k²U and k²Q: A General Framework from k-Point Effective Schedulability Analysis to Utilization-Based Tests

Prof. Dr. Jian-Jia Chen

TU Dortmund

30/31,05,2016

Introduction

Utilization-Based Analytical Framework

Selected Applications

Conclusions

Introduction

Utilization-Based Analytical Framework

Selected Applications

Conclusions

Schedulability Test of Fixed-Priority (FP) Scheduling

Time Demand Analysis (TDA): Task τ_k (with $D_i = T_i$) can be feasibly scheduled by a fixed-priority scheduling algorithm if

$$\exists t \text{ with } 0 < t \leq T_k \text{ and } C_k + \sum_{j=1}^{k-1} \left\lceil \frac{t}{T_j} \right\rceil C_j \leq t.$$

(I will implicitly assume k - 1 higher-priority tasks.)

Schedulability Test of Fixed-Priority (FP) Scheduling

Time Demand Analysis (TDA): Task τ_k (with $D_i = T_i$) can be feasibly scheduled by a fixed-priority scheduling algorithm if

$$\exists t \text{ with } 0 < t \leq T_k \text{ and } C_k + \sum_{j=1}^{k-1} \left\lceil \frac{t}{T_j} \right\rceil C_j \leq t.$$

(I will implicitly assume k - 1 higher-priority tasks.)

- This test takes pseudo-polynomial time
- If C_k is small enough, it always answers "schedulable".
- Can we derive such a bound of C_k efficiently?

(Liu and Layland-Bound) Structure

The non-schedulability of task τ_k in rate-monotonic scheduling (RM) implies the following structure if $2T_1 \ge T_k$:

(Liu and Layland-Bound) Structure

The non-schedulability of task τ_k in rate-monotonic scheduling (RM) implies the following structure if $2T_1 \ge T_k$:

Does there exist a unified utilization-based analysis, regardless of the platform model or the task model?

Does there exist a unified utilization-based analysis, regardless of the platform model or the task model?

How can we find the bound of C_k efficiently?

Can we build utilization-based analysis *almost automatically* by referring to a schedulability test?

Introduction

Utilization-Based Analytical Framework

Selected Applications

Conclusions

Revisit (Liu and Layland-Bound) Structure

- $C_i = T_i U_i$
- The non-schedulability of τ_k implies such a structure if $2T_1 \ge T_k$:

Objective is to find the minimum C_k such that

$$C_k + \sum_{i=1}^{k-1} C_i + \sum_{i=0}^{j-1} C_i > T_j, \forall j = 1, 2, \dots, k-1,$$

 $C_k + 2\sum_{i=1}^{k-1} C_i > T_k.$

Revisit (Liu and Layland-Bound) Structure

• $C_i = T_i U_i$

technische universität

• The non-schedulability of τ_k implies such a structure if $2T_1 \ge T_k$:

Objective is to find the minimum C_k such that

$$C_k + \sum_{i=1}^{k-1} T_i U_i + \sum_{i=0}^{j-1} T_i U_i > T_j, \forall j = 1, 2, \dots, k-1,$$

 $C_k + 2 \sum_{i=1}^{k-1} T_i U_i > T_k.$

k-Point Effective Schedulability Test

Let us replace $T_i > 0$ with $t_i > 0$ (as a variable)

Definition

A k-point effective schedulability test is

- a sufficient test by verifying the existence of $t_j \in \{t_1, t_2, \dots, t_k\}$ with $0 \le t_1 \le t_2 \le \dots \le t_{k-1} \le t_k$
- such that

$$C_k + \sum_{i=1}^{k-1} t_i U_i + \sum_{i=1}^{j-1} t_i U_i \le t_j.$$

k-Point Effective Schedulability Test

Let us replace $T_i > 0$ with $t_i > 0$ (as a variable)

Definition

sche universität

A k-point effective schedulability test is

- a sufficient test by verifying the existence of $t_j \in \{t_1, t_2, \dots, t_k\}$ with $0 \le t_1 \le t_2 \le \dots \le t_{k-1} \le t_k$
- such that

$$C_k + \sum_{i=1}^{k-1} \alpha_i t_i U_i + \sum_{i=1}^{j-1} \beta_i t_i U_i \leq t_j.$$

