
Non-Preemptive and Limited Preemptive
Scheduling

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen

LS 12, TU Dortmund

09 May 2017

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 1 / 31

Outline

Non-Preemptive Scheduling
A General View
Exact Schedulability Test
Pessimistic Schedulability Tests

Limited Preemptive Scheduling

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 2 / 31

Advantage of Preemption

Preemption is often seen as a key factor in real-time scheduling

• Preemption allows to allocate the processor to incoming high
priority tasks nearly immediately

• High priority tasks are not blocked by low priority tasks

Preemptive

τ1

τ2

Non−

Preemptive

τ1
Deadline Missτ2 blocks τ1

τ2

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 3 / 31

Disadvantage of Preemption - Context Switch Costs

Context switch introduces overhead to the system:
• Scheduling costs: Time the scheduling Algorithm needs to

suspend the running task, insert it into the ready queue,
switch the context, dispatch the new incoming task

• Pipeline costs: Time to flush and refill the processor pipeline
• Cache-related costs: Time to reload the evicted cache lines
• Bus-related costs: Additional bus interference for accessing

RAM at cache misses caused by preemption

Non−

Preemptive

τ1
τ2 blocks τ1

Non preemptive WCET CNP
iτ2

Preemptive

τ1

τ2
Deadline Miss

Additional preemption overhead CPO
2

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 4 / 31

Calculating The Preemption Overhead

• Essential for real-time systems: good estimation of WCETs
• WCET normally determined for non-preemptive case: CNP

i
• Time the processor needs to execute without interruptions

• Idea: add preemption costs to preempted tasks WCET
• Costs for one preemption CPO

i has to be estimated
• Summing up all context switch costs
• Problem: especially the cache related and bus related costs

can change drastically depending on the preemption point
• The number of preemptions p has to be estimated

• Depends on the higher priority tasks
• Ensure the estimated number is safe: pest ≥ p
• But not much over estimation

• Preemptive WCET: CP
i = CNP

i + pest · CPO
i

• Indirect preemption costs: the extra execution time also
increases the number of preemptions

⇒ It is hard to determine a good WCET (safe but not much over
estimation) for the preemptive case

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 5 / 31

Advantages of Non-Preemptive Scheduling

• It reduces context-switch overhead
• Making WCETs

• smaller
• easier to calculate / more predictable

• It simplifies the access to shared resources
• No semaphores are needed for critical sections
• Deadlock prevention is trivial for non-preemptive scheduling

• It reduces stack size
• Task can share the same stack, since no more than one task

can be in execution

• Preemption may be very costly or forbidden for some actions
anyways, e.g. I/O

• Non-preemption allows zero I/O jitter: Ci = fi − ai (constant)

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 6 / 31

Advantages of Non-Preemptive Scheduling (contd)

Also preemption is assumed to be a key factor for schedulability,
there are some task sets that are schedulable in the
non-preemptive case and not schedulable in the preemptive case,
even when the preemption overhead is ignored:
RM, τ1 = (2, 5), τ2 = (4, 7), Usum = 2

5 + 4
7 = 34

35 ≈ 0.97

Preemptive

τ1

Deadline Miss

τ2

Non−

Preemptive

τ1

τ2

(under the assumption that the arrival times of the jobs are integers)

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 7 / 31

Issues with Non-Preemptive Scheduling

If preemption is not allowed, optimal schedules may have to leave
the processor idle at certain times.
Assume the following periodic constrained deadline task set:

• τ1 : C1 = 2, T1 = 4, D1 = 4, Φ1 = 0

• τ2 : C2 = 1, T2 = 4, D2 = 1, Φ1 = 1

⇒ τ1 is always available at 4 · n and τ2 always at 4 · n + 1

τ1
Idle Idle

τ2

Deadline Miss τ2 meets Deadline

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 8 / 31

Hardness for Non-Preemptive Scheduling

• Optimal schedules may leave processor idle to finish tasks
with early deadlines arriving late.

• Knowledge about the future is needed for optimal scheduling
algorithms.

• No online algorithm can decide whether to keep idle or not.
• EDF is optimal among workload conserving scheduling

algorithms, i.e., algorithms that due not keep the processor
idle as long as there is workload to be executed.

• Recent proof by von der Brüggen, Chen and Huang (ECRTS
2015) shows that (non-preemptive) RM and DM has a
resource augmentation factor 1.76322 compared to
(non-preemptive) EDF for implicit-deadline and
constrained-deadline sporadic task systems.

• Resource augmentation factors will be explained in a few
weeks.

• Even if arrival times are known a priori, the scheduling
problem is still NP-hard in the strong sense.

