, J6, J7, J8 are all ready at time 2. They are executed
prior to job J9. This shows that adding more processors can be worse for the
scheduling algorithm.

Reducing the execution time: When we reduce the execution time of
each job by 1 unit of time, the resulting work-conserving schedule is in Fig-
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J1(3)

J2(2)

J3(2)

J4(2)

J5(4)

J6(4)

J7(4)

J8(4)

J9(9)

Figure 2.8: An example of jobs with precedence constraints

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

J3 J6 J8

J2 J4 J5 J7

J1 J9

P3

P2

P1

Figure 2.9: The global schedule of the jobs in Figure 2.8 on 3 processors.

ure 2.11 on 3 processors. The makespan is 13. This shows that the makespan
can be worse if the execution times of some jobs are reduced.

Relaxing the precedence constraints: If we remove the precedence con-
straints due to J4, the resulting work-conserving schedule is in Figure 2.12
on 3 processors. The makespan is 16. This shows that the makespan can be
worse if precedence constraints are weakened.

2.8.3 Remarks

The two examples in Sections 2.8.1 and 2.8.2 in fact represent for two differ-
ent sources of un-sustainability of scheduling algorithms. In the first case in
Section 2.8.1, the feasibility of the task set cannot be maintained any more by
extending the period of a periodic task. Although it may seem that extending
the period of a periodic task makes the task set easier to be schedulable, this
is not always true as demonstrated in Example 2.12. This is not a relaxation
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

J3 J6

J2 J5

J1 J8

J4 J7 J9P4
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Figure 2.10: Increasing the number of processors from 3 to 4.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

J3 J6 J8

J2 J4 J7

J1 J5 J9

P3

P2

P1

Figure 2.11: Reducing the execution time of each job by 1 unit of time, on 3
processors.

for periodic task systems. We will discuss such a relaxation for sporadic task
systems in Chapter 4.

In the second case in Section 2.8.2, the scheduling algorithm itself is
not optimal. Therefore, it is at a risk of non-sustainable behavior (or non-
monotonic behavior with respect to the makespan). Unless there is a proof of
sustainability (or monotonicity), it can be expected that such anomaly may
exist. Since many multiprocessor problems areNP-hard in the strong sense,
they are usually handled with heuristic algorithms. A heuristic algorithm for
such a problem may suffer from such anomaly unless the sustainability of the
algorithm is proved.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

J3 J5 J8

J2 J4 J7

J1 J6 J9

P3

P2

P1

Figure 2.12: Precedence constraints weakened by removing the precedence
constraints due to J4, on 3 processors.



2.9 Exercises 33

2.9 Exercises

I Exercise 2.1. For real-time systems, it is important to know the maximum
(worst-case) execution time of each task a priori. What are the definition and
difference between the worst-case execution time and the worst-case response
time? Even if the worst-case execution time of a task is given, there are several
other problems that may be encountered during the design of a scheduling
algorithm for a real-time system. Can you think of some difficulties? What
are possible solutions?

I Exercise 2.2. Suppose that the following set of jobs is given:

J1 J2 J3 J4 J5

rj 0 2 8 10 15

Cj 4 3 6 3 4

dj 6 8 16 22 20

1. What is the resulting schedule of the shortest-job-first (SJF) scheduling
policy?

2. What is the resulting schedule of the earliest-deadline-first (EDF) schedul-
ing policy?

3. What is the average response time, defined as
∑5
j=1 fj−rj

5 , of SJF and
EDF, respectively?

4. Mr. S claims that SJF is optimal for his system, and Miss E claims
that EDF is optimal for her system. Is it possible that both of them are
correct? Please make their descriptions more clear.

I Exercise 2.3. Explain sporadic real-time tasks and periodic real-time tasks
and their differences. What are their typical parameters and the applications
of such task models?

I Exercise 2.4. Explain the advantages and disadvantages of schedulability
tests that are

1. necessary and sufficient

2. sufficient and sustainable

3. necessary
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I Exercise 2.5. Explain the following problems:

1. 1|spor|RT

2. 1|spor, prmp|RT

3. 1|period,Oi = 0, arb|≤D

4. 1|period,Oi = 0, impl, fp, prmp|≤D



Part I

Uniprocessor Systems

35





3
Uniprocessor Aperiodic Task Systems

Uniprocessor scheduling algorithms and schedulability tests are important
for various reasons. Uniprocessor systems are simpler than multiprocessor
systems and a special case of more complex systems. Some results obtained
for uniprocessor systems can be good algorithms or heuristics for multipro-
cessor systems. Furthermore, uniprocessor scheduling problems can also be
important to understand the difficulty of multiprocessor scheduling problems
when a multiprocessor system has a single bottleneck.

In this chapter, we will first discuss scheduling algorithms and schedula-
bility tests for aperiodic task systems, i.e., there is no recurrence of a task.
We will discuss preemptive scheduling algorithms in Sections 3.1 and 3.2.
Non-preemptive scheduling algorithms will be in Section 3.3. Since an ape-
riodic real-time task only releases a job, we will only consider scheduling
algorithms for a set of jobs J.

3.1 Preemptive Earliest-Deadline-First (EDF-P) and Variances

The simplest scheduling problem for real-time systems is 1|dj = D|≤D. That
is, we are supposed to schedule a set J of real-time jobs, in which each job
arrives at time 0 and has the same (absolute) deadline D, on a uniprocessor
platform. This problem is not of interest as any work-conserving (preemptive
or non-preemptive) schedule would result in an optimal schedule to finish
the last job at time

∑
Ji∈J Ci. An exact schedulability test of any of such a

work-conserving algorithm is to validate whether
∑

Ji∈J Ci < D.
A slightly more complicated scheduling problem for real-time systems

is 1||≤D. That is, we are supposed to schedule a set J of real-time jobs, in
which each job Ji ∈ J arrives at time 0 and has its absolute deadline di,
on a uniprocessor platform. A more complicated version of this problem is
1||Lmax, i.e., the objective is to minimize the maximum lateness instead of
ensuring the deadline satisfaction. However, an optimal schedule for an input

37
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instance of the problem 1||Lmax that has no deadline miss is also an optimal
schedule for the same input instance of the problem 1||≤D.

A simple heuristic algorithm, called Earliest Due Date (EDD) can solve
the problem 1||Lmax optimally, found by Jackson [29] in 1955. The EDD
rule (also called Jackson’s rule) is very simple, executes the jobs in order
of non-decreasing absolute deadlines in a work-conserving manner. Since all
the jobs arrive at the same time, it is unnecessary to allow preemption. The
following theorem shows that EDD is optimal for the problem 1||Lmax.

I Theorem 3.1. EDD is optimal for the problem 1||Lmax .

Proof. This can be proved by a simple interchange argument. Since all the
jobs arrive at time 0, it is not difficult to prove that an optimal schedule should
be work-conserving and non-preemptive. Let σA be a work-conserving sched-
ule that does not follow the EDD rule for the input job set J. We will show that
we can transform σA to an EDD schedule without increasing the maximum
lateness.

Since σA does not follow the EDD rule, in the schedule σA, there ex-
ist two jobs Ji and Jj in which Ji is executed immediately prior to Jj but
di > dj . Suppose that job Ji starts its execution at time a. Since σA is non-
preemptive and work-conserving, σA(t) is set to Ji for any t ∈ (a, a + Ci]
and σA(t) is set to Jj for any t ∈ (a+ Ci, a+ Ci + Cj ].

We now construct another schedule σ′A by simply swapping the execution
order of Ji and Jj in σA. That is, σ′A is almost the same as σA with an
exception that Jj is executed immediately prior to Ji. The above procedure is
also illustrated in Figure 3.1.

It is clear that σ′A(t) = σA(t) for any t /∈ (a, a+Ci +Cj ]. Therefore, the
lateness of any job Jk ∈ J \ {Ji, Jj} remains the same in both schedules σA
and σ′A. Moreover, since Jj starts earlier in the new schedule σ′A than in the
original schedule σA, the lateness of Jj is reduced in the new schedule σ′A.

We now evaluate the lateness of Ji in schedule σ′A with two cases:

• The lateness of job Ji is less than the lateness of job Jj in schedule σA,
i.e., a+Ci−di < a+Ci+Cj−dj : In this case, the lateness of Ji in the
new schedule σ′A is no more than the lateness of job Jj in the original
schedule σA since a+Ci +Cj −di < a+Ci +Cj −dj due to di > dj .

• The lateness of job Ji is no less than the lateness of job Jj in schedule
σA, i.e., a+Ci−di ≥ a+Ci+Cj−dj : This case is not possible, since
di > dj and Cj ≥ 0.
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Ji JjσA

t

Jj Jiσ′A

a

Figure 3.1: Optimality of Jackson’s rule for 1||Lmax.

Therefore, we reach the conclusion that the new schedule σ′A does not in-
crease the maximum lateness of the original schedule σA. We can repeat the
above step until the schedule follows the EDD rule without increasing the
maximum lateness. Therefore, we reach the conclusion that EDD is optimal
for the problem. J

If the jobs have arbitrary arrival times, preemption becomes an impor-
tant treatment. The problem in such a case is 1|rj , prmp|Lmax. The new
algorithm was presented by Horn [1] in 1974. The algorithm, called Earliest-
Deadline-First preemptive (EDF-P), schedules the arrived and unfinished job
that has the earliest absolute deadline.

I Theorem 3.2. EDF-P is optimal for the problem 1|rj , prmp|Lmax. EDF-P
is optimal for the problem 1|rj , prmp|≤D.

Proof. The concept used to prove the theorem is the same as the proof of
Theorem 3.1. The only additional factor here is to account for preemption.
The proof is hence left as an exercise. J

The time complexity of EDD is O(n log n) where n is |J|, dominated by
sorting the jobs according to their absolute deadlines. The time complexity
of EDF-P is also O(n log n) by applying a proper data structure, like binary
heap, to insert a job to a proper priority. In EDF-P, the scheduling decision
is only updated when a job arrives or completes. Here, we use a minimum
binary heap (where the key of a node is the absolute deadline of a job) to illus-
trate the time complexity analysis. When a job completes, this job is deleted
from the binary heap, which takes O(1) in the amortized manner. When a
job arrives, this job is inserted to the binary heap, which takes O(log n) in
the amortized manner. Therefore, the time complexity to construct an EDF
schedule is O(n log n).

EDF-P by design does not need to know the jobs that arrive in the future
when scheduling the jobs that are ready and unfinished at time t. Even so, it
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J1 J2 J3
rj 0 4 5
Cj 10 3 10
dj 33 28 29

l(4, J1) = 33− 4− 6 = 23
l(4, J2) = 28− 4− 3 = 21

l(15, J1) = 33− 15− 6 = 12
l(15, J3) = 29− 15− 2 = 12

0 2 4 6 8 10 12 14 16 18 20 22 24

l(5, J1) = 33− 5− 6 = 22
l(5, J2) = 28− 5− 2 = 21
l(5, J3) = 29− 5− 10 = 14

l(13, J1) = 33− 13− 6 = 14
l(13, J2) = 28− 13− 2 = 13
l(13, J3) = 29− 13− 2 = 14

l(16, J1) = 33− 16− 6 = 11
l(16, J3) = 29− 16− 1 = 12

Figure 3.2: An example of least-laxity-first (LLF) scheduling

is optimal for 1|rj , prmp|Lmax and 1|rj , prmp|≤D. Therefore, EDF-P is in
fact a clairvoyant scheduling algorithm for these two problems.

In EDF-P, the relationship of the absolute deadlines of the given jobs is
translated to a priority assignment. Another possible treatment is to assign
the job that has the least laxity the highest priority. The laxity of a job Jj at
time t is defined as dj − t − C ′j , where C ′j is the remaining execution time
of job Jj at time t. This algorithm is called Least Laxity First (LLF), Least
Slack Time First (LST), or Minimum Laxity First (MLF).

I Example 3.3. Consider to schedule the three jobs listed in the table of
Figure 3.2. We assume that the scheduling decisions are taken only at discrete
time points (i.e., integers) and a job is only preempted by another job with less
laxity. Suppose that l(t, Jj) is the laxity of job Jj at time t. At time 0, job J1

is the only ready job in the system. Therefore, J1 is executed in (0, 4]. At time
4, there are two jobs eligible to be executed. By evaluating their laxity, J2 has
less laxity and is executed in (4, 5]. At time 5, J3 has the least laxity and starts
its execution. According to the definition of function l(t, Jj), when a job Jj is
executed from (t, t+ ∆], its laxity remains, and when a jobJj is not executed
in time interval (t, t + ∆], its laxity l(t, Jj) − l(t + ∆, Jj) = ∆. Therefore,
at time 13, the laxity of job J2 becomes less than J3 and J2 preempts J3. J
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I Theorem 3.4. LLF is optimal for the problem 1|rj , prmp|≤D.