In the above Liu&Layland task model as an example:

•
$$\alpha_i = 1, \beta_i = 1, \forall i = 1, 2, \dots, k-1$$

•
$$t_i = T_i, \forall i = 1, 2, \ldots, k$$

Suppose a given k-point effective schedulability test of a scheduling algorithm, in which $0 < \alpha_i \le \alpha$, and $0 < \beta_i \le \beta$ for any $i = 1, 2, \ldots, k - 1, 0 < t_k$.

Suppose a given k-point effective schedulability test of a scheduling algorithm, in which $0 < \alpha_i \le \alpha$, and $0 < \beta_i \le \beta$ for any $i = 1, 2, ..., k - 1, 0 < t_k$.

Lemma

Lemma 1 Task τ_k is schedulable by the scheduling algorithm if the following condition holds

$$\frac{C_k}{t_k} \leq \frac{\frac{\alpha}{\beta}+1}{\prod_{j=1}^{k-1}(\beta U_j+1)} - \frac{\alpha}{\beta}.$$

Suppose a given k-point effective schedulability test of a scheduling algorithm, in which $0 < \alpha_i \le \alpha$, and $0 < \beta_i \le \beta$ for any $i = 1, 2, ..., k - 1, 0 < t_k$.

Lemma

Lemma 1 Task τ_k is schedulable by the scheduling algorithm if the following condition holds

$$\left(\frac{C_k}{t_k} + \frac{\alpha}{\beta}\right) \prod_{j=1}^{k-1} (\beta U_j + 1) \le \frac{\alpha}{\beta} + 1$$

Suppose a given k-point effective schedulability test of a scheduling algorithm, in which $0 < \alpha_i \le \alpha$, and $0 < \beta_i \le \beta$ for any $i = 1, 2, ..., k - 1, 0 < t_k$.

Lemma

Lemma 1 Task τ_k is schedulable by the scheduling algorithm if the following condition holds

$$\left(\frac{C_k}{t_k}+\frac{lpha}{eta}
ight)\prod_{j=1}^{k-1}(eta U_j+1)\leq rac{lpha}{eta}+1$$

In the above Liu&Layland task model as an example:

• $\alpha = 1, \beta = 1$

fi fakultät für

• $t_k = T_k$

technische universität dortmund

• Hyperbolic Bound: $\prod_{j=1}^{k} (U_j + 1) \leq 2.$

A Sketched Proof

The unschedulability implies that $C_k > C_k^*$, where C_k^* is defined in the following optimization problem:

$$\begin{array}{ll} \text{infimum} & C_k^* \\ \text{such that} & C_k^* + \sum_{i=1}^{k-1} \alpha t_i^* U_i + \sum_{i=1}^{j-1} \beta t_i^* U_i > t_j^*, \quad \forall j = 1, 2, \dots, k \\ & t_j^* \geq 0, \qquad \qquad \forall j = 1, 2, \dots, k, \end{array}$$

where $t_1^*, t_2^*, \ldots, t_{k-1}^*$ and C_k^* are variables, α, β are constants, and t_k^* is defined as t_k .

A Sketched Proof

The unschedulability implies that $C_k > C_k^*$, where C_k^* is defined in the following optimization problem:

$$\begin{array}{ll} \text{infimum} & C_k^* \\ \text{such that} & C_k^* + \sum_{i=1}^{k-1} \alpha t_i^* U_i + \sum_{i=1}^{j-1} \beta t_i^* U_i > t_j^*, \quad \forall j = 1, 2, \dots, k \\ & t_j^* \geq 0, \qquad \qquad \forall j = 1, 2, \dots, k, \end{array}$$

where $t_1^*, t_2^*, \ldots, t_{k-1}^*$ and C_k^* are variables, α, β are constants, and t_k^* is defined as t_k .