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 9 / 31

Outline

Non-Preemptive Scheduling
A General View
Exact Schedulability Test
Pessimistic Schedulability Tests

Limited Preemptive Scheduling

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 10 / 31

Problem - Utilization

• For preemptive RM scheduling we got easy utilization based
schedulability tests (Liu & Layland and Hyperbolic Bound)

• The utilization bound under non preemptive scheduling drops
to zero

• τ1 = (ε, T1), τ2 = (T1, T2), ε > 0 but very small

• If τ2 starts right before τ1 arrives, τ1 always misses its deadline

• We can make ε > 0 arbitrary small and T2 arbitrary large

• Usum = ε
T1

+ T1
T2

= 0
T1

+ T1
∞ = 0

Deadline Miss

τ1

τ2

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 11 / 31

Problem - Self-Pushing Phenomenon

Analysis of non-preemptive systems more complex: largest response
time may not occur in the first job after the critical instant

Definition: Self-Pushing Phenomenon

High priority jobs activated during non-preemptive execution of
lower priority tasks are pushed ahead and introduce higher delays
in subsequent jobs of the same task.

τ1 = (3, 8)

τ2 = (3, 9)

τ3 = (3, 12)

Deadline Miss
τ4 = (2, 99)

Self-pushing phenomenon for τ3

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 12 / 31

General Response Time Analysis - Definitions

Definition: hp(τk), lp(τk):

• hp(τk): set of tasks with priority higher than τk

• lp(τk): set of tasks with priority lower than τk

Definition: Maximum Blocking Time Bk :

The maximum blocking time Bk = max
τi ∈ lp(τk)

{Ci − ε}

where ε > 0 but arbirtrary small

Informal: To determine if a task τk is schedulable, we have to start
at the critical instance and check all jobs of τk until the processor
idles for the first time by

• summing up the interference from τi ∈ hp(τk)

• summing up the computation amount of previous jobs of τk

• add the maximum blocking time Bk from lower priority task

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 13 / 31

Formal Definition - Level-k Active Period

Definition: Level-k Pending Workload W p
k (t)

The Level-k Pending Workload W p
k (t) at time t is the amount of

processing that still needs to be performed at time t due to jobs
with priority higher than or equal to τk released strictly before t

Definition: Level-k Active Period

A Level-k Active Period Lk is an Interval [a, b) such that
W p

k (t) > 0 ∀t ∈ (a, b) and W p
k (t) = 0 for t = a and t = b

Computing the longest Level-k Active Period:

the smallest value where L
(s)
k = L

(s−1)
k with

L
(0)
k = Bk + Ck

L
(s)
k = Bk +

∑
τi∈{hp(τk)∪τk}

⌈
L

(s−1)
k

Ti

⌉
Ci

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 14 / 31

Exact Schedulability Test

• Due to Self-Pushing Phenomenon: compute the response time

of all jobs τk,j with j ∈ [1,Kk] where Kk =
⌈
Lk
Tk

⌉
• The start time sk,j of τk,j can be computed recurrently as well:

s
(0)
k,j = Bk +

∑
τi∈{hp(τk)∪τk}

Ci

s
(s)
k,j = Bk + (j − 1)Ck +

∑
τi∈hp(τk)

s(s−1)
k,j

Ti

+ 1

Ci

• As non-preemptive scheduling is used, a job always finishes
once it is started ⇒ fk,j = sk,j + Ck

• Response time of τk : Rk = max
j∈[1,Kk]

{fk,j − (j − 1)Tk}

• A task set is feasible ⇔ Ri ≤ Di ∀i = 1, . . . , n

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 15 / 31

Outline

Non-Preemptive Scheduling
A General View
Exact Schedulability Test
Pessimistic Schedulability Tests

Limited Preemptive Scheduling

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 16 / 31

Restricting the Analysis to the First Job

• Due to Self-Pushing Phenomenon: For an exact test we have
to test all jobs in the Level-k Active Period

• We can restrict to only looking at the first job under some
(not to restrictive) conditions

Theorem

[Yao, Buttazzo, and Bertogna, 2010] The worst-case response time
of a non-preemptive task occurs in the first job if the task is acti-
vated at its critical instant and the following two conditions are both
satisfied:

1 the task set is feasible under preemptive scheduling;

2 the relative deadlines are less than or equal to periods.