Proof. This can be proved by a similar interchange argument. The proof is
left as an exercise. J

LLF has higher time complexity and introduces more runtime overhead
than EDF-P because it has to update the laxity of the jobs even without job ar-
rivals or completions. LLF also introduces more context switches in general.
Moreover, EDF-P does not need to know the execution time of the jobs, whilst
LLF requires such information for scheduling decisions. This disadvantage
also makes LLF difficult to be implemented in standard operating systems.

3.2 Schedulability Test of EDF-P

After presenting the EDD and EDF-P scheduling algorithms, their schedula-
bility tests are presented in this section. Since EDD is a special case of EDF-P,
we only present the proof of EDF-P formally, where the schedulability test
of EDD is a simple corollary. The following theorem is due to Chetto and
Silly-Chetto [17] in 1989.

I Theorem 3.5. A set J of jobs in the problem 1|rj , prmp|≤D is schedulable
under EDF-P if and only if

∀ri < dk,
∑
Jj∈J

Cj1ri≤rj and dj≤dk ≤ dk − ri (3.1)

Proof. Only-if part, i.e., the necessary schedulability test: If there exists a
pair of ri and dk such that ri < dk and

∑
Jj∈J Cj1ri≤rj and dj≤dk > dk − ri,

then the demand of the jobs that are released and must be finished in the
time interval [ri, dk] is strictly greater than dk − ri. By the definition of a
uniprocessor system in our scheduling model, at most one job is executed at
a time. Therefore, the demand of the jobs that are released no earlier than
ri and must be finished no later than dk is strictly more than the amount
of available time. Therefore, one of these jobs misses its deadline no matter
which uniprocessor scheduling algorithm is used.

If part, i.e., the sufficient schedulability test: We prove the condition by
contrapositive. Suppose that the given set J of jobs is not schedulable under
EDF-P for contrapositive. Let σ : R → J ∪ {⊥} be the schedule of EDF-P
for J, where job Jk is the first job which misses its absolute deadline dk in



42 3 Uniprocessor Aperiodic Task Systems

schedule σ. That is, ∫ dk

rk

1σ(t)=Jjdt < Ck (3.2)

Let t0 be the earliest instant prior to dk, i.e., t0 < dk, such that the
processor only executes jobs with absolute deadlines no later than dk in time
interval (t0, dk] under EDF-P. That means, immediately prior to time t0, i.e.,
t = t0 − ε for an infinitesimal ε > 0, σ(t) is either ⊥ or the job Jg with
σ(t) = Jg has absolute deadline dg > dk. We note that t0 exists since it is
at least the earliest arrival time of the jobs in J. Moreover, since EDF-P does
not let the processor idle unless there is no job in the ready queue, t0 ≤ rk.

By EDF-P, t0 must be an arrival time of a job, called Ji. Therefore, t0 is
equal to ri. Let J[ri,dk] be the set of jobs arriving no earlier than ri and have
absolute deadlines no later than dk. That is,

J[ri,dk] = {Jj | rj ≥ ri, dj ≤ dk}

By the definition of ri = t0 ≤ rk, dk and EDF-P, the processor executes only
the jobs in J[ri,dk], i.e., σ(t) ∈ J[ri,dk] for any ri < t ≤ dk. Therefore, we
know that

dk − ri
1
=

(∫ dk

ri

1σ(t)=Jkdt

)
+

∑
Jj∈J[ri,dk]\{Jk}

(∫ dk

ri

1σ(t)=Jjdt

)
2
=

(∫ dk

rk

1σ(t)=Jkdt

)
+

∑
Jj∈J[ri,dk]\{Jk}

(∫ dk

ri

1σ(t)=Jjdt

)
Eq. (3.2)
< Ck +

∑
Jj∈J[ri,dk]\{Jk}

Cj

=
∑

Jj∈J[ri,dk]

Cj =
∑
Jj∈J

Cj1ri≤rj and dj≤dk

where the condition 1
= is due to σ(t) ∈ J[ri,dk] for any ri < t ≤ dk and the

condition 2
= is due to ri ≤ rk and σ(t) 6= Jk for ri < t ≤ rk. Hence, there is

a pair of ri and dk where ri < dk and
∑

Jj∈J Cj1ri≤rj and dj≤dk > dk − ri.
We reach the conclusion by contrapositive. J

I Corollary 3.6. Suppose that the real-time jobs in J are ordered accord-
ing to the absolute deadlines non-decreasingly (i.e., following the Jackson’s
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rule). A set of jobs in the problem 1||≤D is schedulable under EDD if and
only if

∀Jk ∈ J,
k∑
i=1

Ci ≤ dk. (3.3)

I Corollary 3.7. The exact schedulability test for EDF-P in Theorem 3.5 is
also exact for LLF.

Proof. This is due to the optimality of LLF and EDF-P. J

3.3 Non-preemptive Scheduling

In this section, we will focus on non-preemptive scheduling. A schedule is
non-preemptive if a job cannot be preempted by any other jobs, i.e., only
one interval with σ(t) = Jj for every job Jj in J. Whenever a job starts
its execution, the processor is occupied by this job until it finishes. This re-
striction imposes more challenges to the design of schedulers. The following
theorem shows that work-conserving is not always optimal.

I Theorem 3.8. There exists an optimal schedule for 1|rj |≤D, which is not
work-conserving.

Proof. This can be proved by demonstrating a concrete job set that is not
schedulable under any work-conserving non-preemptive scheduling algorithm
but schedulable under a non-work-conserving scheduling algorithm. Con-
sider the following two jobs: J1 = {r1 = 0, d1 = 5, C1 = 2} and J2 =
{r2 = 1, d2 = 3, C2 = 2}. A work-conserving non-preemptive scheduling al-
gorithm executes J1 from 0 to 2, which leads to a deadline miss of job J2.
A non-work-conserving schedule idles from 0 to 1 even when J1 is ready at
time 0, executes J2 from time 1 to 3, and executes J1 from 3 to 5, where both
jobs can meet their deadlines. J

Non-preemptiveness makes the scheduler design problem much more dif-
ficult as a seemingly simple case 1|rj |≤D is already NP-complete in the
strong sense. To demonstrate that, we first recall the 3-PARTITION prob-
lem [22], which is NP-complete in the strong sense. The 3-PARTITION
problem is widely used to show certain scheduling problems areNP-hard in
the strong sense.

I Definition 3.9 (3-PARTITION Problem). We are given a positive integer
V , a positive integer M , and a set of 3M integer numbers {v1, v2, . . . , v3M}
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with the condition
∑3M

i=1 vi = MV , in which V/4 < vi < V/2 and M ≥ 3.
Therefore, V ≥ 3.
Objective: The problem is to partition the given 3M integer numbers intoM
disjoint sets V1,V2, . . . ,VM such that the sum of the numbers in each set
Vi for i = 1, 2, . . . ,M is V , i.e.,

∑
vj∈Vi

vj = V . J

I Theorem 3.10. The problem 1|rj |≤D isNP-complete in the strong sense.

Proof. The problem is in NP since validating the feasibility of the sched-
ule takes polynomial time. The completeness is due to a polynomial-time
reduction from the 3-PARTITION problem [22] to the problem 1|rj |≤D.

From an input instance of the 3-PARTITION problem, we create n =
4M − 1 jobs, defined as follows:

rj = jV + j − 1, Cj = 1, dj = jV + j, j = 1, . . . ,M − 1

rj = 0, Cj = vj−M+1, dj = MV +M − 1, j = M, . . . , 4M − 1

This reduction takes polynomial time. For j = 1, . . . ,M−1, the construction
of the jobs leads to dj− rj−Cj = 0. Therefore, to meet their deadlines, they
have to be executed immediately when they arrive. As a result, the remaining
3M jobs can only be executed inM time intervals (0, V ], (V + 1, 2V + 1], . . . ,
(MV − V +M − 1,MV +M − 1], each with a length of V . This can be
feasibly done if and only if the remaining 3M jobs can be partitioned over
these M time intervals each with a length of V , which can be done if and
only if the input instance of the 3-PARTITION problem has a solution. J

I Corollary 3.11. The problem 1|rj |Lmax is NP-hard in the strong sense.

The problems 1|rj |Lmax and 1|rj |≤D are important because they are of-
ten subproblems in more complicated multiprocessor scheduling problems.
There have been considerable amount of work that has resulted in several
branch-and-bound methods, e.g., [11, 41, 45] and effective heuristic and ap-
proximation algorithms, e.g., [27, 48].

It should be first noted that the problem 1|rj |Lmax cannot be approxi-
mated with a bounded approximation ratio because the optimal schedule may
have no lateness at all and any approximation leads to an unbounded approxi-
mation ratio. However, a variance of this problem can be easily approximated.
This is known as the delivery-time model of the problem 1|rj |Lmax. In this
model, each job Jj has its release time rj , processing time Cj , and delivery
time qj ≥ 0. After a job finishes its execution on a processor, its result
(final product) needs qj amount of time to be delivered to the customer.
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Therefore, the result of job Jj is delivered at time fj + qj , where fj is the
finishing time of job Jj . This is identical to the scenario as if we set the
absolute deadline dj of Jj to −qj . Minimizing the maximum lateness in this
model is equivalent to the minimization of the maximum delivery time, i.e.,
maxJj∈J fj − dj = maxJj∈J fj + qj .

The delivery-time model of the problem 1|rj |Lmax can then be effectively
approximated. The extended Jackson’s rule is as follows: “Whenever the
processor is free and one or more jobs is available for processing, schedule
an available job with largest delivery time. ” Recall that the absolute deadline
of job Jj in this case is −qj .

I Theorem 3.12. The extended Jackson’s rule is a polynomial-time
2-approximation algorithm for the delivery-time model of the problem 1|rj |Lmax.

Proof. A sketched proof can be found in [27]. J

Potts [48] observed some nice properties when the extended Jackson’s
rule is applied. Suppose that the last delivery is due to a job Jc. Let Ja be
the earliest scheduled job so that the processor in the problem 1|rj |Lmax is
not idle between the processing of Ja and Jc. The sequence of the jobs that
are executed sequentially from Ja, . . . , to Jc is called a critical sequence.
By the definition of Ja, all jobs in the critical sequence must be released no
earlier than the release time ra of job Ja. If the delivery time of any job in the
critical sequence is not shorter than the delivery time qc of Jc, then it can be
proved that the extended Jackson’s rule is optimal for the problem 1|rj |Lmax.
However, if the delivery time qb of a job Jb in the critical sequence is shorter
than the delivery time qc of Jc, the extended Jackson’s rule may start a non-
preemptive job Jb too early. Such a job Jb that appears last in the critical
sequence is called the interference job of the critical sequence.

Potts [48] suggested to attempt at improving the schedule by forcing some
interference job to be executed after the critical job Jc, i.e., by delaying the
release time of Jb from rb to r′b = rc. This procedure is repeated for at
most n iterations and the best schedule among the iterations is returned as
the solution.

I Theorem 3.13. Potts’ iterative proces is a polynomial-time 1.5-approximation
algorithm for the delivery-time model of the problem 1|rj |Lmax.

Proof. The proof can be found in [27]. J

Hall and Shmoys [27] further improved the approximation ratio to 4/3
by handling a special case when there are two jobs Ji and Jh with Ci >
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Jj∈J Cj/3 and Ch >

∑
Jj∈J Cj/3 and running Potts’ algorithm for 2n

iterations.1

I Theorem 3.14. Algorithm HS is a polynomial-time 4/3-approximation
algorithm for the delivery-time model of the problem 1|rj |Lmax.

Proof. The proof can be found in [27]. J

1 Hall and Shmoys [27] further use the concept of forward and inverse problems of the
input instance of 1|rj |Lmax.
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3.4 Exercises

I Exercise 3.1. For real-time systems, it is important to know the maximum
(worst-case) execution time of each task a priori. What are the definition and
difference between the worst-case execution time and the worst-case response
time? Even if the worst-case execution time of a task is given, there are several
other problems that may be encountered during the design of a scheduling
algorithm for a real-time system. Can you think of some difficulties? What
are possible solutions?

I Exercise 3.2. Complete the proof of Theorem 3.2.

I Exercise 3.3. Complete the proof of Theorem 3.4.