The above linear programming gives the minimum C_k^* to be unschedulable. Therefore, if $C_k \leq C_k^*$, task τ_k is guaranteed to be schedulable.

Framework (First Part)

define $t_i, \forall i < k$ and order k-1 tasks

Demonstrated Applications:

- Sec. 5.1: Constrained-deadline sporadic tasks
- Sec. 5.2: Arbitrary-deadline sporadic tasks
- App. C: Multiframe tasks
- Sec. 6.1: Multiprocessor DAG
- Sec. 6.2: Multiprocessor self-suspension

Derive k-point schedulability parameters

Framework (First Part)

define $t_i, \forall i < k$ and order k - 1 tasks

Framework (First Part)

Hyperbolic Bound for Sporadic Task Systems

Direct Implications

From the schedulability condition $(\frac{C_k}{t_k} + \frac{\alpha}{\beta}) \prod_{j=1}^{k-1} (\beta U_j + 1) \le \frac{\alpha}{\beta} + 1$ Lemma

(Lemma 2) Task τ_k is schedulable by the scheduling algorithm if

$$\frac{C_k}{t_k} + \sum_{i=1}^{k-1} U_i \leq \begin{cases} 1, & (\alpha+\beta)^{\frac{1}{k}} < 1\\ (k-1)\frac{\left((1+\frac{\beta}{\alpha})^{\frac{1}{k-1}}-1\right)}{\beta}, & (\alpha+\beta)^{\frac{1}{k}} < \alpha\\ \frac{(k-1)((\alpha+\beta)^{\frac{1}{k}}-1)+((\alpha+\beta)^{\frac{1}{k}}-\alpha)}{\beta} & otherwise. \end{cases}$$

Lemma

(Lemma 3) Task τ_k is schedulable by the scheduling algorithm if

$$\beta \sum_{i=1}^{k-1} U_i \le \ln \left(\frac{\frac{\alpha}{\beta} + 1}{\frac{C_k}{t_k} + \frac{\alpha}{\beta}} \right)$$

k-Point Effective Schedulability Test: k^2Q

Definition

[Last Release Time Ordering] Let π be the last release time ordering assignment as a bijective function $\pi : hp(\tau_k) \to \{1, 2, \dots, k-1\}$ to define the last release time ordering of task $\tau_j \in hp(\tau_k)$ in the window of interest.

Definition

A k-last-release effective schedulability test under a given ordering π of the k-1 higher priority tasks is a sufficient schedulability test of a fixed-priority scheduling policy by verifying the existence of $t_1 \leq t_2 \leq \cdots \leq t_{k-1} \leq t_k$ such that

$$C_{k} + \sum_{i=1}^{k-1} \alpha_{i} t_{i} U_{i} + \sum_{i=1}^{j-1} \beta_{i} C_{i} \le t_{j}, \qquad (1)$$

where $C_k > 0$, for i = 1, 2, ..., k - 1, $\alpha_i > 0$, $U_i > 0$, $C_i \ge 0$, and $\beta_i > 0$ are dependent upon the setting of the task models and task τ_i .

Lemma

[Lemma 5] For a given k-point last-release schedulability test of a scheduling algorithm, in which $0 < \alpha_i$, and $0 < \beta_i$ for any $i = 1, 2, ..., k - 1, 0 < t_k, \sum_{i=1}^{k-1} \alpha_i U_i \leq 1$, and $\sum_{i=1}^{k-1} \beta_i C_i \leq t_k$, task τ_k is schedulable by the fixed-priority scheduling algorithm if the following condition holds

$$\frac{C_k}{t_k} \le 1 - \sum_{i=1}^{k-1} \alpha_i U_i - \frac{\sum_{i=1}^{k-1} (\beta_i C_i - \alpha_i U_i (\sum_{\ell=i}^{k-1} \beta_\ell C_\ell))}{t_k}.$$
 (2)

