Non-Preemptive and Limited Preemptive

Scheduling

Prof. Dr. Jian-Jia Chen, Georg von der Briiggen

LS 12, TU Dortmund

09 May 2017
technische universitat S fakultat fiir computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
dortmund informatic (.0 12 SeRee T (LS 12, TU' Dortmund) 1/31

Outline

Non-Preemptive Scheduling
A General View

Limited Preemptive Scheduling

technische universitat S fakultat fiir computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
dortmund informatic (.0 12 eRee T (LS 12, TU Dortmund) 2/31

Advantage of Preemption

Preemption is often seen as a key factor in real-time scheduling

e Preemption allows to allocate the processor to incoming high
priority tasks nearly immediately

e High priority tasks are not blocked by low priority tasks

n_ 1 1

Preemptive ‘ ‘ ‘

= B e B - N
4
I

- 15 blocks 11 Deadline Miss
1 ’F/
Non— I T I f

Preemptive
™2 — |

technische universitat S fakultat fiir computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
dortmund informatic (.0 12 SR (LS 12, TU Dortmund) 3/31

Disadvantage of Preemption - Context Switch Costs

Context switch introduces overhead to the system:

e Scheduling costs: Time the scheduling Algorithm needs to
suspend the running task, insert it into the ready queue,
switch the context, dispatch the new incoming task

e Pipeline costs: Time to flush and refill the processor pipeline

e Cache-related costs: Time to reload the evicted cache lines

o Bus-related costs: Additional bus interference for accessing
RAM at cache misses caused by preemption

T2 blocks T
T1 ?
Non— I T T T T T =

T T T T

Preemptive Non preemptive WCET C,.NP
™ - i 1
T T

T T T T T T

n_ 1 T
. I T T T T T T T T T
Preemptive Additional preemption overhead C2P 0

T2

Deadline Miss

t t t
technische universitat S fakultat fiir computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
dortmund informatik I science 12 (LS 12, TU Dortmund)

4/31

Calculating The Preemption Overhead

e Essential for real-time systems: good estimation of WCETs

WCET normally determined for non-preemptive case: C,-NP

e Time the processor needs to execute without interruptions

o |dea: add preemption costs to preempted tasks WCET
e Costs for one preemption C,.'DO has to be estimated

e Summing up all context switch costs
e Problem: especially the cache related and bus related costs
can change drastically depending on the preemption point
The number of preemptions p has to be estimated
e Depends on the higher priority tasks
o Ensure the estimated number is safe: pest > p
e But not much over estimation

Preemptive WCET: C,-P = C,-NP + Pest - C,-PO

Indirect preemption costs: the extra execution time also
increases the number of preemptions

= It is hard to determine a good WCET (safe but not much over
estimation) for the preemptive case

 universitét S fakultat fiir I computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen

science 12 (LS 12, TU Dortmund) 5/31

informatik

Advantages of Non-Preemptive Scheduling

e |t reduces context-switch overhead
o Making WCETs

e smaller
e easier to calculate / more predictable

e It simplifies the access to shared resources

e No semaphores are needed for critical sections
o Deadlock prevention is trivial for non-preemptive scheduling

e |t reduces stack size

e Task can share the same stack, since no more than one task
can be in execution

e Preemption may be very costly or forbidden for some actions
anyways, e.g. 1/0O
o Non-preemption allows zero 1/O jitter: C; = f; — a; (constant)

che universitat S fakultat fiir computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
nd informatik 12 &oree (LS 12, TU Dortmund) 6 /31

Advantages of Non-Preemptive Scheduling (contd)

Also preemption is assumed to be a key factor for schedulability,
there are some task sets that are schedulable in the

non-preemptive case and not schedulable in the preemptive case,

even when the preemption overhead is ignored
RM, 71 = (2,5), 72 =(4,7), Usum = 2 + 3 = 3t = 0.97

i S PRI S PR S PR S &

Deadline Mi

eadline Miss

S SR HE I B S S

T T T

Preemptive
(1 IS S e N e T S

(under the assumption that the arrival times of the jobs are integers)

