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Fundamentals

• Algorithm:

• It is the logical procedure to solve a certain problem
• It is informally specified a sequence of elementary steps that an

“execution machine” must follow to solve the problem
• It is not necessarily (and usually not) expressed in a formal

programming language

• Program:

• It is the implementation of an algorithm in a programming
language

• It can be executed several times with different inputs

• Process/job/task:

• An instance of a program that given a sequence of inputs
produces a set of outputs
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Operating System

An operating system is a program that

• acts as an intermediary between a user of a computer and the
computer hardware by providing interfaces

• provides an “abstraction” of the physical machine (for
example, a file, a virtual page in memory, etc.)

• manages the access to the physical resources of a computing
machine

• makes the computer system convenient to use

• executes user programs and makes solving user problems easier

• and more . . . . . .
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Timing parameters of a job Jj

• Arrival time (aj) or release time (rj) is the time at which the job
becomes ready for execution

• Computation (execution) time (Cj) is the time necessary to the
processor for executing the job without interruption (= WCET).

• Absolute deadline (dj) is the time at which the job should be
completed.

• Relative deadline (Dj) is the time length between the arrival time
and the absolute deadline.

• Start time (sj) is the time at which the job starts its execution.
• Finishing time (fj) is the time at which the job finishes its execution.
• Response time (Rj) is the time length at which the job finishes its

execution after its arrival, which is fj − aj .

time

Cj

sj fj djaj
Rj

Dj
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Multi-Tasking (Recap)

• The execution entities (tasks, processes, threads, etc.) are
competing from each other for shared resources

• Scheduling policy is needed
• When to schedule an entity?
• Which entity to schedule?
• How to schedule entities?
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Scheduling Concepts

• Scheduling Algorithm: determines the order that jobs
execute on the processor

• Jobs (a simplified version) may be in one of three states:

ready executing terminated
activate

schedule

preempt

completion
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Schedules for a set of jobs {J1, J2, . . . , JN}

• A schedule is an assignment of jobs to the processor, such
that each job is executed until completion.

• A schedule can be defined as an integer step function
σ : R→ N, where σ(t) = j denotes job Jj is executed at time
t, and σ(t) = 0 denotes the system is idle at time t.

• If σ(t) changes its value at some time t, then the processor
performs a context switch at time t.

• Non-preemptive scheduling: there is only one interval with
σ(t) = j for every Jj , where t is covered by the interval.

• Preemptive scheduling: there could be more than one interval
with σ(t) = j .
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Scheduling Concept: Non-preemptive

Schedule: σ : R→ N function of processor time to jobs

J1 J2 J3

0 1 2 3 4 5 6 7 8 9 10

σ(t)

1

2

3

s1 s2 = f1 f2 s3 f3

Context
Switches
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Feasibility of Schedules and Schedulability

• A schedule is feasible if all jobs can be completed according to
a set of specified constraints.

• A set of jobs is schedulable if there exists a feasible schedule
for the set of jobs.

• A scheduling algorithm is optimal if it always produces a
feasible schedule when one exists (under any scheduling
algorithm).
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Scheduling Algorithms

Scheduling Algorithms

Static Scheduling
(offline, or clock-driven)

Dynamic Scheduling
(online, or priority-driven)

Static-Priority Scheduling Dynamic-Priority Scheduling

• Preemptive vs. Non-preemptive

• Guarantee-Based vs. Best-Effort

• Optimal vs. Non-optimal
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Static/offline scheduling

Scheduling taking a priori knowledge about arrival times, execution
times, and deadlines into account. Dispatcher allocates processor
when interrupted by timer. Timer controlled by a table generated
at design time.
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Time-Triggered Systems

In an entirely time-triggered system, the temporal control structure
of all tasks is established a priori by off-line support-tools. This
temporal control structure is encoded in a Task-Descriptor List
(TDL) that contains the cyclic schedule for all activities of the
node. This schedule considers the required precedence and mutual
exclusion relationships among the tasks such that an explicit
coordination of the tasks by the operating system at run time is
not necessary...
The dispatcher is activated by the synchronized clock tick. It looks
at the TDL, and then performs the action that has been planned
for this instant [Kopetz].
The disadvantage is that the response to sporadic events may be
poor.
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An Example: Shortest-Job-First (SJF)

• At any moment, the system executes the job with the shortest
remaining time among the jobs in the ready queue.

J1 J2 J3 J4 J5
aj 0 2 8 10 15

Cj 5 2 6 3 4

dj 6 8 20 14 22

0 2 4 6 8 10 12 14 16 18 20 22 24

J1

C1 = 3

J2

C2 = 0

J1

C1 = 0

J3

C3 = 4

J4

C4 = 0

J3

C3 = 2

J3

C3 = 0

J5

C5 = 0
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An Example: Earliest-Deadline-First (EDF)

• At any moment, the system executes the job with the earliest
absolute deadline among the jobs in the ready queue.
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Evaluating A Schedule

For a job Jj :

• Lateness Lj : delay of job completion with respect to its deadline.