I Exercise 3.4. Use the example in Figure 3.2 to compare the overhead of
LLF and EDF-P, including the number of context switches and the number of
time points to make scheduling decisions.





4
Uniprocessor Periodic and Sporadic Task

Systems

We consider periodic and sporadic task systems on a uniprocessor platform
in this chapter, starting from the well-known EDF scheduling algorithm in
preemptive and non-preemptive settings in Sections 4.1 and 4.2 respectively.
We will then discuss the fixed-priority scheduling algorithms in preemptive
and non-preemptive settings in Sections 4.3 and 4.4 respectively. These clas-
sical results are widely used and applied as basic subroutines in real-time and
embedded systems.

4.1 Preemptive Dynamic-Priority Scheduling

For the preemptive EDF (EDF-P) scheduling algorithm, the job in the ready
queue whose absolute deadline is the earliest is executed on the processor.
Since the absolute deadline of a job released by a periodic/sporadic task is
well-defined when it arrives to the system, the EDF-P scheduling algorithm,
presented in Section 3.1, can always be applied if the relative deadline of
a task is defined. The scheduling algorithm EDF-P itself does not need any
information from the tasks’ perspective. As shown in Section 3.1, EDF-P is an
optimal scheduling algorithm for the problem 1|prmp, rj |≤D even in the on-
line setting, where the arrival times of the jobs are only known when they are
released to the system. Therefore, EDF-P is also an optimal scheduling algo-
rithm for the problems 1|prmp, spor, arb|≤D and 1|prmp, period, arb|≤D.

The key issue is to validate the schedulability of EDF-P. Towards this,
the demand bound function DBFi(t), defined by Baruah et al. [6], has been
widely used to specify the maximum demand of task τi to be released and
finished in a time interval with length equal to t:

DBFi(t) = max

{
0,

⌊
t−Di

Ti

⌋
+ 1

}
× Ci (4.1)

49
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Figure 4.1: An example of the demand bound function DBFi(t) for task τi =
{Ti = 2, Ci = 1, Di = 1}.

Figure 4.1 demonstrates an example when τi = {Ti = 2, Ci = 1, Di = 1}.
To prove the correctness of such a demand bound function, we focus on

all possible feasible sets of jobs generated by a sporadic/periodic real-time
task τi. Recall that a feasible set FJi of jobs generated by a sporadic/periodic
real-time task τi should satisfy the following conditions:

• The actual execution time Ci,j of job Ji,j satisfies Ci,j ≤ Ci.

• di,j = ri,j +Di for any integer j with j ≥ 1.

• ri,j ≥ ri,j−1 + Ti for any integer j with j ≥ 2.

I Lemma 4.1. For a given feasible set FJi of jobs generated by a spo-
radic/periodic real-time task τi, let FJi,[r,r+t] be the subset of the jobs in FJi
arriving no earlier than r and have absolute deadlines no later than r + t.
That is,

FJi,[r,r+t] = {Ji,j | Ji,j ∈ FJi, ri,j ≥ r, di,j ≤ r + t} (4.2)

For any r and any t > 0, ∑
Ji,j∈FJi,[r,r+t]

Ci,j ≤ DBFi(t). (4.3)

Proof. By definition, DBFi(t) ≥ 0. Therefore, if FJi,[r,r+t] is an empty set,
we reach the conclusion.

We consider that FJi,[r,r+t] is not empty for the rest of the proof. Let
Ji,j∗ be the first job generated by task τi in FJi,[r,r+t]. By the definition of
FJi,[r,r+t] in Eq. (4.2), the arrival time ri,j∗ of job Ji,j∗ is no less than r, i.e.,
ri,j∗ ≥ r. Since FJi,[r,r+t] is not empty, ri,j∗ +Di ≤ r + t.
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Since ri,j ≥ ri,j−1 +Ti for any integer j with j ≥ 2 for the jobs in FJi as
well as the jobs in FJi,[r,r+t], the absolute deadlines of the subsequent jobs in
FJi,[r,r+t] are at least ri,j∗ + Ti +Di, ri,j∗ + 2Ti +Di, ri,j∗ + 3Ti +Di, . . ..

Therefore, there are at most
⌊
r+t−(ri,j∗+Di)

Ti

⌋
+ 1 ≤

⌊
t−Di
Ti

⌋
+ 1 jobs in

FJi,[r,r+t] since r ≤ ri,j∗ . Since the actual execution time Ci,j of each job
Ji,j is no more than Ci by the definition of the jobs in FJi, we reach the
conclusion. J

With the help of Lemma 4.1, the following theorem follows directly from
Theorem 3.5 by Baruah et al. [6] with some modification.

I Theorem 4.2. A set T of sporadic tasks in the problem 1|spor, prmp|≤D
is schedulable under EDF-P if and only if

∀t > 0,
∑
τi∈T

DBFi(t) ≤ t (4.4)

Proof. Only-if part, i.e., the necessary schedulability test. We prove the
condition by contrapositive. Suppose that there exists a t > 0 such that∑

τi∈T DBFi(t) > t, for contrapositive.
For each task τi, we create a feasible set of jobs generated by task τi

by releasing the jobs periodically starting from time 0, and their actual ex-
ecution times are all set to Ci. By the definition of a uniprocessor system
in our scheduling model, at most one job is executed at a time. Therefore,
the demand of the jobs that are released no earlier than 0 and must be fin-
ished no later than t is strictly more than the amount of available time since∑

τi∈T DBFi(t) > t. Therefore, (at least) one of these jobs misses its deadline
no matter which uniprocessor scheduling algorithm is used.

Therefore, we can conclude that if the task set T is schedulable under
EDF-P, then

∑
τi∈T DBFi(t) ≤ t,∀t > 0.

If part, i.e., the sufficient schedulability test: We prove the condition by
contrapositive. Suppose that the given task set T is not schedulable under
EDF-P for contrapositive.

Then, there exists a feasible collection of jobs generated by T which
cannot be feasibly scheduled under EDF-P. Let FJ be such a collection of
jobs, where FJi is its subset generated by a sporadic real-time task τi in T.
Let σ : R → FJ ∪ {⊥} be the schedule of EDF-P for FJ. Since at least
one job misses its deadline in σ, let job Jk,` be the first job which misses its
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absolute deadline dk,` in schedule σ. That is,∫ dk,`

rk,`

1σ(t)=Jk,`dt < Ck,` ≤ Ck (4.5)

Similar to the proof of Theorem 3.5, let t0 be the earliest instant prior
to dk,`, i.e., t0 < dk,`, such that the processor only executes jobs with abso-
lute deadlines no later than dk,` in time interval (t0, dk,`] under EDF-P. That
means, immediately prior to time t0, i.e., t = t0 − ε for an infinitesimal ε,
σ(t) is either⊥ or a job whose absolute deadline is (strictly) greater than dk,`.
We note that t0 exists since it is at least the earliest arrival time of the jobs in
FJ. Moreover, since EDF-P does not let the processor idle unless there is no
job in the ready queue, t0 ≤ rk,`.

Let FJi,[t0,dk,`] be the subset of the jobs in FJi arriving no earlier than t0
and have absolute deadlines no later than dk,`. That is, we define FJi,[t0,dk,`]
by setting r to t0 and t to dk,`−t0 in Eq. (4.2). Let FJ[t0,dk,`] be∪τi∈T FJi,[t0,dk,`]
for notational brevity.

By the definition of t0, dk,` and EDF-P, the processor executes only the
jobs in FJ[t0,dk,`], i.e., σ(t) ∈ FJ[t0,dk,`] for any t0 < t ≤ dk,`. Therefore,

dk,` − t0
1
=

(∫ dk,`

t0

1σ(t)=Jk,`
dt

)
+

∑
Ji,j∈FJ[t0,dk,`]

\{Jk,`}

(∫ dk,`

t0

1σ(t)=Ji,jdt

)

2
≤

(∫ dk,`

t0

1σ(t)=Jk,`
dt

)
+

∑
τi∈T

∑
Ji,j∈FJi,[t0,dk,`]

Ci,j

− Ck,`
3
=

(∫ dk,`

rk,`

1σ(t)=Jk,`
dt

)
+

∑
τi∈T

∑
Ji,j∈FJi,[t0,dk,`]

Ci,j

− Ck,`
Eq. (4.5)
< Ck,` +

∑
τi∈T

∑
Ji,j∈FJi,[t0,dk,`]

Ci,j

− Ck,`
Eq. (4.3)
≤

∑
τi∈T

DBFi(dk,` − t0)

where the condition 1
= is due to σ(t) ∈ FJ[t0,dk,`] for any t0 < t ≤ dk,`, the

condition
2
≤ is due to the definition of a schedule of the jobs in FJ[t0,dk,`] \

{Jk,`}, the condition 3
= is due to t0 ≤ rk,` and σ(t) 6= Jk,` for t0 < t ≤ rk,`.
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Hence, there is a certain ∆ = dk,` − t0 with
∑

τi∈T DBFi(∆) > ∆. We reach
our conclusion by contrapositive. J

I Corollary 4.3. A set T of periodic tasks is schedulable under EDF-P for
the problem 1|period,Oi = 0, prmp|≤D if and only if Eq. (4.4) holds.

Proof. It follows directly from the proof of Theorem 4.2. J

I Corollary 4.4. A set T of periodic tasks is schedulable under EDF-P for
the problem 1|period, prmp|≤D if Eq. (4.4) holds.

Proof. It follows directly from the if-part proof of Theorem 4.2. J

Note that the schedulability test in Corollary 4.4 is only a sufficient schedu-
lability test for the problem 1|period, prmp|≤D. For periodic task sets, it
is possible that the test

∑
τi∈T DBFi(t) ≤ t, ∀t > 0 is pessimistic if

it is not possible construct a concrete feasible collection of jobs generated
by the given tasks in T to release their first jobs at the same time. More
precisely, the only-if-part proof in Theorem 4.2 cannot be used for the prob-
lem 1|period, prmp|≤D because the task set may not permit such a feasible
collection of jobs to be generated by T.

I Example 4.5. Consider the following example with two tasks in T, where
C1 = 2, D1 = 2, T1 = 10, O1 = 0 and C2 = 2, D2 = 2, T2 = 10, O1 = 2.
In this example, DBF1(2) = 2 and DBF2(2) = 2. Therefore, DBF1(2) +
DBF2(2) = 4 > 2, which implies that the task set is (potentially) not schedu-
lable under EDF-P based on the schedulability test in Corollary 4.4. However,
this task set is in fact schedulable under EDF-P since the jobs released by the
two tasks are perfectly separate from each other. The schedulability of the
task set can be easily validated by simulating the schedule from time 0 to
12. J

For constrained- and arbitrary-deadline task sets, testing the schedulabil-
ity of EDF-P for the problem 1|period, prmp|≤D is in fact NP-complete
in the strong sense [6, 9]. Specifically, Leung and Merrill [36] provide a
polynomial-time reduction from the Simultaneous Congruences problem to
the problem 1|period, prmp|≤D. The Simultaneous Congruences problem is
proved to be NP-complete by Leung and Whitehead [37]. Baruah et al. [6]
later show that the Simultaneous Congruences problem is NP-complete in
the strong sense. Therefore, testing the schedulability of 1|period, prmp|≤D
is NP-complete in the strong sense.

However, for implicit-deadline periodic or sporadic task systems, we can
have the following exact schedulability test of EDF-P by Liu and Layland [40]:
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I Theorem 4.6. A set T of tasks is schedulable under EDF-P for the problem
1|spor, prmp, impl|≤D or 1|period, prmp, impl|≤D if and only if∑

τi∈T

Ui ≤ 1 (4.6)

Proof. Only-if part, i.e., the necessary schedulability test. This can be easily
proved as the system is overloaded in the worst case. If

∑
τi∈T Ui > 1, it is

not difficult to prove that there exists a feasible collection of jobs generated by
T, in which at least one job misses its deadline. This holds for both periodic
and sporadic task sets.

If part, i.e., the sufficient schedulability test. For an implicit-deadline
task, due to Di = Ti, we have DBFi(t) = max

{
0,
⌊
t−Ti
Ti

⌋
+ 1
}
× Ci =⌊

t
Ti

⌋
Ci for any t > 0. Therefore, for any t > 0,

∑
τi∈T

DBFi(t) =
∑
τi∈T

⌊
t

Ti

⌋
Ci ≤

∑
τi∈T

t

Ti
Ci = t ·

∑
τi∈T

Ui ≤ t (4.7)

By Theorem 4.2, we reach the conclusion. J

The exact schedulability test in Theorem 4.6 shows that there is no loss
of utilization for implicit-deadline task systems under EDF-P.