The recurrent relation to determine the start time in this case is:

s
(s)
k,j = Bk + Ck +

∑
τi∈hp(τk)

(⌊
s

(s−1)
k,j

Ti

⌋
+ 1

)
Ci

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 17 / 31

A Pessimistic Schedulability Test

• When we restrict ourselves to the first task, we still get an
exact test using the recurrent computation of the start time

• This test still has pseudo-polynomial runtime

• Idea: sacrifice some precision to get a sufficient but easier test

• From the theorem by Yao, Buttazzo, and Bertogna we know
we have to consider schedulability in the preemptive case

• Exact schedulability test in the preemptive case:

∃t with 0 < t ≤ Dk and Ck +
∑

τi∈hp(τk)

⌈
t

Ti

⌉
Ci ≤ t

• We get a more pessimistic test by testing schedulability for
preemptive and non-preemptive in one equation:

∃t with 0 < t ≤ Dk and Bk + Ck +
∑

τi∈hp(τk)

⌈
t

Ti

⌉
Ci ≤ t

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 18 / 31

A Utilization Based Test

Problem with utilization based tests for NP: Blocking time has to
be taken into account for every task individually
⇒ Every task has to be tested individually

Theorem

[Theorem 1 in von der Brüeggen, Chen, and Huang, 2015]
A task τk in a non-preemptive sporadic task system with constrained
deadlines can be feasibly scheduled by a fixed-priority scheduling
algorithm, if the schedulability for all higher priority tasks has already
been ensured and the following condition holds:(

Ck + Bk

Dk
+ 1

) ∏
τj∈hp(τk)

(Uj + 1) ≤ 2

If this holds ∀τk ∈ τ the hole task set is schedulable

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 19 / 31

Utilization Bounds for RM-NP

• General utilization bounds are not possible

• It is possible to define a utilization bound based on the ratio
of the computation time of a task and its blocking time

Theorem

[Theorem 4 in von der Brüeggen, Chen, and Huang, 2015]

Suppose that γ = maxτk

{
maxτi∈lp(τk)

{
Ci
Ck

}}
. A task set can be

feasibly scheduled by RM-NP if

Usum ≤

{
γ

1+γ + ln
(

2
1+γ

)
if γ ≤ 1

1
1+γ if γ > 1

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 20 / 31

Utilization Bound for RM-NP

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 0.5 1 1.5 2 2.5 3

U
ti

li
z
a
ti

o
n
 B

o
u
n
d

γ

Theorem 4

Andersson and Tovar

Figure: Comparison of the total utilization bound of RM-NP with respect

to γ = maxτk

{
maxτi∈lp(τk)

{
Ci

Ck

}}
provided by Theorem 4 in [von der

Brüeggen, Chen, and Huang, 2015] with previously known results
(Andersson and Tovar, 2009).

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 21 / 31

A Tighter Utilization Based Test

Theorem

[Yao, Buttazzo, and Bertogna, 2010] The worst-case response time
of a non-preemptive task occurs in the first job if the task is acti-
vated at its critical instant and the following two conditions are both
satisfied:

1 the task set is feasible under preemptive scheduling;

2 the relative deadlines are less than or equal to periods.

• Testing preemptive and non-preemptive case schedulability is
necessary to restrict testing to the first job

• Theorem 1 performs these in one single test
• We get tighter by doing two separated tests

1 non-preemptive case:

∃t ∈ (0, Dk − Ck] with Bk +
∑k−1

i=1

⌈
t
Ti

⌉
Ci ≤ t

2 preemptive case:

∃t ∈ (0, Dk] with Ck +
∑
τi∈hp(τk)

⌈
t
Ti

⌉
Ci ≤ t

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 22 / 31

A Tighter Utilization Based Test (contd)

Theorem

[Theorem 6 in von der Brüeggen, Chen, and Huang, 2015]
A task τk is schedulable by a fixed priority non-preemptive scheduling
algorithm ANP if all higher priority tasks are schedulable and the
following two conditions hold:

Bk +
∑

τi∈hpNP2 (τk)

Ci

Dk − Ck
+ 1

 ∏
τj∈hpNP1 (τk)

(Uj + 1) ≤ 2


Ck +

∑
τi∈hpP2 (τk)

Ci

Dk
+ 1

 ∏
τj∈hpP1 (τk)

(Uj + 1) ≤ 2

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 23 / 31

A Tighter Utilization Bound for RM-NP

Using Theorem 6 the utilization bound for Rate Monotonic
Non-Preemptive Scheduling can be made a bit tighter.