Lj = fj − dj

• Tardiness Ej : the time that a job stays active after its deadline.

Ej = max{0, Lj}

• Laxity (or Slack Time)(Xj): The maximum time that a job can be
delayed and still meet its deadline.

Xj = dj − aj − Cj
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Metrics of Scheduling Algorithms (for Jobs)

Given a set J of n jobs, common metrics are to minimize

• Average response time:∑
Jj∈J

fj − aj
|J|

• Makespan (total completion
time):

max
Jj∈J

fj −min
Jj∈J

aj

• Total weighted response
time: ∑

Jj∈J
wj(fj − aj)

• Maximum latency:

Lmax = max
Jj∈J

(fj − dj)

• Number of late jobs:

Nlate =
∑
Jj∈J

miss(Jj),

where miss(Jj) = 0 if
fj ≤ dj , and miss(Jj) = 1
otherwise.
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Hard/Soft Real-Time Systems

• Hard Real-Time Systems
• If any hard deadline is ever missed, then the system is incorrect
• The tardiness for any job must be 0
• Examples: Nuclear power plant control, flight control

• Soft Real-Time Systems
• A soft deadline may occasionally be missed
• Various definitions for “occasionally”

• minimize the number of tardy jobs, minimize the maximum
lateness, etc.

• Examples: Telephone switches, multimedia applications

We mostly consider hard real-time systems in this
course.
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Recurrent Task Models

• When jobs (usually with the same computation requirement)
are released recurrently, these jobs can be modeled by a
recurrent task

• Periodic Task τi :
• A job is released exactly and periodically by a period Ti

• A phase φi indicates when the first job is released
• A relative deadline Di for each job from task τi
• (φi ,Ci ,Ti ,Di ) is the specification of periodic task τi , where Ci

is the worst-case execution time.

• Sporadic Task τi :
• Ti is the minimal time between any two consecutive job

releases
• A relative deadline Di for each job from task τi
• (Ci ,Ti ,Di ) is the specification of sporadic task τi , where Ci is

the worst-case execution time.

• Aperiodic Task: Identical jobs released arbitrarily (we will
revisit this part in Real-Time Calculus).
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Examples of Recurrent Task Models

Periodic task: (φi ,Ci ,Ti ,Di ) = (2, 2, 6, 6)

release deadline

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

J1 J1 J1 J1 J1

Sporadic task: (Ci ,Ti ,Di ) = (2, 6, 6)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

J1 J1 J1 J1
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Example: Sporadic Control System

Pseudo-code for this system

while (true)

• start := get the system tick;

• perform analog-to-digital
conversion to get y ;

• compute control output u;

• output u and do
digital-to-analog conversion;

• end := get the system tick;

• timeToSleep :=
T − (end − start);

• sleep timeToSleep;

end while

Control System

A/D

(The system

being controlled)

plant

actuator

D/A
Control−law

computation

sensor

y(t) u(t)

ukyk
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Example: Periodic Control System

Pseudo-code for this system

set timer to interrupt periodically
with period T ;

at each timer interrupt
do

• perform analog-to-digital
conversion to get y ;

• compute control output u;

• output u and do
digital-to-analog conversion;

od

Control System

A/D

(The system

being controlled)

plant

actuator

D/A
Control−law

computation

sensor

y(t) u(t)

ukyk
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Evaluating A Schedule for Tasks

For a job Jj :

• Lateness Lj : delay of job completion with respect to its deadline.

Lj = fj − dj

• Tardiness Ej : the time that a job stays active after its deadline.

Ej = max{0, Lj}

• Laxity (or Slack Time)(Xj): The maximum time that a job can be
delayed and still meet its deadline.

Xj = dj − aj − Cj

For a task τi :

• Lateness Li : maximum latency of jobs released by task τi
• Tardiness Ei : maximum tardiness of jobs released by task τi
• Laxity Xi : Di − Ci ;
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Relative Deadline <=> Period

For a task set, we say that the task set is with

• implicit deadline when the relative deadline Di is equal to the
period Ti , i.e., Di = Ti , for every task τi ,

• constrained deadline when the relative deadline Di is no more
than the period Ti , i.e., Di ≤ Ti , for every task τi , and

• arbitrary deadline when the relative deadline Di could be
larger than the period Ti for some task τi .
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Feasibility and Schedulability for Recurrent Tasks

• A schedule is feasible if all the jobs of all tasks can be
completed according to a set of specified constraints.