I Corollary 4.7. A set T of tasks with Di ≥ Ti for every task τi in T for
the problem 1|spor, prmp|≤D or 1|period, prmp|≤D is schedulable under
EDF-P if and only if

∑
τi∈T Ui ≤ 1.

Proof. The proof is identical to the proof in Theorem 4.6. The only difference
is that for t > 0 when Di ≥ Ti, we have

DBFi(t) = max

{
0,

⌊
t−Di
Ti

⌋
+ 1

}
× Ci ≤ max

{
0,

⌊
t− Ti
Ti

⌋
+ 1

}
× Ci =

⌊
t

Ti

⌋
Ci

J

With the above analyses, the sufficient schedulability tests and their ex-
actness are summarized in Table 4.1.

Time Complexity

Testing whether the schedulability condition of Eq. (4.4) in Theorem 4.2 in
fact needs exponential time complexity. We will discuss the implementation
of such a test in Section 4.5.
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Relative deadline sufficient test exact?
Sporadic or Implicit Theorem 4.6 yes
Periodic with the same offset constrained Theorem 4.2 yes

arbitrary Theorem 4.2 yes

Periodic
Implicit Theorem 4.6 yes

constrained Corollary 4.4 no
arbitrary Corollary 4.4 no

Table 4.1: Sufficient schedulability tests of EDF-P and their exactness.

4.2 Non-Preemptive Dynamic-Priority Scheduling

This section considers non-preemptive uniprocessor scheduling algorithms
for periodic and sporadic real-time task systems. One of the well-known ap-
proaches is the non-preemptive EDF (EDF-NP) scheduling algorithm. Under
EDF-NP, the job in the ready queue whose absolute deadline is the earliest is
executed non-preemptively on the processor. As already shown in Theorem
Section 3.3, EDF-NP is not an optimal scheduling algorithm for the problem
1|rj |Lmax even in the offline setting, where the arrival times of the jobs are
known at beginning. The optimal schedule for the problem 1|rj |Lmax may
not be work-conserving.

The following theorem presents the exact schedulability test of EDF-NP
for sporadic real-time tasks.

I Theorem 4.8. A set T of sporadic tasks in the problem 1|spor|≤D is
schedulable under EDF-NP if and only if

∀t > 0,

(∑
τi∈T

DBFi(t)

)
+ max
τq :Dq>t

{Cq − ε} ≤ t (4.8)

where ε > 0 is infinitesimal.

Proof. Only-if part, i.e., the necessary schedulability test. We prove the
condition by contrapositive. Suppose that there exists a t > 0 such that∑

τi∈T DBFi(t) + maxτq :Dq>t{Cq − ε} > t, for contrapositive. There are
two cases. First, if Dq ≤ t for all τq ∈ T, then this is the same as the proof
of the necessary schedulability test in the proof of Theorem 4.2. Therefore,
we only consider that there is a task τq with Dq > t. Then, we release a job
of task τq at time −ε and release the first jobs of the other tasks T \ {τq} at
time 0 and their subsequent jobs periodically. All jobs use their corresponding
worst-case execution times. Due to the work-conserving execution property
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of the EDF-NP, the job of task τq is executed from−ε to Cq− ε. The demand
of the jobs that are released no earlier than 0 and must be finished no later
than t is strictly more than the amount of remaining available time t−Cq + ε
since

∑
τi∈T DBFi(t) > t − Cq + ε. Therefore, (at least) one of these jobs

misses its deadline no matter which uniprocessor non-preemptive scheduling
algorithm is used from time Cq − ε to time t.

If part, i.e., the sufficient schedulability test: We prove the condition by
contrapositive. Suppose that the given task set T is not schedulable under
EDF-NP for contrapositive.

Then, there exists a feasible collection of jobs generated by T which can-
not be feasibly scheduled under EDF-NP. Let FJ be such a collection of jobs,
where FJi is its subset generated by a sporadic/periodic real-time task τi in
T. Let σ : R → FJ ∪ {⊥} be the schedule of EDF-NP for FJ. Since at least
one job misses its deadline in σ, let job Jk,` be the first job which misses its
absolute deadline dk,` in the EDF-NP schedule σ. That is,∫ dk,`

rk,`

1σ(t)=Jk,`dt < Ck,` ≤ Ck (4.9)

Let t′0 be the earliest instant no later than dk,`, i.e., t′0 ≤ dk,`, such that
the processor only executes jobs with absolute deadlines no later than dk,` in
time interval (t′0, dk,`] under EDF-NP. That means, immediately prior to time
t′0, i.e., t = t′0 − ε for an infinitesimal ε > 0, σ(t) is either ⊥ or a job whose
absolute deadline is (strictly) greater than dk,`. The definition of t′0 is slightly
different from the definition of t0 in the proof of Theorem 4.2, because it is
possible that the job executed immediately prior to dk,` in schedule σ is a job
started before rk,` under EDF-NP. We note that t′0 exists since it is at least the
earliest arrival time of the jobs in FJ or dk,`.

The reader may notice that the above construction is almost the same as
the proof of Theorem 4.2. There are two cases to consider. Case 1: σ(t′0 − ε)
is ⊥. This is an easier case, since the remaining part of the proof is the same
as the rest of the proof of Theorem 4.2. For this case, ∆ <

∑
τi∈T DBFi(∆),

where ∆ = dk,` − t′0 ≥ dk,` − rk,` > 0 since t′0 ≤ rk,` for such a case.
For the rest of the proof, we focus on Case 2: σ(t′0 − ε) is a job Jq,p (i.e.,

a job of task τq) whose absolute deadline is strictly greater than dk,`. Since
the schedule σ is a non-preemptive schedule, job Jq,p must be consecutively
executed from a certain time t0 to t′0 and t′0 − t0 is, therefore, at most the
actual execution time Cq,p of job Jq,p. According to EDF-NP, job Jq,p starts
its execution at time t0 because its absolute deadline is the earliest among the
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jobs in the ready queue. Since we define t′0 such that the processor only exe-
cutes jobs with absolute deadlines no later than dk,` in time interval (t′0, dk,`],
those jobs must not be ready prior to t0, i.e., they arrive strictly later than t0.
Otherwise, EDF-NP would not start to execute job Jq,p at time t0.

Let FJi,[t0+ε,dk,`] be the subset of the jobs in FJi arriving no earlier than
t0 + ε and have absolute deadlines no later than dk,`. That is, we define
FJi,[t0+ε,dk,`] by setting r to t0 + ε and t to dk,` − t0 − ε in Eq. (4.2). Let
FJ[t0+ε,dk,`] be ∪τi∈T FJi,[t0+ε,dk,`] for notational brevity.

Therefore, the EDF-NP schedule σ is busy executing jobs in {Jq,p} ∪
FJ[t0+ε,dk,`] in time interval (t0, dk,`] and job Jk,` misses its deadline. By
definition, Jq,p /∈ FJ[t0+ε,dk,`]. Moreover, since rq,p ≤ t0 and dq,p > dk,`, the
relative deadlineDq of task τq isDq = dq,p−rq,p > dk,`− t0 > dk,`− t0−ε.

Let ∆ be dk,` − t0 − ε for brevity. Since dk,` ≥ t′0 > t0 + ε by definition,
∆ > 0. By adopting the inequality in Eq. (4.9) and similar steps in the last
part of the proof of Theorem 4.2 (left as an exercise), it can be proved that

∆ <Ck,` +

∑
τi∈T

∑
Ji,j∈FJi,[t0+ε,dk,`]

Ci,j

− Ck,` + (Cq,p − ε)

≤

∑
τi∈T

DBFi(∆)

+ max
τq :Dq>∆

{Cq − ε}

We reach the conclusion by contrapositive. J

The schedulability test in Theorem 4.8 is slightly different from the orig-
inal test by George et al. [23]. In Theorem 4.8, the execution of a job is in
a continuous time domain, whereas the test by George et al. [23] assumes a
discrete time domain, where the job arrival times and job execution times are
(positive) integers.

I Theorem 4.9. A set T of sporadic tasks in the problem 1|spor|≤D, where
the job arrival times and job execution times are integers, is schedulable
under EDF-NP if and only if

∀t > 0,

(∑
τi∈T

DBFi(t)

)
+ max
τq :Dq>t

{Cq − 1} ≤ t (4.10)

Proof. The proof is identical to that in Theorem 4.8 in a discrete time domain.
J
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A similar result was also presented by Jeffay et al. [30] for the problem
1|spor, impl|≤D under a discrete time domain. However, Jeffay et al. [30]
concluded that the same schedulability test is exact also for the problem
1|period|≤D when each periodic task has a concrete offset. This is unfortu-
nately only a sufficient test, which can be shown by using a similar example
presented in Example 4.5.

I Corollary 4.10. A set T of periodic tasks is schedulable under EDF-NP for
the problem 1|period|≤D if Eq. (4.8) holds.

Proof. It follows directly from the if-part proof of Theorem 4.8. J

Note that the schedulability test in Corollary 4.10 is only a sufficient
schedulability test for the problem 1|period|≤D. The only-if-part proof in
Theorem 4.8 cannot be used for the problem 1|period|≤D because the task
set may not permit such a feasible collection of jobs to be generated by T.

For implicit-deadline task systems, instead of testing all t > 0, it is possi-
ble to use the following sufficient schedulability test that can be validated in
O(n) time complexity.

I Theorem 4.11. A set T of n implicit-deadline sporadic tasks is schedulable
under EDF-NP for the problem 1|spor, impl|≤D if{(∑k

i=1 Ui

)
+

maxnq=k+1 Cq

Tk
≤ 1, ∀k ∈ [n− 1]∑n

i=1 Ui ≤ 1
(4.11)

where the n tasks are sorted such that T1 ≤ T2 ≤ · · · ≤ Tn.

Proof. This can be proved by approximating DBFi(t) ≤ Uit when t ≥ Ti.
The rest of the proof is left as an exercise. J

4.2.1 Time Complexity

Testing whether the schedulability condition of Eq. (4.8) in Theorem 4.8 in
fact needs exponential time complexity. We will discuss the implementation
of such a test in Section 4.5.

4.2.2 Optimality of EDF-NP

Although EDF-NP is not optimal for the problem 1|spor|≤D, Jeffay et al. [30]
show that EDF-NP is in fact optimal among non-preemptive work-conserving
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scheduling algorithms for implicit-deadline sporadic task sets, i.e., for the
problem 1|spor, impl|≤D. The proof by Jeffay et al. was based on a classical
interchange argument. It is in fact not difficult to prove the optimality if the
necessary condition in Theorem 4.8 is in fact also a necessary schedulability
condition for any non-preemptive work-conserving scheduling algorithm.

I Lemma 4.12. A set T of sporadic tasks in the problem 1|spor|≤D is
schedulable under any non-preemptive work-conserving scheduling algo-
rithm only if

∀t > 0,

(∑
τi∈T

DBFi(t)

)
+ max
τq :Dq>t

{Cq − ε} ≤ t (4.12)

where ε > 0 is infinitesimal.

Proof. The proof was already presented in the only-if proof of Theorem 4.8.
Although the statement of Theorem 4.8 was for EDF-NP, the proof only used
the property that EDF-NP is a work-conserving non-preemptive scheduler.
Therefore, the necessary condition in Theorem 4.8 is actually for any work-
conserving non-preemptive scheduling algorithm. J

As a result, we can reach the optimality of EDF-NP directly.

I Theorem 4.13. Among non-preemptive work-conserving scheduling algo-
rithms, EDF-NP is an optimal one for the problem 1|spor|≤D.

Proof. This is due to Theorem 4.8 and Lemma 4.12. J

Unfortunately, for periodic real-time task systems, EDF-NP is not an op-
timal non-preemptive work-conserving scheduling algorithm even when all
tasks release their first jobs at the same time.1

I Theorem 4.14. Among non-preemptive work-conserving scheduling algo-
rithms, EDF-NP is not an optimal one for 1|period, impl,Oi = 0|≤D.

Proof. This can be proved by demonstrating a concrete task set that is not
schedulable under EDF-NP but is schedulable under another work-conserving
scheduling algorithm. The following example task set T with three tasks by
Nasri and Fohler [44] demonstrates the non-optimality.
• τ1 = {C1 = 1, T1 = D1 = 10, O1 = 0},

1 The optimality statement in Theorem 5.1 by Jeffay et al. [30] is hence incorrect.
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• τ2 = {C2 = 8, T2 = D2 = 30, O2 = 0}, and
• τ3 = {C3 = 17, T3 = D3 = 60, O3 = 0}.
To show that this task set is not schedulable under EDF-NP, we consider

the feasible collection of jobs generated by T, in which Ci,j is Ci for each
task τi. Under EDF-NP, the second job J1,2 of task τ1 starts its execution at
time 1+8+17 = 26, which leads to a deadline miss, as its absolute deadline
d2,1 is 20.