Preemptive

4@ technische universitat S fakultét fiir I computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
dortmund

informatik

science 12 (LS 12, TU Dortmund)

7/31

Issues with Non-Preemptive Scheduling

If preemption is not allowed, optimal schedules may have to leave
the processor idle at certain times.
Assume the following periodic constrained deadline task set:

07‘1:C1:2, T1:4, D1:4,¢1:0
07‘2:C2:1, T2:4,D2:1,¢1:1
= 71 is always available at 4 - n and 7 always at 4-n+1

ol i 3 Idle 3 Idle

T T T T T T T T T T T T

2
T T T T T
D 1> meets Deadline

eadline Miss

*h | technische universitat S fakultat fiir I computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
U dortmund informatik science 12 (LS 12, TU Dortmund) 8 /31

Hardness for Non-Preemptive Scheduling

e Optimal schedules may leave processor idle to finish tasks
with early deadlines arriving late.

e Knowledge about the future is needed for optimal scheduling
algorithms.

¢ No online algorithm can decide whether to keep idle or not.

e EDF is optimal among workload conserving scheduling
algorithms, i.e., algorithms that due not keep the processor
idle as long as there is workload to be executed.

e Recent proof by von der Briiggen, Chen and Huang (ECRTS
2015) shows that (non-preemptive) RM and DM has a
resource augmentation factor 1.76322 compared to
(non-preemptive) EDF for implicit-deadline and
constrained-deadline sporadic task systems.

o Resource augmentation factors will be explained in a few
weeks.

e Even if arrival times are known a priori, the scheduling
problem is still NP-hard in the strong sense.

S fakultat fiir computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
informatik 12 &ehee (LS 12, TU Dortmund) 9/31

Outline

Non-Preemptive Scheduling

Exact Schedulability Test

Limited Preemptive Scheduling

technische universitat S fakultat fiir computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
dortmund informatic (.0 12 eRee T (LS 12, TU Dortmund) 10/31

Problem - Utilization

e For preemptive RM scheduling we got easy utilization based
schedulability tests (Liu & Layland and Hyperbolic Bound)

e The utilization bound under non preemptive scheduling drops
to zero

e =(e, T1), m=(T1, T2), € >0 but very small
o If 7 starts right before 71 arrives, 7 always misses its deadline
e We can make € > 0 arbitrary small and T, arbitrary large

—e 4L _ 0 TN
cUim=r+H=mt3=0

Deadline Miss
TIMMM

2 T

I T T T T T T T T T T T T

o=y | technische universitit S fakultat far computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
) Gortmund informatik 12 Siohee (LS 12, TU' Dortmund) 11/31

Problem - Self-Pushing Phenomenon

Analysis of non-preemptive systems more complex: largest response
time may not occur in the first job after the critical instant

Definition: Self-Pushing Phenomenon

High priority jobs activated during non-preemptive execution of
lower priority tasks are pushed ahead and introduce higher delays
in subsequent jobs of the same task.

n-eo] 1 1 1

T T

7—2:(319) T T 1 T —t t

T T T T T T T T T T T T

) T
73 = (3,12)
T T T T T T T m T T T T T T T T T T T
Deadline Miss

7= (2,99

T T T T T T T T T T T T T T T T T T T

Self-pushing phenomenon for 73

Prof. Dr. Jian-Jia Chen, Georg von der Briiggen

S fakultat fiir computer
I (LS 12, TU Dortmund) 12 /31

informatik science 12

General Response Time Analysis - Definitions

Definition: hp(7x), Ip(7«):
o hp(7y): set of tasks with priority higher than 74

o Ip(7k): set of tasks with priority lower than 7

Definition: Maximum Blocking Time B:

The maximum blocking time By = m;’»((){C,- — ¢}
Ti € Ip(7Tk
where € > 0 but arbirtrary small

Informal: To determine if a task 7« is schedulable, we have to start
at the critical instance and check all jobs of 7 until the processor
idles for the first time by

e summing up the interference from 7; € hp(74)
e summing up the computation amount of previous jobs of 74
e add the maximum blocking time By from lower priority task