Lemma

ische universität

[Lemma 5] For a given k-point last-release schedulability test of a scheduling algorithm, in which $0 < \alpha_i$, and $0 < \beta_i$ for any $i = 1, 2, ..., k - 1, 0 < t_k, \sum_{i=1}^{k-1} \alpha_i U_i \leq 1$, and $\sum_{i=1}^{k-1} \beta_i C_i \leq t_k$, task τ_k is schedulable by the fixed-priority scheduling algorithm if the following condition holds

$$\frac{C_k}{t_k} \le 1 - \sum_{i=1}^{k-1} \alpha_i U_i - \frac{\sum_{i=1}^{k-1} (\beta_i C_i - \alpha_i U_i (\sum_{\ell=i}^{k-1} \beta_\ell C_\ell))}{t_k}.$$
 (2)

The worst-case ordering π of the k-1 higher-priority tasks is to order the tasks in a non-increasing order of $\frac{\beta_i C_i}{\alpha_i U_i}$.

A Sketched Proof

technische universität dortmund

The unschedulability implies that $C_k > C_k^*$, where C_k^* is defined in the following optimization problem:

$$\begin{array}{ll} \mbox{infimum} & C_k^* \\ \mbox{such that} & C_k^* + \sum_{i=1}^{k-1} \alpha_i t_i^* U_i + \sum_{i=1}^{j-1} \beta_i C_i > t_j^*, \quad \forall j = 1, 2, \dots, k \\ & t_j^* \geq 0, \qquad \qquad \forall j = 1, 2, \dots, k, \end{array}$$

where $t_1^*, t_2^*, \ldots, t_{k-1}^*$ and C_k^* are variables, α_i, β_i are constants, and t_k^* is defined as t_k .

A Sketched Proof

The unschedulability implies that $C_k > C_k^*$, where C_k^* is defined in the following optimization problem:

$$\begin{array}{ll} \mbox{infimum} & C_k^* \\ \mbox{such that} & C_k^* + \sum_{i=1}^{k-1} \alpha_i t_i^* U_i + \sum_{i=1}^{j-1} \beta_i C_i > t_j^*, \quad \forall j = 1, 2, \dots, k \\ & t_j^* \geq 0, \qquad \qquad \forall j = 1, 2, \dots, k, \end{array}$$

where $t_1^*, t_2^*, \ldots, t_{k-1}^*$ and C_k^* are variables, α_i, β_i are constants, and t_k^* is defined as t_k .

The above linear programming gives the minimum C_k^* to be unschedulable. Therefore, if $C_k \leq C_k^*$, task τ_k is guaranteed to be schedulable.

Quadratic Bound for Sporadic Task Systems

Quadratic Bound for Sporadic Task Systems

How to Use the Framework

- Parameters α_i and β_i affect the quality of the schedulability bounds
- Deriving the *good* settings of α_i and β_i is not part of this framework.
 - The framework simply derives the bounds/tests according to α_i and β_i
 - The correctness of α_i and β_i is not verified by the framework.
- The hyperbolic/quadratic bounds or utilization bounds can be automatically derived
 - The other approaches seek for the total utilization bounds
 - They have limited applications and are less flexible.
- After α_i and β_i or their safe upper bounds α and β are derived, the task model is not further referred.

Comparisons

technische universität dortmund

Adopting different tests from $k^2 U$ and $k^2 Q$ for RM uniprocessor scheduling with k = 2 and $U_1 = 0.3$.

When to Use Which?

- $k^2 U$ (Version 1 above)
 - define any valid k points to obtain the corresponding α_i and β_i
 - more precise if the corresponding exponential-time (pseudo-polynomial-time) test is an exact test
 - may be less precise if the corresponding test requires some pessimism to be constructed, to be shown later
- $k^2 Q$ (Version 2 above)
 - define k last release points to obtain the corresponding α_i and β_i
 - has to typically consider the last release ordering
 - less precise if the corresponding exponential-time (pseudo-polynomial-time) test is an exact test
 - may be more precise by starting from the exponential-time test, to be shown later
 - can be generalized for response-time analysis