The task set is in fact schedulable under a fixed-priority non-preemptive
(FP-NP) scheduling algorithm which assigns τ1 > τ3 > τ2. The proof is
left as an exercise. (Note that it is necessary to consider jobs whose actual
execution times are shorter than their WCETs.) J

By Theorem 3.8, work-conserving scheduling algorithms are not opti-
mal for the problem 1|rj |≤D. The same proof can be used to show that
work-conserving scheduling algorithms are not optimal for 1|spor, cons|≤D.
How about the optimality of work-conserving scheduling algorithms for the
simplest setting 1|period, impl,Oi = 0|≤D? This class of scheduling algo-
rithms is unfortunately also not optimal.

I Theorem 4.15. Non-preemptive work-conserving scheduling algorithms
are not optimal for the problem 1|period, impl,Oi = 0|≤D.

Proof. This can be proved by demonstrating a concrete task set that is not
schedulable under any work-conserving scheduling algorithm, but can be in
fact schedulable under a non-work-conserving scheduling algorithm. The fol-
lowing example task set T with three tasks demonstrates the non-optimality.
• τ1 = {C1 = 1, T1 = D1 = 4, O1 = 0},
• τ2 = {C2 = 1, T2 = D2 = 8, O2 = 0}, and
• τ3 = {C3 = 6, T3 = D3 = 16, O3 = 0}.
To show that this task set is not schedulable under any non-preemptive

work-conserving scheduling, we consider the feasible collection of jobs gen-
erated by T, in which Ci,j is Ci for each task τi. Under any non-preemptive
work-conserving scheduling, the first job J3,1 of task τ3 is either executed
non-preemptively in time interval (0, 6], (1, 7], or (2, 8]. In any of the three
cases, one of the three jobs J1,1, J1,2 or J2,1 misses its deadline.

Since the hyper-period is 16, we can use the same scehdule in the time
interval (0, 16] repeatitively. This task set is in fact schedulable when J1,1 is
executed in (0, 1], J2,1 is executed in (1, 2], J1,2 is executed in (4, 5], J3,1 is
executed in (6, 11], J1,3 is executed in (11, 12], J1,4 is executed in (12, 13],
and J2,2 is executed in (13, 14]. Figure 4.2 presents the above schedule. Note
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τ1

τ2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

τ3

Figure 4.2: A feasible non-preemptive non-work-conserving schedule for the
task set in the proof of Theorem 4.15.

that the above non-work-conserving schedule remains feasible for the task set
T when the actual execution times of the jobs are shorter than their WCETs.

J

4.2.3 Computational Complexity

Non-preemptiveness makes the scheduler design problem much harder. Even
for the problem1|period,Oi = 0, harmonic, impl|≤D, finding an optimal
schedule is NP-hard in the strong sense, proved by Cai and Kong [10] due
to a reduction from the well-known 3-PARTITION problem. This appealing
industrial use case with harmonic periods has been studied by a series of
researches [10, 21, 43]. More complicated periodic and sporadic task sys-
tems are in general more difficult to be handled. It should be clear now
that an optimal non-preemptive schedule usually needs to insert some idle
time; however there is no much advance with this respect. Extending EDF to
non-work-conserving has been studied by Nasri and Fohler [44].

4.3 Fixed-Priority Preemptive Scheduling

As mentioned in Section 2.4, although EDF-P and EDF-NP scheduling algo-
rithms provide nice properties for scheduling sporadic real-time tasks, such
dynamic-priority scheduling algorithms are sometimes not available in real-
time operating systems. Alternatively, fixed-priority (static-priority) schedul-
ing algorithms are implemented in most real-time operating systems due to
the simplicity of design and low management overhead.

Under preemptive fixed-priority (FP-P) scheduling, each task is assigned
a unique priority before execution and does not change over time. The jobs
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generated by a task always have the same priority defined by the task. Here,
we recap the notation of FP-P scheduling, as defined in Section 2.4 already:
hp(τk) is the set of higher-priority tasks than task τk and lp(τk) is the set
of lower-priority tasks than task τk. When task τi has a higher priority than
task τj , we denote their priority relationship as τi > τj . We assume that the
priority levels are unique.

4.3.1 Schedulability Tests of FP-P for Sporadic Task Systems

In Sections 4.1 and 4.2, we heavily use the notation FJi,[r,r+t] for analyzing
EDF. For FP scheduling algorithms, we need another notation

FRJi,[r,r+∆) = {Ji,j | Ji,j ∈ FJi, ri,j ≥ r, ri,j < r + ∆} (4.13)

That is, for a given feasible set FJi of jobs generated by a sporadic/periodic
real-time task τi, let FRJi,[r,r+∆) be the subset of the jobs in FJi arriving in
time interval [r, r + ∆).

I Lemma 4.16. The total amount of execution time of the jobs of τi that are
released in a time interval [r, r + ∆) for any ∆ ≥ 0 is∑

Ji,j∈FRJi,[r,r+∆)

Ci,j ≤
⌈

∆

Ti

⌉
Ci

def
= demandi(∆) (4.14)

Proof. This comes from the definition of FRJi,[r,r+∆). Since FRJi,[r,r+∆) is

also a feasible set of jobs generated by task τi, there are at most
⌈

∆
Ti

⌉
jobs in

FRJi,[r,r+∆), each with execution time no more than Ci. J

Lemma 4.16 is based on the demand released in a time interval. We can
also define the demand released and executed in a time interval in a schedule.
For this, we define the workload function worki(∆)

worki(∆)
def
=

⌊
∆

Ti

⌋
Ci + min

{
Ci,∆−

⌊
∆

Ti

⌋
Ti

}
(4.15)

The workload function worki(∆) defined above is a piecewise function, i.e.,
linear in intervals [`Ti, `Ti + Ci] with a slope 1 and constant, (` + 1)Ci, in
intervals [`Ti + Ci, (`+ 1)Ti] for any non-negative integer `.

I Lemma 4.17. For a uniprocessor schedule σ and ∆ ≥ 0,∫ r+∆

r

(
1σ(t)∈FRJi,[r,r+∆)

)
dt ≤ worki(∆) (4.16)
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Proof. This comes from the definition of FRJi,[r,r+∆) together with a unipro-
cessor schedule σ. Since the schedule can only execute at most x amount of
execution times in any time interval with length x, the function worki(t)
defines the earliest processing of the jobs of task τi released in this interval
[r, r + ∆). J

Figure 4.3 demonstrates an example of demandi(∆) and worki(∆). The
following observations are based on the definitions of the functions demandi(∆)
and worki(∆).

I Observation 4.18. Functions worki(∆) and demandi(∆) are both non-
decreasing with respect to ∆ when ∆ ≥ 0

I Observation 4.19. For any ∆− δ ≥ 0,

worki(∆) ≤ δ + worki(∆− δ)

I Observation 4.20. For any ∆ ≥ 0,

demandi(∆) ≥ worki(∆)

Proof. This comes from the definition of the floor and ceiling functions. If
∆/Ti is a non-negative integer, then demandi(∆) = worki(∆). If ∆/Ti is
not an integer, then

worki(∆) ≤
⌊

∆

Ti

⌋
Ci + Ci =

⌈
∆

Ti

⌉
Ci = demandi(∆)

J

4.3.1.1 Constrained-Deadline Task Systems
The above lemmas only quantify the demand of the jobs of task τi released
no earlier than r. However, under fixed-priority scheduling, it is possible that
a job of task τi is released before r and executed after r. Therefore, the
following two lemmas are useful and can be applied to quantify the inter-
ference of the jobs of task τi that are released before r and executed after r.
Lemma 4.21 is less precise based on the demand function from Lemma 4.16,
but is used widely in the literature. Lemma 4.22 is applicable if Ri ≤ Ti
and more precise, but the analysis is more complicated, presented by Chen et
al. [14].
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(b) demandi(∆)

Figure 4.3: An example of the functions worki(∆) and demandi(∆): τi =
{Ti = Di = 2, Ci = 1} in this example.

I Lemma 4.21. Suppose that the worst-case response time of a sporadic/pe-
riodic task τi is no more thanRi, whereRi ≥ Ci, in a schedule σ. The amount
of execution times of the jobs generated by τi executed in a time interval
(r, r+∆] for any ∆ ≥ 0 in the schedule σ is no more than demandi(∆+Ri).
That is, ∫ r+∆

r
1σ(t)∈FJi ≤ worki(∆ +Ri)

Proof. By the definition of the worst-case response time, the jobs of task τi
executed in a time interval (r, r + ∆] cannot be released before r − Ri. By
Lemma 4.16, the total amount of execution time of the jobs of τi that are
released in a time interval [r − Ri, r + ∆) for any ∆ ≥ 0 is demandi(∆ +
Ri). Therefore, the amount of time executed for task τi in the time interval
(r + r + ∆] is no more than demandi(∆ +Ri). J

I Lemma 4.22. Suppose that the worst-case response time of a sporadic/pe-
riodic task τi is no more than Ri, where Ci ≤ Ri ≤ Ti, in a schedule σ.
The amount of execution times of the jobs generated by τi executed in a
time interval (r, r + ∆] for any ∆ ≥ 0 in the schedule σ is no more than
min{∆, worki(∆ +Ri − Ci)}. That is,∫ r+∆

r
1σ(t)∈FJi ≤ min{∆, worki(∆ +Ri − Ci)}

Proof. By the definition of the worst-case response time, the jobs of task τi
executed in a time interval (r, r+ ∆] cannot be released before r−Ri. Since
Ri ≤ Ti, there is at most one job, denoted as Ji,j , of task τi released before
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r and executed after r. Suppose that c∗i is the amount of time Ji,j is executed
in (r, r + ∆], i.e., c∗i =

∫ r+∆
r 1σ(t)=Ji,jdt. By definition 0 ≤ c∗i ≤ Ci.

When c∗i is 0, we can directly apply Lemma 4.17 and Observation 4.18 to
conclude this case. Suppose that c∗i > 0 for the rest of the proof. In schedule
σ, let ρi be the time when Ji,j finishes its execution. By the definition of ρi,

ρi − r ≥ c∗i

By the definition of the worst-case response time and the above inequality,
the arrival time ri,j of job Ji,j must be

ri,j ≥ ρi −Ri ≥ c∗i + r −Ri

For a sporadic (periodic, respectively) task τi, the next job of task τi is re-
leased no earlier than (at, respectively)

ri,j + Ti ≥ c∗i + r −Ri + Ti

The case when c∗i + r − Ri + Ti ≥ r + ∆ is obvious since there is only
one job of task τi executed in this scenario, i.e., the workload executed in
(r, r+ ∆] is at most worki(∆) ≤ worki(∆ +Ri−Ci). We focus on another
case c∗i + r −Ri + Ti < r + ∆. Since the arrival time of the first job of task
τi released no earlier than r + ρi is at least c∗i + r − Ri + Ti, we know that
FJi,[r+ρi,r+∆) is the same as FJi,[c∗i+r−Ri+Ti,r+∆), and∫ r+∆

r+ρi

1σ(t)∈FJi,[r+ρi,r+∆)
dt =

∫ r+∆

c∗i+r−Ri+Ti
1σ(t)∈FJi,[c∗

i
+r−Ri+Ti,r+∆)

Therefore,∫ r+∆

r
1σ(t)∈FJidt =

∫ r+ρi

r
1σ(t)=Ji,jdt+

∫ r+∆

r+ρi

1σ(t)∈FJidt

=

∫ r+ρi

r
1σ(t)=Ji,jdt+

∫ r+∆

r+ρi

1σ(t)∈FJi,[r+ρi,r+∆)
dt

≤c∗i +

∫ r+∆

r+ρi

1σ(t)∈FJi,[r+ρi,r+∆)
dt

=c∗i +

∫ r+∆

c∗i+r−Ri+Ti
1σ(t)∈FJi,[c∗

i
+r−Ri+Ti,r+∆)

dt

≤c∗i + worki(∆ +Ri − c∗i − Ti)
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where the last inequality is due to Lemma 4.17 since ∆ + Ri − c∗i − Ti > 0
in our assumption.