S fakultat fiir computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
informatik 12 &ovee (LS 12, TU Dortmund) 13 /31

Formal Definition - Level-k Active Period
Definition: Level-k Pending Workload W/ (t)

The Level-k Pending Workload W/ (t) at time t is the amount of
processing that still needs to be performed at time t due to jobs
with priority higher than or equal to 74 released strictly before t

Definition: Level-k Active Period

A Level-k Active Period Ly is an Interval [a, b) such that
WL (t) >0Vte (a, b)and W) (t)=0fort=aand t=0»b

Computing the longest Level-k Active Period:
the smallest value where LE(S) = Lg(s_l) with

L = B+ G

(s=1)
=B+ S < e
k T i

ri€{hp(ri)Ur} '

Prof. Dr. Jian-Jia Chen, Georg von der Briiggen

S fakultat fiir computer
inf |2 science 12 (LS 12, TU Dortmund) 14 / 31

nformatik

Exact Schedulability Test

e Due to Self-Pushing Phenomenon: compute the response time
of all jobs 74, with j € [1, Ki] where Kj = ﬁﬂ

e The start time s ; of 74 ; can be computed recurrently as well:

S,((?J) =B+ Z G
Ti€{hp(Ti)UTi }
ST=Bi+(-G+ Y. |16
Ti€hp(TKk) !

e As non-preemptive scheduling is used, a job always finishes
once it is started = f, ; = s, ; + C

* Response time of 74: Ry = max {fij —(—1)Tx}

J€[1,Kk]
o A task set is feasible & R; < D;Vi=1,...,n
S fakultat fiir I computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen

science 12 (LS 12, TU Dortmund) 15 /31

informatik

Outline

Non-Preemptive Scheduling

Pessimistic Schedulability Tests

Limited Preemptive Scheduling

technische universitat S fakultat fiir computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
dortmund informatic (.0 12 eRee T (LS 12, TU Dortmund) 16 /31

Restricting the Analysis to the First Job

e Due to Self-Pushing Phenomenon: For an exact test we have
to test all jobs in the Level-k Active Period

e We can restrict to only looking at the first job under some
(not to restrictive) conditions

Theorem

[Yao, Buttazzo, and Bertogna, 2010] The worst-case response time
of a non-preemptive task occurs in the first job if the task is acti-
vated at its critical instant and the following two conditions are both

satisfied:
@ the task set is feasible under preemptive scheduling;

@ the relative deadlines are less than or equal to periods.

The recurrent relation to determine the start time in this case is:

(s—1

s\
S’Eil = B+ Gk + ZTiGhP(Tk) kt’,—i +1)G

S fakultat fiir computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
informatik 12 &oree (LS 12, TU Dortmund) 17 /31

A Pessimistic Schedulability Test

e When we restrict ourselves to the first task, we still get an
exact test using the recurrent computation of the start time

e This test still has pseudo-polynomial runtime
e |dea: sacrifice some precision to get a sufficient but easier test

e From the theorem by Yao, Buttazzo, and Bertogna we know
we have to consider schedulability in the preemptive case

e Exact schedulability test in the preemptive case:
. t
Jtwith0<t <D and Ce+ > [Jc,gt

michp(mi) '

e We get a more pessimistic test by testing schedulability for
preemptive and non-preemptive in one equation:

t
Jt with 0 < t < Dy and By + Cy + Z M C <t
’T,'th(Tk)

S fakultat fiir computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
informatik 12 &oree (LS 12, TU Dortmund) 18 /31

A Utilization Based Test

Problem with utilization based tests for NP: Blocking time has to
be taken into account for every task individually

= Every task has to be tested individually

Theorem

[Theorem 1 in von der Briieggen, Chen, and Huang, 2015]

A task 7y in a non-preemptive sporadic task system with constrained
deadlines can be feasibly scheduled by a fixed-priority scheduling
algorithm, if the schedulability for all higher priority tasks has already
been ensured and the following condition holds:

Cx + Bk
(555 L0 <>

T €hp(TK)