Introduction

Utilization-Based Analytical Framework

Selected Applications

Conclusions

Deadline-Monotonic Scheduling

technische universität

- let $hp(\tau_k)$ be the set of tasks with higher priority than τ_k .
 - hp₁(τ_k) consists of the higher-priority tasks τ_i with T_i < D_k.
 - hp₂(τ_k) consists of the higher-priority tasks τ_i with T_i ≥ D_k.
- The schedulability test is equivalent to the verification of

$$\exists 0 < t \le D_k \qquad C_k + \sum_{\tau_i \in hp_2(\tau_k)} C_i + \sum_{\tau_i \in hp_1(\tau_k)} \left\lceil \frac{t}{T_i} \right\rceil C_i \le t. \\ \Rightarrow \exists 0 < t \le D_k \qquad C'_k + \sum_{\tau_i \in hp_1(\tau_k)} \left\lceil \frac{t}{T_i} \right\rceil C_i \le t.$$

• Apply $k^2 U$ or $k^2 Q$ to get the utilization-based schedulability tests, by setting $\alpha_i = 1$ and $0 < \beta_i \le 1$.

Deadline-Monotonic Scheduling (cont.)

technische universität

The schedulability condition of task τ_k by using $k^2 U$ is

$$\left(rac{C'_k}{D_k} + 1
ight) \prod_{ au_j \in hp_1(au_k)} (U_j + 1) \leq 2.$$

The schedulability condition of task τ_k by using k^2Q is

$$\frac{C'_k}{D_k} \leq 1 - 2\sum_{i=1}^{k-1} U_i + 0.5 \left((\sum_{i=1}^{k-1} U_i)^2 + (\sum_{i=1}^{k-1} U_i^2) \right).$$

• It can be proved that the speed-up factor of DM is 1.76322, compared to EDF.

Uniprocessor Self-Suspending Task Systems

For all $0 < t \leq T_k$

$$W_k(t) = \sum_{i=1}^{k-1} \left(\left\lceil \frac{t}{T_i} \right\rceil - 1 \right) C_i + 2C_i.$$

Schedulability test for task τ_k :

$$\exists t \text{ with } 0 < t \leq T_k \ \text{ and } \ C_k + S_k + W_k(t) \leq t.$$

Uniprocessor Self-Suspending Task Systems

For all $0 < t \leq T_k$

$$W_k(t) = \sum_{i=1}^{k-1} \left(\left\lceil \frac{t}{T_i} \right\rceil - 1 \right) C_i + 2C_i.$$

Schedulability test for task τ_k :

$$\exists t ext{ with } 0 < t \leq T_k ext{ and } C_k + S_k + W_k(t) \leq t.$$

Uniprocessor Self-Suspending Task Systems

For all $0 < t \leq T_k$

$$W_k(t) = \sum_{i=1}^{k-1} \left(\left\lceil \frac{t}{T_i} \right\rceil - 1 \right) C_i + 2C_i.$$

Schedulability test for task τ_k :

$$\exists t ext{ with } 0 < t \leq T_k ext{ and } C_k + S_k + W_k(t) \leq t.$$

Uniprocessor Self-Suspending: k2U Framework

- Let t_i be $\left\lfloor \frac{T_k}{T_i} \right\rfloor T_i$
- When testing task τ_k ,

•
$$\alpha_i \leq \alpha = 2$$
 and $\beta_i \leq \beta = 1$ for i=1,2,...,k-1

• By using $k^2 U$ framework, τ_k is schedulable by RM scheduling if

$$\left(\frac{C_k+S_k}{T_k}+2\right)\prod_{j=1}^{k-1}(U_j+1)\leq 3.$$

In the key lemma:

$$\left(rac{\mathcal{C}_k}{t_k}+rac{lpha}{eta}
ight)\prod_{j=1}^{k-1}(eta U_j+1)\leq rac{lpha}{eta}+1$$

Utilization Bounds

Let
$$t_i = \left\lfloor \frac{T_i}{T_k} \right\rfloor T_i$$
. Therefore, we have $\alpha_i \leq 2$ and $\beta_i \leq 1$

Theorem (Liu and Chen in RTSS 2014)