For any 0 < c∗i ≤ Ci, we can now prove that worki(∆ + Ri − Ci) ≥
c∗i + worki(∆ +Ri − c∗i − Ti). Figure 4.4 provides an illustrative example.
We consider three subcases:
• For 0 ≤ ∆ ≤ Ci, since Ri − Ti ≤ 0, by Observation 4.18,

c∗i + worki(∆ +Ri − c∗i − Ti) ≤c∗i + worki(∆− c∗i )
=∆ = worki(∆) ≤ worki(∆ +Ri − Ci)

where the last inequality is due to the fact Ri − Ci ≥ 0.
• For Ci < ∆ ≤ Ti −Ri + Ci, by Observation 4.18,

c∗i + worki(∆ +Ri − c∗i − Ti)
≤c∗i + worki(Ci − c∗i ) = Ci = worki(Ci) ≤ worki(∆ +Ri − Ci)

where the last inequality is due to the fact Ri −Ci ≥ 0 and the assump-
tion ∆ > Ci.
• For Ti −Ri + Ci < ∆, let δ be Ci − c∗i . Then, by Observation 4.19,

c∗i + worki(∆ +Ri − c∗i − Ti)
≤c∗i + δ + worki(∆ +Ri − c∗i − Ti − δ)
=Ci + worki(∆ +Ri − Ci − Ti)
=worki(∆ +Ri − Ci − Ti + Ti)

=worki(∆ +Ri − Ci)

Therefore, we reach the conclusion. J

With the above lemmas to quantify the maximum amount of time task τi
can be executed in an interval (r, r + ∆], we can now present a safe worst-
case response time analysis (schedulability test) for fixed-priority preemptive
uniprocessor scheduling algorithms.

I Theorem 4.23. Suppose that the worst-case response time of task τi is at
most Ri, in which Ci ≤ Ri, for every higher-priority task τi ∈ hp(τk). Let
∆min > 0 be the minimum value that satisfies

∆min = Ck +
∑

τi∈hp(τk)

worki(Ri + ∆min) (4.17)

The WCRT Rk of task τk in the problem 1|spor, prmp, fp|RT is
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Figure 4.4: An example of when Ti = 10, Ci = 3, and Ri = 6 in the proof
of Lemma 4.22. Solid line: c∗i is 3, Dashed line: c∗i is 2, Dotted line: c∗i is 1.

• Rk ≤ ∆min, if ∆min ≤ Tk.

Note that when ∆min > Tk, the WCRT of task τk can not be determined by
this method.

Proof. There exists a feasible collection of jobs generated by T where task
τk reaches its worst-case response time Rk. Let FJ be such a collection of
jobs, where FJi is its subset generated by a sporadic real-time task τi in T for
every task τi ∈ T. Let σ : R→ FJ ∪ {⊥} be the FP-P schedule for FJ.

In schedule σ, we consider two cases. Case 1: Rk ≤ Tk. Then, let Jk,`
be a job of task τk which has the worst-case response time Rk. Therefore, for
any 0 < ∆ < Rk, ∫ rk,`+∆

rk,`

1σ(t)=Jk,`dt < Ck,` ≤ Ck (4.18)

Due to fixed-priority preemptive scheduling, during rk,` and rk,` + Rk only
Jk,` or higher-priority jobs generated by hp(τk) are executed in σ. Therefore,
for any 0 < ∆ < Rk,

∆ =

∫ rk,`+∆

rk,`

1σ(t)∈Jk,`dt+
∑

τi∈hp(τk)

∫ rk,`+∆

rk,`

1σ(t)∈FJidt

Eq. (4.18)
< Ck +

∑
τi∈hp(τk)

∫ rk,`+∆

rk,`

1σ(t)∈FJidt

Lemma 4.21
≤ Ck +

∑
τi∈hp(τk)

worki(Ri + ∆)
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Case 2: Rk > Tk. Then, let Jk,` be the first job of task τk which has not
finished its execution before rk,` + Tk,`. Therefore, the analysis in the first
case remains valid for any 0 < ∆ ≤ Tk.

With the above two cases, the minimum positive ∆ such that ∆ = Ck +∑
τi∈hp(τk)worki(Ri + ∆) is a safe upper bound on Rk if it is no more than

Tk. J

I Corollary 4.24. Suppose that the worst-case response time of task τi is at
most Ri, in which Ci ≤ Ri ≤ Ti, for every higher-priority task τi ∈ hp(τk).
Let ∆min > 0 be the minimum value that satisfies

∆min = Ck +
∑

τi∈hp(τk)

worki(Ri − Ci + ∆min) (4.19)

The WCRT Rk of task τk in the problem 1|spor, prmp, fp|RT is

• Rk ≤ ∆min if ∆min ≤ Tk.

Note that when ∆min > Tk, the WCRT of task τk can not be determined by
this method.

Proof. This follows the same proof procedure by applying Lemma 4.22 in-
stead of Lemma 4.21 during the proof. J

The analysis in Theorem 4.23 and Corollary 4.24 only considers the sched-
ule σ from a job of task τk. The interval of interest always starts from the
arrival time rk,` of the job of task τk under analysis in both proofs. This type
of analysis is safe but can be further improved.

One key observation is that fixed-priority preemptive scheduling is work-
conserving. Suppose that the schedule σ is busy executing jobs with higher
priorities than job Jk,` in the time interval [t, rk,`]. It is possible to extend
the interval of interest from rk,` towards left until the processor idles or ex-
ecutes a job released from lp(τk) ∪ {τk}. This extension results in an exact
schedulability test.

I Theorem 4.25. Let ∆min > 0 be the minimum value that satisfies

∆min = Ck +
∑

τi∈hp(τk)

demandi(∆min) (4.20)

The WCRT Rk of task τk in the problem 1|spor, prmp, fp|RT is

• Rk = ∆min, if ∆min ≤ Tk, and
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• Rk > Tk, otherwise.

Note that if ∆min ≤ Tk, the evaluated worst-case response time Rk is exact,
independent from the deadline satisfactions of the higher-priority tasks.

Proof. To prove this theorem, we revise the proof of Theorem 4.23 in Case 1:
Rk ≤ Tk. Then, let Jk,` be a job of task τk which has the worst-case response
time Rk. Let t0 be the earliest instant prior to rk,`, i.e., t0 ≤ rk,`, such that
the processor only executes jobs generated by the higher-priority tasks in
hp(τk) in time interval (t0, rk,`] under FP-P. That means, immediately prior
to time t0, i.e., t = t0 − ε for an infinitesimal ε, σ(t) is either ⊥ or a job of
{τk} ∪ lp(τk). We note that t0 exists.

With the above definition,
∑

τi∈hp(τk)

∫ rk,`
t0

1σ(t)∈FJidt = rk,` − t0 and∫ rk,`
t0

1σ(t)∈FJkdt = 0. Therefore, for any 0 < ∆ < Rk + rk,` − t0,∫ t0+∆

t0

1σ(t)=Jk,`dt < Ck,` ≤ Ck (4.21)

Due to fixed-priority preemptive scheduling, during t0 and rk,` + Rk only
Jk,` or higher-priority jobs generated by hp(τk) released no earlier than t0,
i.e., jobs in ∪τi∈hp(τk) FRJi,[t0,t0+∆), are executed in σ. Therefore, for any
0 < ∆ < Rk + rk,` − t0,

∆ =

∫ t0+∆

t0

1σ(t)∈Jk,`dt+
∑

τi∈hp(τk)

∫ t0+∆

t0

1σ(t)∈FRJi,[t0,t0+∆)
dt

Eq. (4.21)
< Ck +

∑
τi∈hp(τk)

∫ t0+∆

t0

1σ(t)∈FRJi,[t0,t0+∆)
dt

Lemma 4.16
≤ Ck +

∑
τi∈hp(τk)

demandi(∆)

Hence, the minimum positive ∆ such that ∆ = Ck+
∑

τi∈hp(τk) demandi(∆)
is a safe upper bound on Rk if it is no more than Tk. This value of ∆min is
in fact exact for sporadic real-time task systems. To prove this, we simply
release the first jobs of T at time 0, and the subsequent jobs are released as
early as possible by respecting the minimum inter-arrival time. Therefore, the
jobs of task τi are released at time 0, Ti, 2Ti, . . ., etc. All jobs use their corre-
sponding worst-case execution times. Due to the work-conserving execution
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property of the FP-P, the first job of task τk only finishes at time ∆min since
for 0 < ∆ < ∆min

Ck +
∑

τi∈hp(τk)

∫ ∆

0
1σ(t)∈FJidt > ∆

As for Case 2: Rk > Tk. Then, let Jk,` be the first job of task τk which
has not finished its execution before rk,`+Tk,`. Therefore, the analysis in the
first case remains valid for any 0 < ∆ ≤ Tk.

J

Theorem 4.25 can be re-written into a more popular form, called time-
demand analysis (TDA) proposed by Lehoczky et al. [?]: A constrained-
deadline task τk is schedulable under FP-P scheduling if and only if

∃t|0 < t ≤ Dk, Ck +
∑

τi∈hp(τk)

⌈
t

Ti

⌉
Ci ≤ t (4.22)

TDA might seem difficult as it requires to check every time twith 0 < t ≤ Dk

for a given τk. There are two ways to avoid this:
• Iterate using t(` + 1) := Wk(t(`)), starting with t(0) :=

∑k
j=1Cj and

stopping, when t(`) = Wk(t(`)) or t(`) > Di for some `.
• Only consider t ∈ {`Tj | 1 ≤ j ≤ i, ` ∈ N+}. That is, only consider t

at which a job of higher-priority tasks arrives.

4.3.1.2 Critical Instant Theorem and Historical Perspectives
Theorem 4.25 is a very interesting and remarkable result, widely used in the
literature. It suggests to validate the worst-case response time of task τk by
• releasing the first jobs of the higher-priority tasks in hp(τk) together

with a job of τk and
• releasing the subsequent jobs of the higher-priority tasks in hp(τk) as

early as possible by respecting their minimum inter-arrival times.
To explain the above phenomena, Liu and Layland in their seminal paper [40]
in 1973 defined two terms (according to their wording):
• A critical instant for task τk is an instant at which a job of task τk

released at this instant has the largest response time.
• A critical time zone for task τk is a time interval starting from a critical

instant of τk to the completion of the job of task τk released at the critical
instant.
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Liu and Layland [40] concluded the famous critical instant theorem as
follows: “A critical instant for any task occurs whenever the task is requested
simultaneously with requests for all higher priority tasks.” Their proof was in
fact incomplete because they did not consider to extend the interval of interest
towards t0 like the proof of Theorem 4.25. Moreover, their definition of the
critical instant theorem was incomplete since the condition ∆min > Tk was
not considered in their definition. A precise definition of the critical instant
theorem is revised as follows:
• A critical instant for task τk is an instant such that

– a job of task τk released at this instant has the largest response time
if it is no more than Tk, or

– the worst-case response time of a job of task τk released at this
instant is more than Tk.

• A critical time zone for task τk is a time interval starting from a critical
instant of τk to the completion of the job of task τk released at the critical
instant.
• In a critical time zone for task τk, all the tasks release their first jobs at a

critical instant for task τk and their subsequent jobs as early as possible
by respecting their minimum inter-arrival times.

4.3.1.3 Arbitrary-Deadline Task Systems
When defining t0 in the proofs of Theorems 4.23 and 4.25, we assume that
there is only one job Jk,` of task τk in the analysis window (t0, dk,`]. This
assumption is correct when Rk ≤ Tk but incorrect when Rk > Tk. When
there is at least one unfinished job of task τk (arrived before rk,`), the proofs
of Theorems 4.23 and 4.25 cannot be applied correctly.

To handle the jobs of task τk carried into the window of analysis, the
concept of level-k busy interval has been widely used in the literature. In-
formally, the level-k busy interval is the longest interval such that there is at
least a job of task τk unfinished before a job of task τk arrives in this interval.
One intuitive idea is to extend the critical time zone of task τk by continuing
the release of the jobs of task τk periodically until the moment that there is
no job of task τk unfinished yet.

Consider an example with two tasks: τ1 has T1 = 70 and C1 = 26 and τ2

is with T2 = 100 and C2 = 62. Figure 4.5 illustrates the schedule, assuming
the critical time zone. The response times of the 7 jobs of τ2 illustrated in
Figure 4.5 are 114, 102, 116, 104, 118, 106, and 94. Note that the first job’s
response time of τ2 is not the longest.
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0 100 200 300 400 500 600 700

Figure 4.5: Arbitrary-deadline tasks under fixed-priority scheduling

In the following theorem, we show that Eq. (4.22) defines the length of
the level-k busy interval and Eq. (4.23) defines the worst-case response time
of task τk. Specifically, Eq. (4.22) supports the correctness of the extension
of the critical time zone mentioned above.