Theorem

[Theorem 9 in von der Brüeggen, Chen, and Huang, 2015]

Suppose that γ = maxτk

{
maxτi∈lp(τk)

{
Ci
Ck

}}
. A task set can be

feasibly scheduled by RM-NP if

Usum ≤

{
ln(2) ≈ 0.693 if γ ≤ 1−ln(2)

ln(2)
1

1+γ if γ > 1−ln(2)
ln(2)

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 24 / 31

Utilization Bounds for RM-NP

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 0.5 1 1.5 2 2.5 3

U
ti

li
z
a
ti

o
n
 B

o
u
n
d

γ

Theorem 9

Theorem 4

Andersson and Tovar

Figure: Comparison of the total utilization bound of RM-NP with respect

to γ = maxτk

{
maxτi∈lp(τk)

{
Ci

Ck

}}
provided by Theorem 4 and

Theorem 9 in [von der Brüeggen, Chen, and Huang, 2015] with
previously known results (Andersson and Tovar, 2009).

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 25 / 31

Outline

Non-Preemptive Scheduling
A General View
Exact Schedulability Test
Pessimistic Schedulability Tests

Limited Preemptive Scheduling

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 26 / 31

Types of Limited Preemption

Problem: We want preemption to ensure high priority tasks meet
their deadline but we want as few preemptions as possible ⇒
Combine the advantages and disadvantages of preemptive and
non-preemptive scheduling into limited preemptive scheduling

• Preemption Thresholds: Each task can be preempted only
by tasks with priority higher than a specified threshold.

• Deferred Preemptions: Each task can defer its preemption
up to a specified interval of time.

• Fixed Preemption Points: Each task can be preempted only
at predefined points specified in the code by the programmer.

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 27 / 31

Preemption Thresholds

• Each task has two priorities
• Pk : Nominal priority used to enqueue the task in the ready

queue and to preempt other tasks
• Θk : threshold priority used while task is execution. τk can be

preempted by τi only if Pi > Θk

• Analysis has to be done in the longest Level-k busy period
• Response time analysis has to be done in two phases:

• Blocking time by tasks τi ∈ lp(τk) with priority less than τk
but preemption threshold larger than τk combined with
Interference of higher priority tasks with Pi > Pk until τk starts
to determine the start time
Sk,j = Bk + (j − 1)Ck +

∑
τi∈hp(τl)

(⌊
Sk,j

Ti

⌋
+ 1
)
Ci

• Preemption of tasks with priority larger than the preemption
threshold (Ph > Θi) after the task started to determine the
finish time
fk,j = sk,j + Ck +

∑
τi :Pi>Θk

(⌈
Ri

Ti

⌉
−
(⌊

Sk,j

Ti

⌋
+ 1
))

Ci

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 28 / 31

Deferred Preemptions

• Each task can defer preemption up to qi if a task τk with
Pk > Pi wants to preempt τi ⇒ Bk = max

τi∈lp(τk)
{qi}

• Interesting problem: given a preemptively feasible task set,
find the longest non-preemptive interval Qi for each task that
still preserves schedulability

• High priority tasks often have Qi = Ci , meaning that they can
execute fully non preemptively

• To compute Qi , we need to find the maximum blocking time
that can be tolerated by a task, called blocking tolerance βi

• Qi can be used to divide a task into non preemptive chunks of
length no larger than Qi

• If all critical regions can be completely included in those
non-preemptive chunks the access to shared resources is trivial

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 29 / 31

Fixed Preemption Points

• Each task τi is divided in mi chunks qi ,1, . . . , q1,m

• The task can only be preempted between chunks

• Bk = maxτi∈lp(τk){qmax
i }

• Analysis must be carried out up the busy period of each task

• Preemption points are assumed to be given by the programmer

• If preemption points are chosen carefully
• preemption in critical region will not occur
• preemption overhead due to cache misses can be reduced, e.g.

as preemption points will be placed outside loops
• stack size can be reduced

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 30 / 31

General Remarks

• Preemption Thresholds are easy to specify, but it is difficult
to predict the number of preemptions and where they occur

• still possibly large preemption overhead

• Deferred Preemption allows bounding the number of
preemptions but it is difficult to predict where they occur

• number of preemptions bounded
• overhead per preemption may still be high

• Fixed Preemption Points allow more control on preemptions
and can be selected on purpose

• number of preemptions bounded
• overhead per preemption can be bounded if chosen carefully
• longest non preemptive interval Qi can be used to get an

upper bound on the length of the non-preemptive chunks
• preemption in critical region will not occur if the preemption

points are chosen carefully

Prof. Dr. Jian-Jia Chen, Georg von der Brüggen
(LS 12, TU Dortmund) 31 / 31

	Non-Preemptive Scheduling
	A General View
	Exact Schedulability Test
	Pessimistic Schedulability Tests

	Limited Preemptive Scheduling