Any implicit-deadline sporadic self-suspending task set is schedulable under RM if the following conditions hold:

$$\forall 1 \le k \le n, U_k + \frac{S_k}{T_k} \le 1 - (2 + 1) \cdot \left(1 - \frac{1}{\prod_{i=1}^{k-1} (U_i + 1)}\right).$$
 (3)

Theorem (Liu and Chen in RTSS 2014)

Any implicit-deadline sporadic self-suspending task set is schedulable under RM if the following conditions hold:

$$\forall 1 \le k \le n, U_k + \left| \frac{S_k}{T_k} \right| + \sum_{i=1}^{k-1} U_i \le k \left(\left(\frac{2+1}{2} \right)^{\frac{1}{k}} - 1 \right)$$
(4)
$$\overset{\text{nische universitat}}{\inf_{informatik}} \bigcap_{informatik} \underbrace{\text{CSP}}_{\text{science 12}} \text{Prof. Dr. Jian-Jia Chen} \quad (\text{TU Dortmund}) \qquad 28 \text{ (4)}$$

38

Uniprocessor Non-Preemptive (NP) Scheduling

Let $\widehat{C_k} = C_k + B_k + \sum_{\tau_i \in hp_2(\tau_k)} C_i$, where B_k is $\{\max_{\tau_i \in lp(\tau_k)} C_i\}$. The schedulability condition of task τ_k by using $k^2 U$ is

$$\left(\frac{\widehat{C}'_k}{D_k} + 1\right) \prod_{\tau_j \in hp_1(\tau_k)} (U_j + 1) \leq 2$$
 (5)

Theorem

[Theorem 4 in von der Brüeggen, Chen, and Huang, 2015] Suppose that $\gamma = \max_{\tau_k} \left\{ \max_{\tau_i \in Ip(\tau_k)} \left\{ \frac{C_i}{C_k} \right\} \right\}$. A task set can be feasibly scheduled by RM-NP if

$$U_{sum} \leq \begin{cases} \frac{\gamma}{1+\gamma} + \ln\left(\frac{2}{1+\gamma}\right) & \text{ if } \gamma \leq 1\\ \frac{1}{1+\gamma} & \text{ if } \gamma > 1 \end{cases}$$

(left as an exercise)

technische universität dortmund

Real-Time Systems with Mode Changes

- Real-time tasks run in different modes over time to react to the change of physical environments
 - Avionic systems
 - Automotive systems

rotation (rpm)	functions to be executed
[0, 2000]	f1(); f2(); f3(); f4();
(2000, 4000]	f1(); f2(); f3();
(4000,6000]	f1(); f2();
(6000, 8000]	f1();

Multi-Mode Task Model

• A multi-mode task τ_i is denoted by a set of triplets:

$$\begin{aligned} \tau_i &= \{\tau_i^1 = (C_i^1, T_i^1, D_i^1), \\ \tau_i^2 &= (C_i^2, T_i^2, D_i^2), ..., \\ \tau_i^{M_i} &= (C_i^{M_i}, T_i^{M_i}, D_i^{M_i}) \end{aligned}$$

- C_i^m denotes the *worst-case execution time* (WCET) of task τ_i under mode m
- T_i^m denotes the *minimum inter-arrival time* of task τ_i under mode *m*
- D_i^m denotes relative deadline (Constrained-deadline system $(D_i^m \leq T_i^m)$)
- Fixed-priority scheduling
 - Fixed-priority task-level (FPT)
 - Fixed-priority mode-level (FPM)

Problems with a Naive Analysis

Deadline miss during mode transition under fixed-priority scheduling

fakultät für informatik CS I2 compute science

Theorem

Task mode τ_k^h is schedulable under an FPM scheduling if

 $\forall y \geq 0, \ \forall combinations \ of \ t_i^* \ with \ 0 \leq t_i^* \leq t_{i+1}^*, \forall i = 1, 2, \dots, k-1$

$$\exists j = 1, 2, \dots, k, s.t. \ C_k^h + y \cdot U_k^{max} + \sum_{i=1}^{k-1} (U_i^{max} \cdot t_i^*) + \sum_{i=1}^{j-1} C_i^{max} \leq t_j^*.$$

 C_i^{max} is the maximum execution time among the modes of task τ_i with priority higher than or equals to task mode τ_k^h . U_i^{max} is the maximum utilization among the modes of task τ_i with priority higher than or equals to task mode τ_k^h . The constant t_k^* is defined as $T_k^h + y$.