I Theorem 4.26. For any positive integer h, let ∆min,h > 0 be the minimum
value that satisfies

∆min,h = hCk +
∑

τi∈hp(τk)

demandi(∆min,h) (4.23)

Let h∗ be the minimum (positive) integer h such that ∆min,h ≤ hTk. The
WCRT Rk of task τk in the problem 1|spor, prmp, fp|RT is

Rk = max
h∈[h∗]

{∆min,h − (h− 1)Tk} (4.24)

Note that the evaluated worst-case response time Rk is exact.

Proof. Case 1: Rk ≤ Tk We have already reached the result from Theo-
rem 4.25. In such a case, h∗ is 1 by definition.

We consider Case 2: Rk > Tk in the proof of Theorem 4.23. Let Jk,` be
the job of task τk which has the worst-case response time. Let t′0 be the earli-
est instant prior to rk,`, i.e., t′0 ≤ rk,`, such that the processor only executes
jobs generated by either task τk or the higher-priority tasks in hp(τk) in time
interval (t′0, rk,`] under FP-P. That means, immediately prior to time t′0, i.e.,
t = t′0 − ε for an infinitesimal ε, σ(t) is either ⊥ or a job of lp(τk). We note
that t′0 exists.

Between t′0 and rk,`, if there exists any instant at which a job of task τk
finishes but there is no other job of task τk released beforehand, let t0 be the
last one. Otherwise, let t0 be t′0. We note that t0 exists. Suppose that there are
` jobs of task τk released in time interval [t0, rk,`]. For notational brevity, let
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these jobs be indexed as Jk,1, Jk,2, . . . , Jk,`. With the above definition, ` ≥ 2
and∫ rk,g+∆

rk,g

1σ(t)=Jk,gdt < Ck,g ≤ Ck, ∀g ∈ [`− 1], 0 < ∆ < rk,g+1 − rk,g

(4.25)∫ rk,`+∆

rk,`

1σ(t)=Jk,`dt < Ck,` ≤ Ck, ∀0 < ∆ < Rk (4.26)

The inequality in Eq. (4.24) holds because at least one job of task τk is not
finished yet before a job of task τk arrived in time interval [t0, rk,`]. The
inequality in Eq. (4.25) holds because Rk is the worst-case response time
of τk.

Due to fixed-priority preemptive scheduling, during t0 and rk,2 only Jk,1
or higher-priority jobs generated by hp(τk) released no earlier than t0, i.e.,
jobs in ∪τi∈hp(τk) FRJi,[t0,t0+∆), are executed in σ. Therefore, for any 0 <
∆ < rk,g+1 − t0, ∀g ∈ [`− 1],

∆ =

g∑
j=1

∫ t0+∆

t0

1σ(t)∈Jk,jdt+
∑

τi∈hp(τk)

∫ t0+∆

t0

1σ(t)∈FRJi,[t0,t0+∆)
dt

Eq. (4.24)
< gCk +

∑
τi∈hp(τk)

∫ t0+∆

t0

1σ(t)∈FRJi,[t0,t0+∆)
dt

Lemma 4.16
≤ gCk +

∑
τi∈hp(τk)

demandi(∆)

Therefore, ∀g ∈ [`− 1]

∆min,g > rk,g+1 − t0 = rk,g+1 − rk,1 + rk,1 − t0 ≥ gTi

Similarly, for 0 < ∆ < rk,` +Rk

∆ < `Ck +
∑

τi∈hp(τk)

demandi(∆)

And,

∆min,` ≥ rk,` +Rk − t0 = Rk + rk,` − rk,1 + rk,1 − t0 ≥ Rk + (`− 1)Ti
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Note that since the jobs of task τk are executed in the FCFS manner,
among the jobs of task τk, only the jobs in FRJk,[rk,1,rk,`] are executed before
job Jk,` finishes. Therefore, the finishing time of job Jk,` is at most t0 +
∆min,`. Therefore,

Rk ≤ ∆min,` − (`− 1)Ti

Therefore, the theorem holds for a safe upper bound on the worst-case
response time. The calculated Rk is in fact exact for sporadic real-time task
systems. To prove this, we simply release the first jobs of T at time 0, and
the subsequent jobs are released as early as possible by respecting the min-
imum inter-arrival time. Therefore, the jobs of task τi are released at time
0, Ti, 2Ti, . . ., etc. All jobs use their corresponding worst-case execution times.
It can be observed that the job Jk,h arrives exactly at (h − 1)Tk and finishes
exactly at time ∆min,h for any h ∈ [h∗]. J

4.3.2 Schedulability Tests of FP-P for Periodic Task Systems

After discussing the schedulability test problem 1|spor, fp, prmp|≤D, we
now focus on its special case 1|period, fp, prmp|≤D. Since a periodic task
set is a special case of a sporadic task set, the schedulability tests in Theo-
rems 4.25 and 4.26 can be applied safely as sufficient schedulability tests.

In other words, the critical instant theorem (or critical time
zone) and the level-k busy interval are sufficient conditions for
periodic task systems. But, are they also necessary conditions
for periodic task systems?

The same example in Example 4.5 can be used to demonstrate the pes-
simism of the test based on Theorem 4.25. Suppose that τ1 has a higher
priority than τ2. We immediately conclude that τ2 misses its deadline since
its worst-case response time (under the critical time zone) is 4. However,
this task set is in fact schedulable under any work-conserving scheduling
algorithm since the jobs released by the two tasks are perfectly separate from
each other without any execution interference.

For a given set T of periodic real-time tasks, the offset Oi of every task
τi is known in advance. To evaluate the worst-case response time of task τk,
we simply have to simulate the schedule. However, since jobs may finish
earlier than their worst-case execution time, it may be necessary to simu-
late all possible execution scenarios. Fortunately, under uniprocessor fixed-
priority preemptive scheduling, it is not difficult to prove that the worst-case
response time of τk can be exactly derived by simulating a schedule of fea-
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sible collections of jobs in which every job runs its worst-case execution
time.

The remaining question is the length of the simulated schedule. Sup-
pose that Omax = maxτi∈T Oi and H is the hyper-period of T. For the
case 1|period, fp, cons, prmp|≤D, Leung and Whitehead [37] showed that
if there is a deadline miss, such a deadline miss can be observed in time inter-
val (0, Omax + 2H], provided that

∑
τi∈T Ui ≤ 1. Therefore, if

∑
τi∈T Ui ≤

1 and there is no deadline miss at all in the resulting schedule σ in time
interval (0, Omax + 2H], then there is no deadline miss for the problem
1|period, fp, cons, prmp|≤D. This test is necessary and sufficient.

4.3.3 Optimality of RM-P and DM-P

The rate-monotonic (RM) scheduling algorithm uses a simple rule: priorities
are assigned to tasks according to their request rates. That is, tasks with higher
request rates (i.e., shorter periods) have higher priorities, in which ties are
broken arbitrarily. In 1973, Liu and Layland [40] showed that preemptive RM
(RM-P) is optimal among all fixed-priority assignments under preemptive
fixed-priority scheduling algorithms for periodic task systems.

Note that Liu and Layland in fact over-stated the result in their paper [40]
in 1973. RM-P is only optimal for 1|period,Oi = 0, impl, fp, prmp|≤D or
1|spor, impl, fp, prmp|≤D, but it is not optimal if the periodic tasks have
different offsets, i.e., 1|period, impl, fp, prmp|≤D. We will take a deeper
look into the gap in this section.

In 1982, Leung and Whitehead [37] further considered constrained-deadline
task systems and proposed preemptive deadline-monotonic (DM-P) schedul-
ing algorithm: priorities are assigned to tasks according to their relative dead-
lines. DM-P was then also extended to arbitrary-deadline task systems. In
1990, Lehoczky [35] showed that DM-P is not optimal for the problem
1|spor, arb, fp, prmp|≤D. Note that DM-P is identical to RM-P if the task
set T is an implicit-deadline task set.

I Theorem 4.27. The rate-monotonic priority assignment is optimal for
the problem 1|period,Oi = 0, impl, fp, prmp|≤D. The deadline-monotonic
priority assignment is optimal for 1|period,Oi = 0, cons, fp, prmp|≤D.

I Theorem 4.28. The deadline-monotonic priority assignment is optimal for
1|spor, cons, fp, prmp|≤D.

Proof. This is left as an exercise in Exercise 4.5. J
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Although Theorem 4.27 shows the optimality of RM-P and DM-P when
the periodic tasks have the same offset accordingly, the optimality does not
hold for periodic tasks with asynchronous offsets. If the periodic tasks do
not have the same phase (offset), Leung and Whitehead [37] showed RM-P
is not the optimal fixed-priority preemptive priority assignment in the weak
sense. That is, there exists a priority assignment under the rate-monotonic
policy, which is not optimal for the problem 1|period, impl, fp, prmp|≤D.
This can be showen by a concrete task set T (by Leung and Whitehead [37]):
• τ1 = {C1 = 3, T1 = D1 = 8, O1 = 0},
• τ2 = {C2 = 1, T2 = D2 = 12, O2 = 10}, and
• τ3 = {C3 = 6, T3 = D3 = 12, O3 = 0}.

For this task set, task τ2 and task τ3 have the same period. Therefore, there are
two different rate-monotonic priority assignments. One assigns task τ2 as the
lowest-priority task and another assigns task τ3 as the lowest-priority task. In
both cases, task τ1 has the highest priority under RM-P. It is not difficult to
show (left as an exercise) that assigning τ3 as the lowest-priority task results
in a deadline miss of task τ3, whilst assigning τ2 as the lowest-priority task is
a feasible fixed-priority schedule for the given task set T.

Although the above example shows that not all rate-monotonic priority
assignments are optimal for the problem 1|period, impl, fp, prmp|≤D, it
still does not exclude the possibility that one of the RM-P priority assign-
ments is optimal. Goossens [24] presented the following example, showing
that the unique RM-P priority assignment of the following task set T is not
an optimal one for the problem 1|period, impl, fp, prmp|≤D:
• τ1 = {T1 = D1 = 10, C1 = 7, O1 = 0},
• τ2 = {T2 = D2 = 15, C2 = 3, O2 = 4}, and
• τ3 = {T3 = D3 = 16, C3 = 1, O3 = 0}.

Under RM-P (i.e., τ1 > τ2 > τ3), the first job of task τ3 misses its deadline
since 2 × 7 + 3 + 1 = 18 > 16. The task set is in fact schedulable under
another priority assignment τ1 > τ3 > τ2, which can be shown by simulating
the (worst-case) schedule from time 0 to 244.

I Theorem 4.29. The rate-monotonic priority assignment is not optimal for
the problem 1|period, impl, fp, prmp|≤D.

Proof. This is due to the task set discussed above. J
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4.3.4 Optimal Priority Assignment (OPA)

4.4 Fixed-Priority Non-Preemptive Scheduling

This section considers non-preemptive uniprocessor scheduling algorithms
for sporadic real-time task systems under FP-NP scheduling algorithm. Un-
der FP-NP, the job in the ready queue whose (task) priority is the highest is
executed non-preemptively on the processor.

4.4.1 Schedulability Tests of FP-NP

Under non-preemptive fixed-priority scheduling, a lower-priority job that has
started its execution can block a higher-priority job that arrives later. Fortu-
nately, such lower-priority blocking happens only once after a job of τk (under
analysis) is ready. What we need to do is to consider the longest execution
time (maxτi∈lp(τk)Ci) of the lower-priority jobs in lp(τk) as the blocking
time. The following theorem provides a sufficient test.

I Theorem 4.30. Let ∆min > 0 be the minimum value that satisfies

∆min = ( max
τi∈lp(τk)

Ci) + Ck +
∑

τi∈hp(τk)

demandi(∆min) (4.27)

The WCRT Rk of task τk in the problem 1|spor, cons, fp|RT is
• Rk ≤ ∆min, if ∆min ≤ Tk.

Note that when ∆min > Tk, the WCRT of task τk can not be determined by
this method.