If this holds V7, € 7 the hole task set is schedulable

S fakultat fiir computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
informatik 12 &ovee (LS 12, TU Dortmund) 19 /31

Utilization Bounds for RM-NP

e General utilization bounds are not possible

e It is possible to define a utilization bound based on the ratio
of the computation time of a task and its blocking time

[Theorem 4 in von der Briieggen, Chen, and Huang, 2015]
Suppose that v = max,, {maxTielp(Tk) {%}} A task set can be
feasibly scheduled by RM-NP if

Usum < {1+7+’”<1L> Fy<t

g if y>1

S fakultat fiir computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
informatik 12 &oree (LS 12, TU Dortmund) 20 /31

Utilization Bound for RM-NP

0.7

Theorem 4
0.65¢ Andersson and Tovar =
06}]
055}]
05}]
045}]
04}]
035}]
03}]

0254 05 I 5 5 25 3

Y
Figure: Comparison of the total utilization bound of RM-NP with respect
to v = max,, {maxT,E,p(Tk) {%}} provided by Theorem 4 in [von der

Briieggen, Chen, and Huang, 2015] with previously known results
(Andersson and Tovar, 2009).

*h | technische universitat S fakultat fiir I computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
* &J dortmund informatik science 12 (LS 12, TU Dortmund) 21 /31

Utilization Bound

A Tighter Utilization Based Test

[Yao, Buttazzo, and Bertogna, 2010] The worst-case response time
of a non-preemptive task occurs in the first job if the task is acti-
vated at its critical instant and the following two conditions are both
satisfied:

@ the task set is feasible under preemptive scheduling;

@ the relative deadlines are less than or equal to periods.

e Testing preemptive and non-preemptive case schedulability is
necessary to restrict testing to the first job

e Theorem 1 performs these in one single test
e We get tighter by doing two separated tests
@ non-preemptive case:

3t € (0, Dy —] with B, + Y7 [H G <t

@ preemptive case:
3t € (0, D] with Gk + 3= chor) [%W G <t

S fakultat fiir computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
I science 12 (LS 12, TU Dortmund) 22 /31

informatik

A Tighter Utilization Based Test (contd)

[Theorem 6 in von der Briieggen, Chen, and Huang, 2015]

A task 7 is schedulable by a fixed priority non-preemptive scheduling
algorithm ANP if all higher priority tasks are schedulable and the
following two conditions hold:

Bc+ > G

7€ hphP (7))
’ +1] I Wi+1 <2
Dy — Cy
7€hpP (1)
Cx + Z G
T,€hpY (k)
5 +1] JI Wi+1) <2
k
7i€hpl ()
S fakultat fiir computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
informatik 12 &ovee (LS 12, TU Dortmund)

23 /31

A Tighter Utilization Bound for RM-NP

Using Theorem 6 the utilization bound for Rate Monotonic
Non-Preemptive Scheduling can be made a bit tighter.

[Theorem 9 in von der Briieggen, Chen, and Huang, 2015]

Suppose that v = max,, {maxﬂ.e,p(,k) {%’(}} A task set can be
feasibly scheduled by RM-NP if

: 1-In(2)
Tty ity > =)

- 0 1—In(2)
< {/n1(2) ~ 0603 ify < 5

S fakultat fiir computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
informatik IE science 12 (LS 12, TU Dortmund) 24 /31

Utilization Bounds for RM-NP

Utilization Bound

Figure: Comparison of the total utilization bound of RM-NP with respect
to v = max,, {maxT,E,p(Tk) {%}} provided by Theorem 4 and

0.7
0.651
0.6
0551
051
045
04r
0.35F
03r

Theorem 9 —
Theorem 4

Andersson and Tovar =

0.25 0

0.5

1

15
Y

2 2.5

Theorem 9 in [von der Briieggen, Chen, and Huang, 2015] with
previously known results (Andersson and Tovar, 2009).