• A set of tasks is schedulable if there exists a feasible schedule
for the set of tasks.

• A set of tasks is schedulable by a scheduling algorithm if the
schedule is always feasible.

• A scheduling algorithm is optimal if it always produces a
feasible schedule when one exists (under any scheduling
algorithm).
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Different Tests

The issue for timing analysis is
on how to analyze the
schedulability.

• Sufficient Test: If A holds,
then the task set is
schedulable (by a scheduling
algorithm).

• Necessary Test: If the task
set is schedulable (by a
scheduling algorithm), then
B holds.

• Exact Test: the task set is
schedulable (by a scheduling
algorithm) if and only if A∗

holds.
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Monotonicity of Scheduling Algorithms

A good scheduling algorithm should be monotonic

• If a scheduling algorithm derives a feasible schedule, it should
also guarantee the feasibility with

• less execution time of a task/job,
• less number of tasks/jobs, or
• more number of processors/machines.
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Why is Real-Time Scheduling Hard?

Single-processor (Ekberg and Wang, in ECRTS 2015)

EDF Scheduling: Exact schedulability test for constrained-deadline
periodic task systems coNP-Hard in the strong sense.

Single-processor (Eisenbrand and Rothvoß, in RTSS 2008)

Fixed-Priority Real-Time Scheduling: Response Time Computation
Is NP-Hard (in the weak sense).

Multiprocessor (Graham 1976)

Changing the priority order, increasing the number of processors,
reducing execution times, or weakening precedence constraints can
result in a deadline miss.

Many Cases: Scheduling problems in multiprocessor systems are
usually NP-Hard.
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Fundamentals: Computational Complexity

• NP-Complete for a problem Π:
• If Π can be solved in polynomial time by using a

non-deterministic Turning machine, the problem is said in the
computational complexity class NP.

• Π is NP-Complete if Π is in NP and any problem in the NP
class can reduce to Π in polynomial time (or log space).

• Π is NP-hard if any problem in the NP class can reduce to Π
in polynomial time (or log space).

• More intuitively (informally)
• The computing machines we have developed so far are

deterministic Turning machines.
• If Π can be solved in polynomial time by using a deterministic

Turning machine, the problem is said in the computational
complexity class P.

• If a problem is NP-Complete or NP-hard, there is no efficient
(polynomial-time) algorithm to derive optimal/feasible
solutions unless P = NP.
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Multiprocessor Anomalies

• Partitioned scheduling (Each task/job is on a processor)
• As most partitioning algorithms are not optimal, a system

might become infeasible with
• Less execution time of a task/job
• Less number of tasks/jobs
• More number of processors/machines

• Global scheduling
• As most priority-assignment algorithms are not optimal, a

system might become infeasible with
• Less execution time of a task/job
• Less number of tasks/jobs
• More number of processors/machines
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Precedence Constraints

Jobs (and tasks) may have to execute in a pre-specified order.

J1

J2

J3

J4
J5

J6

J7

J8

J9
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Multiprocessor Anomaly: Case 1

J1(3)

J2(2)

J3(2)

J4(2)

J5(4)

J6(4)

J7(4)

J8(4)

J9(9)

On 3 processors

0 2 4 6 8 10 12 14 16

J3 J6 J8

J2 J4 J5 J7

J1 J9

Removing the precedence constraints on J4...

0 2 4 6 8 10 12 14 16

J3 J5 J8

J2 J4 J7

J1 J6 J9
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Multiprocessor Anomaly: Case 2

J1(2)

J2(1)

J3(1)

J4(1)

J5(3)

J6(3)

J7(3)

J8(3)

J9(8)

Reduce the execution
time by 1, and schedule

on 3 processors

0 2 4 6 8 10 12 14 16

J3 J6 J8

J2 J4 J7

J1 J5 J9
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Multiprocessor Anomaly: Case 3

J1(3)

J2(2)

J3(2)

J4(2)

J5(4)

J6(4)

J7(4)

J8(4)

J9(9)

On 4 processors

0 2 4 6 8 10 12 14 16

J3 J6 J8

J2 J4 J5 J7

J1 J9

Use 4 processors

J3 J5

J2 J6

J1 J7

J4 J8 J9
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Note about the Material in the Course

• For the rest of the course, if the context is not emphasized,
we will focus on the design and analysis for scheduling
algorithms with

• preemptive scheduling and
• independent tasks/jobs

• We will have a few sessions, discussing
• non-preemptive scheduling or
• tasks with shared resources (namely, critical sections),
• tasks (jobs) with precedence constraints (namely, one job has

to wait until another job finishes).

The material this week has covered the corresponding contents in
Chapters 2 and 3 in Buttazzo’s textbook.
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