Proof. The proof is left as an exercise. J

For FP-NP scheduling algorithms, we need another notation to achieve
tighter analysis:

FNJi,[r,r+∆] = {Ji,j | Ji,j ∈ FJi, ri,j ≥ r, ri,j ≤ r + ∆} (4.28)

That is, for a given feasible set FJi of jobs generated by a sporadic/periodic
real-time task τi, let FNJi,[r,r+∆) be the subset of the jobs in FJi arriving
in time interval [r, r + ∆]. The difference between FNJi,[r,r+∆] here and
FRPi,[r,r+∆) in Eq. (4.13) is that the interval [r, r + ∆] is closed.

I Lemma 4.31. The total amount of execution time of the jobs of τi that are
released in a time interval [r, r + ∆] for any ∆ ≥ 0 is∑

Ji,j∈FNJi,[r,r+∆]

Ci,j ≤
(⌊

∆

Ti

⌋
+ 1

)
Ci (4.29)
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Proof. This comes from the definition of FNJi,[r,r+∆]. Since FNJi,[r,r+∆] is

also a feasible set of jobs generated by task τi, there are at most
⌊

∆
Ti

⌋
+1 jobs

in FNJi,[r,r+∆], each with execution time no more than Ci. J

The reason why we define the above FNJi,[r,r+∆] can be motivated by the
following example. Consider three sporadic tasks τ1 = {C1 = 2, D1 = T1 = 5},
τ2 = {C2 = 3, D2 = T2 = 9}, and τ3 = {C3 = 2, D3 = T3 = 12}. Suppose
that these three tasks release jobs periodically from time 0. For an RM-NP
schedule, at time 5, since the second job of task τ1 is released again, the
schedule should execute task τ1 from time 5 to 7. If we analyze the demand
based on

∑
τi∈hp(τ3)

⌈
5
Ti

⌉
= 5, we may reach a wrong conclusion that task

τ3 can be executed at time 5.
Since the scheduler is non-preemptive, as long as we can safely calculate

the latest starting time after a job of task τk arrives, this job will be finished
in at most Ck time units after it starts. Since the scheduler is non-preemptive,
a lower-priority job may block a higher-priority job. But, as long as a higher-
priority job is already released, it is not going to be blocked by any further
lower-priority job except the one that is executed when the higher-priority job
arrives.

Based on the above observation, it may be possible to simply extend the
critical instant theorem for preemptive fixed-priority scheduling. To know
the worst-case response time of task τk under non-preemptive fixed-priority
scheduling, we release a lower-priority job in lp(τk) with the longest exe-
cution time at time −ε and release the jobs of hp(τk) and τk periodically,
starting from time 0.

We will prove that this observation is in general correct, but the first job
of task τk is potentially not the job with the worst-case response time of task
τk due to self-pushing [20], demonstrated by the following example with 4
sporadic tasks:
• τ1 = {C1 = 3, T1 = D1 = 8},
• τ2 = {C2 = 3, T2 = D2 = 9},
• τ3 = {C3 = 3, T3 = D3 = 12}, and
• τ4 = {C3 = 2, T3 = D3 = 99}.

Figure 4.6 demonstrates a release pattern in which a job of task τ4 is released
at time 0 and τ1, τ2, τ3 release their jobs periodically, starting from time 1.
According to the above schedule, the first job of τ3 in this release pattern has
better response time than the second job of τ3. In this concrete schedule, the
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non-preemptive execution of the first job of τ3 pushes the second jobs of τ1

and τ2 and creates more interference on the second job of τ3.
For the rest of this section, let Bk be maxτi∈lp(τk) {Ci − ε} for an in-

finitesimal ε.2

I Theorem 4.32. Let ∆min,np > 0 be the minimum value that satisfies

∆min,np = Bk +
∑

τi∈hp(τk)

(⌊
∆min,np

Ti

⌋
+ 1

)
Ci (4.30)

The WCRT Rk of task τk in the problem 1|spor, fp|RT is not upper bounded
by ∆min,np + Ck even if ∆min,np + Ck ≤ Tk.

Proof. The above example in Figure 4.6 provides a concrete counterexample
(in the discrete time domain). J

The consideration of the level-k busy interval is again needed here.

I Theorem 4.33. For any positive integer h, let ∆min,block,h > 0 be the
minimum value that satisfies

∆min,block,h = Bk + hCk +
∑

τi∈hp(τk)

⌈
∆min,block,h

Ti

⌉
Ci (4.31)

Let h∗ be the minimum (positive) integer h such that ∆min,block,h ≤ hTk. For
any positive integer h ∈ [h∗], let ∆min,start,h > 0 be the minimum value that
satisfies

∆min,start,h = Bk + (h− 1)Ck +
∑

τi∈hp(τk)

(⌊
∆min,np

Ti

⌋
+ 1

)
Ci (4.32)

The WCRT Rk of task τk in the problem 1|spor, fp|RT is

Rk = max
h∈[h∗]

{∆min,start,h + Ck − (h− 1)Tk} (4.33)

Note that the evaluated worst-case response time Rk is exact.

Proof. The proof is left as an exercise by extending the proof of Theorem 4.30
with the consideration of non-preemptiveness. J
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τ1

τ2

τ3

Deadline Miss

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

τ4

Self-pushing phenomenon for τ3

Figure 4.6: Self-pushing phenomena in non-preemptive fixed-priority
scheduling

We can restrict to only looking at the first job under some (not to restric-
tive) conditions in the following theorem.

I Theorem 4.34. [Yao, Buttazzo, and Bertogna [51]] The WCRT Rk of task
τk in the problem 1|spor, fp|RT occurs in the first job if the task is activated
at its critical time zone and the following two conditions are satisfied:

1. the task set is feasible under preemptive scheduling;

2. the relative deadlines are less than or equal to periods.

Proof. Let ∆min,p > 0 be the minimum value that satisfies

∆min,p = Ck +
∑

τi∈hp(τk)

demandi(∆min,p) (4.34)

Let ∆min,np > 0 be the minimum value that satisfies

∆min,np = max
τi∈lp(τk)

{Ci − ε}+
∑

τi∈hp(τk)

(⌊
∆min,np

Ti

⌋
+ 1

)
Ci (4.35)

for an infinitesimal ε. The WCRT Rk of τk in the problem 1|spor, fp|RT is
• Rk ≤ ∆min,np + Ck, if ∆min,p ≤ Tk and ∆min,np + Ck ≤ Tk.

The proof is because the observations in the critical time zone of τk:
• The response time of the first job of τk is at most ∆min,np + Ck.
• The starting time of the second job of τk is at most ∆min,np + ∆min,p ≤

∆min,np + Tk. Its response time is at most ∆min,np + Ck.
• etc.

J
2 The first term would become maxτi∈lp(τk){Ci − 1} for a discrete time domain.
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4.4.2 Optimality of RM-NP and DM-NP

4.5 Computational Complexity of Schedulability Tests

4.6 Remarks

4.7 Exercises

4.7.1 Incomplete Proofs in Chapter 4

I Exercise 4.1. Complete the proof of Theorem 4.8 by showing that
∆ <

(∑
τi∈T DBFi(∆)

)
+ maxτq :Dq>∆{Cq − ε}.

I Exercise 4.2. Complete the proof of Theorem 4.11.
Hint: DBFi(t) ≤ Uit when t ≥ Ti

I Exercise 4.3. Complete the proof of Theorem 4.14.

I Exercise 4.4. Prove Theorem 4.30. Hint: Extend the proof of Theorem 4.25.
Immediately prior to time t′0, i.e., t = t′0 − ε for an infinitesimal ε, σ(t) is either ⊥ or a job
of lp(τk). If it is the latter, let t∗0 be the starting time of the job executed in σ(t′0 − ε). All the
jobs executed between time t′0 and dk,` are released later than t∗0.

I Exercise 4.5. (Optimality of RM) Explain how to use Theorem 4.25 to
prove that rate-monotonic scheduling is an optimal fixed-priority scheduling
algorithm for the problem 1|spor, impl, prmp, fp|≤D.

Hint: You can prove by swapping two adjacent tasks (in the priority order) if they do not
follow the RM scheduling policy. As long as the schedule after swapping the priority levels
of these two tasks remains feasible, we can keep swapping the tasks to convert the order into
RM such that the RM schedule remains feasible.

4.7.2 Basic Exercises

I Exercise 4.6. Suppose that we are given the following 3 sporadic real-time
tasks with implicit deadlines.

τ1 τ2 τ3
Ci 1 2 3

Ti 4 6 10

1. What are their priority levels? Is the rate-monotonic (RM) schedule
feasible?

2. What happens if we change the minimum inter-arrival time of task τ3

from 10 to 8?
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I Exercise 4.7. Suppose that we are given the following 3 periodic real-time
tasks with implicit deadlines and offsets. There are two rate-monotonic (RM)
priority assignments. Prove that the task set is schedulable by one of them and
not schedulable by another. (hint: a proof left to the reader in Section 4.3.3.)

τ1 τ2 τ3

Ci 3 1 6
Di = Ti 8 12 12
Oi 0 10 0

I Exercise 4.8. (Optimality of RM) RM is not an optimal fixed-priority pre-
emptive scheduling algorithm when the periodic tasks have different offsets,
i.e., 1|period, impl, fp, prmp|≤D, as presented in Section 4.3.3. Prove or
disprove the optimality of RM for the problem 1|period, impl, fp, prmp|≤D
when there are at most two periodic tasks.
I Exercise 4.9. (Critical Instant Theorem) Explain the critical instant the-
orem for uniprocessor fixed-priority scheduling in your words. As mentioned
in the lecture, the critical instant theorem for uniprocessor fixed-priority schedul-
ing is very fragile if the assumptions are not met. To apply the critical instant
theorem, quite a few conditions have to be satisfied. Please indicate which
of the following conditions are correct and which of them are incorrect. If a
condition is incorrect, please correct it.
• The task set consists of only independent tasks.
• The task set must be strictly periodic.
• The scheduling algorithm is fixed-priority preemptive scheduling.
• Early completion of jobs is not possible. A job has to spin till its worst-

case execution time if it finishes earlier.
• No task voluntarily suspends itself. That is, a job cannot suspend itself

during its execution.
• The relative deadline of a task can be greater than its period.
• Scheduling overheads (context switch overheads) are zero.
• All periodic/sporadic tasks have zero release jitter (the time from the

task arriving to it becoming ready to execute).
I Exercise 4.10. (Automotive Applications) In automotive applications pe-
riodic tasks normally have only a few possible periods. These are, for ex-
ample, {1, 2, 5, 10, 20, 50, 100, 200, 1000} milliseconds. We only look at a
special subset here where the possible task periods are either 1, 2, or 5 ms.

Show that for implicit deadline task sets the utilization bound under Rate
Monotonic Scheduling for such a task set (i.e., 1|spor, impl, prmp|≤D) is
90%.
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Hint: When considering the schedulability of tasks with period 5 it is sufficient to check
if such a task can be scheduled at t = 4 or at t = 5.

4.7.3 Advanced Exercises

I Exercise 4.11∗. (Schedulability Test under Mixed Integer Linear Pro-
gramming) Mr. Smart suggests the following schedulability test of fixed-
priority scheduling for the problem 1|spor, cons, prmp, fp|≤D. He claims
that task τi can meet its its relative deadline under the fixed-priority schedul-
ing if and only if the following mixed-integer linear programming has a
solution.

Ci +
∑

τj∈hp(τi)

nj · Cj ≤ t (4.36)

nj · Tj ≥ t ∀τj ∈ hp(τi) (4.37)
nj ∈ N ∀τj ∈ hp(τi) (4.38)
0 < t ≤ Di, (4.39)

where t is a positive variable, described in (4.35), and nj is a positive inte-
ger number, described in (4.34). Please either explain/prove or disprove his
argument.
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Utilization Bounds and Speedup Factors

5.1 Efficient Schedulability Test of EDF-P and EDF-NP

5.2 Efficient Schedulability Test of FP-P and FP-NP

5.3 Exercises

I Exercise 5.1. What are the differences between the the efficient utilization-
based schedulability tests and the time-demand schedulability tests for RM?
Please use one example to illustrate their differences.

I Exercise 5.2. Given a set T of n independent, preemptable, and periodic
tasks with implicit deadlines, they can be partitioned into T1,T2, . . . ,Tk task
sets, in which

⋃k
j=1 Tj is T . Moreover, for j = 1, 2, . . . , k, the periods of

the tasks in each task set Tj are simply periodic or harmonic. That is, for any
τi, τ` ∈ Tj , TiT` is a positive integer if Ti ≥ T`.

Prove that the task set is schedulable under rate-monotonic scheduling if

n∑
i=1

Ui ≤ k(2
1
k − 1),

Hint: Convert these n tasks to a more difficult case with only k tasks.
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