1
4 technische universitat
CU dortmana

S fakultat fiir
informatik

computer
science 12

Prof. Dr. Jian-Jia Chen, Georg von der Briiggen

(LS 12, TU Dortmund)

25 /31

Outline

Non-Preemptive Scheduling

Limited Preemptive Scheduling

technische universitat S fakultat fiir computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
dortmund informatic (.0 12 eRee T (LS 12, TU' Dortmund) 26 /31

Types of Limited Preemption

Problem: We want preemption to ensure high priority tasks meet
their deadline but we want as few preemptions as possible =
Combine the advantages and disadvantages of preemptive and
non-preemptive scheduling into limited preemptive scheduling

e Preemption Thresholds: Each task can be preempted only
by tasks with priority higher than a specified threshold.

e Deferred Preemptions: Each task can defer its preemption
up to a specified interval of time.

¢ Fixed Preemption Points: Each task can be preempted only
at predefined points specified in the code by the programmer.

S fakultat fiir I

computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
informatik

science 12 (LS 12, TU Dortmund) 27 /31

Preemption Thresholds

e Each task has two priorities

e Py: Nominal priority used to enqueue the task in the ready
queue and to preempt other tasks

e O: threshold priority used while task is execution. 74 can be
preempted by 7; only if P; > ©

e Analysis has to be done in the longest Level-k busy period
e Response time analysis has to be done in two phases:

o Blocking time by tasks 7; € Ip(7x) with priority less than 74
but preemption threshold larger than 7, combined with
Interference of higher priority tasks with P; > Pj until 7 starts
to determine the start time
Ski=Bk+(—-1)CG+ > ({%J + 1) G

Ti€hp(T))

e Preemption of tasks with priority larger than the preemption

threshold (P, > ©;) after the task started to determine the

finish time
R,' Sk,'
e g, (8- (%] +0)
Ti:Pi>0y
S fakultat fiir I computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen

science 12 (LS 12, TU Dortmund) 28 /31

informatik

Deferred Preemptions

e Each task can defer preemption up to g; if a task 7, with

Px > P; wants to preempt 7, = By = max {qg;}
T,'E/p(’f'k)

e Interesting problem: given a preemptively feasible task set,
find the longest non-preemptive interval Q; for each task that
still preserves schedulability

e High priority tasks often have Q; = C;, meaning that they can
execute fully non preemptively

e To compute Q;, we need to find the maximum blocking time
that can be tolerated by a task, called blocking tolerance j;

e @Q; can be used to divide a task into non preemptive chunks of
length no larger than Q;

e If all critical regions can be completely included in those
non-preemptive chunks the access to shared resources is trivial

S fakultat fiir computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
informatik 12 &oree (LS 12, TU Dortmund) 29 /31

Fixed Preemption Points

Each task 7; is divided in m; chunks g;1,...,91,m

The task can only be preempted between chunks

* B = maXTielp(Tk){qlmaX}
Analysis must be carried out up the busy period of each task

Preemption points are assumed to be given by the programmer

If preemption points are chosen carefully
e preemption in critical region will not occur
e preemption overhead due to cache misses can be reduced, e.g.
as preemption points will be placed outside loops
e stack size can be reduced

technische universitét S fakultat far computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
dortmund informatik 12 neess (LS 12, TU Dortmund) 30 /31

General Remarks

¢ Preemption Thresholds are easy to specify, but it is difficult
to predict the number of preemptions and where they occur
o still possibly large preemption overhead
¢ Deferred Preemption allows bounding the number of
preemptions but it is difficult to predict where they occur
e number of preemptions bounded
o overhead per preemption may still be high
¢ Fixed Preemption Points allow more control on preemptions
and can be selected on purpose
e number of preemptions bounded
overhead per preemption can be bounded if chosen carefully
longest non preemptive interval Q; can be used to get an
upper bound on the length of the non-preemptive chunks

preemption in critical region will not occur if the preemption
points are chosen carefully

S fakultat fiir I

computer Prof. Dr. Jian-Jia Chen, Georg von der Briiggen
informatik

science 12 (LS 12, TU Dortmund) 31 /31

	Non-Preemptive Scheduling
	A General View
	Exact Schedulability Test
	Pessimistic Schedulability Tests

	Limited Preemptive Scheduling