Theorem

Task mode τ_k^h is schedulable under an FPM scheduling if

 $\forall y \geq 0, \ \forall combinations \ of \ t_i^* \ with \ 0 \leq t_i^* \leq t_{i+1}^*, \forall i = 1, 2, \dots, k-1$

$$\exists j = 1, 2, \dots, k, s.t. \ C_k^h + y \cdot U_k^{max} + \sum_{i=1}^{k-1} (U_i^{max} \cdot t_i^*) + \sum_{i=1}^{j-1} C_i^{max} \leq t_j^*.$$

 C_i^{max} is the maximum execution time among the modes of task τ_i with priority higher than or equals to task mode τ_k^h . U_i^{max} is the maximum utilization among the modes of task τ_i with priority higher than or equals to task mode τ_k^h . The constant t_k^* is defined as $T_k^h + y$.

Hint: the above test also requires to enumerate all possible orderings. Under k^2Q , it is possible to safely only test one specific ordering.

Utilization Test under FPM-RM

For a given y, we have $C_k^h + y \cdot U_k^{max} \leq (T_k + y) \cdot U_k^{max}$. So, the remaining is a case with $\alpha_1 = 1$ and $\beta_i = 1$ in the k^2Q framework.

Theorem

Task τ_k^h in a multi-mode task system with implicit deadlines is schedulable by the mode-level RM scheduling algorithm on a uniprocessor system if the following condition holds

$$U_k^{\max} \le 1 - 2\sum_{i=1}^{k-1} U_i^{\max} + 0.5 \left(\left(\sum_{i=1}^{k-1} U_i^{\max}\right)^2 + \left(\sum_{i=1}^{k-1} (U_i^{\max})^2\right) \right), \quad (6)$$

or

$$\sum_{i=1}^{k-1} U_i^{\max} \le \left(\frac{k-1}{k}\right) \left(2 - \sqrt{2 + 2U_k^{\max}\frac{k}{k-1}}\right),\tag{7}$$

or

technische universität

$$U_k^{\max} + \sum_{i=1}^{k-1} U_i^{\max} \le \begin{cases} \left(\frac{k-1}{k}\right) \left(2 - \sqrt{4 - \frac{2k}{k-1}}\right), & \text{if } k > 3\\ 1 - \frac{(k-1)}{2k} & \text{otherwise.} \end{cases}$$
(8)

34 / 38

Framework

Framework

Introduction

Utilization-Based Analytical Framework

Selected Applications

Conclusions

Polynomial-time schedulability test framework

- Basically handles many problems very well with low time complexity
- The first evidence to translate *exponential-time schedulability tests* to (potentially) *linear-time tests* with test quality guarantees

Polynomial-time schedulability test framework

- Basically handles many problems very well with low time complexity
- The first evidence to translate *exponential-time schedulability tests* to (potentially) *linear-time tests* with test quality guarantees
- Can we derive the coefficients α_i and β_i automatically?
 - Yes, for some well-studied forms. See our recent technical report. One commonly used class as an example:

$$\exists 0 < t \leq D_k \text{ s.t. } C_k + \sum_{i=1}^{k-1} \sigma\left(\left\lceil \frac{t}{T_i} \right\rceil C_i + bC_i\right) \leq t.$$

• No idea yet for arbitrary forms

sche universität

Other Applications

- Multi-frame task model
- Digraph task models
- Uniprocessor/Multiprocessor scheduling with self-suspensions
- Multiprocessor global DM scheduling
- Multiprocessor partitioned RM/DM scheduling
- Multiprocessor scheduling with DAG structures
- etc.

