Timing Predictability and
How to Achieve It

Jian-Jia Chen

Slides are originally from Prof. Jan Reineke

The Timing Analysis Problem

// Perform the convolution.

for (int i=0; i<10; i++4) {
x[1i] = al[i]l*b[j-1i];
// Notify listeners.
notify(x[1i]);

}

Set of Software Tasks

P

Microarchitecture

What does the execution time depend on?

o The input, determining which path is taken
through the program.

Simple

CPU <+—»| Memory

What does the execution time depend on?

o The input, determining which path is taken
through the program.

o The state of the hardware platform:
Due to caches, pipelining, speculation, etc.

Complex CPU
(out-of-order .
execution, <> L1 <> Main
Cache Memory
branch

prediction, etc.)

What does the execution time depend on?

o The input, determining which path is taken
through the program.
o The state of the hardware platform:

Due to caches, pipelining, speculation, etc.
o Interference from the environment:

External interference as seen from the analyzed

task on shared busses, caches, memory.
A

Complex L1

CPU Rig Cache

L2 Main
Cache Memory

Complex L1
CPU Cache

Example of Influence of
Corunning Tasks in Multicores

Radojkovic et al. (ACM TACO, 2012) on Intel
Atom and Intel Core 2 Quad:

up to 14x slow-down due to interference
on shared L2 cache and memory controller

The Need for Models

Predictions about the future behavior of a system
are always based on models of the system.

Mode

All models are wrong, but some are useful.
George Box (Statistiker)

The Need for Timing Models

The Instruction Set Architecture (ISA) partially
defines the behavior of microarchitectures: it
abstracts from timing.

How to obtain timing models?

o Hardware manuals

o Manually devised microbenchmarks
o Machine learning

Challenge: Introduce HW/SW contract to
capture timing behavior of microarchitectures.

8

Desirable Properties of Systems and their
Timing Models

o Predictability
o Analyzability

Predictability

How precisely can programs’ execution times
on a particular microarchitecture be predicted?

Assuming a deterministic timing model and
known initial conditions, can perfectly predict
execution time.

But: initial state, inputs, and interference unknown.

10

How to Increase Predictability?

1. Eliminate stateful components:
GCache - Scratchpad memory

RegularPipeline - Thread-interleaved pipeline
Out-of-order-exeeudtion 2> VLIW

Challenge: Efficient static allocation of resources.

11

in time <

In space -

How to Increase Predictability?

2. Eliminate interference: ,temporal isolation”
Partition resources:

"o TDMA bus/NoC arbitration,
o SW scheduling (e.g. PREM)

"o shared cache: in HW or SW
o SRAM banks (e.g. Kalray MPPA)

o DRAM banks (e.g. PRET DRAM, PALLOC)

Challenge:
Determine efficient partitioning of resources.

Question: What's the performance impact?

12

Analyzability

How efficiently can programs' WCETs on
a particular microarchitecture be bounded?

WCET analysis needs to consider all inputs,
initial HW states, interference scenarios...

...explicitly or implicitly.

13

How to Increase Analyzability?

1. Eliminate stateful resources:
Fewer states to consider

2. Eliminate interference: ,temporal isolation®:
Can focus analysis on one partition

3. Choose ,forgetful”/“insensitive” components:
Different analysis states will quickly converge

14

O Timing Anomalies

Nondeterminism due
to uncertainty about
hardware state

Cache Miss
= [ocal Worst Case Cache Hit

~N

leads to

K Global Worst Case

Timing Anomalies in Dynamically Scheduled Microprocessors
T. Lundqvist, P. Stenstrbm — RTSS 1999

15

Timing Anomalies: Example

Scheduling Anomaly

C ready

Resource 1

Resource 2

Bounds on multiprocessing timing anomalies
RL Graham - SIAM Journal on Applied Mathematics, 1969 — SIAM
(http.//epubs.siam.org/doi/abs/10.1137/0117039)

16

Timing Compositionality: By Example

exec{™ | Core 1 Core 2 Core 3 Core 4

Shared Bus

Shared Memory

Timing Compositionality =
Ability to simply sum up timing contributions by different components

Implicitly or explicitly assumed by (almost) all approaches to timing
analysis for multi cores and cache-related preemption delays (CRPD).

17

Timing Compositionality: Benefit

Integrated Compositional

= A ()

18

Conventional Wisdom

Simple in-order pipeline + LRU caches
-=> no timing anomalies
—> timing-compositional

19

Bad News |: Timing Anomalies

Fetch (/F)

Decode (/D)

|-cache

Execute (EX)

N

Memory

Memory (MEM)

Write-back (WB)

D-cache

We show such a pipeline has timing anomalies:

Toward Compact Abstractions for Processor Pipelines
S. Hahn, J. Reineke, and R. Wilhelm. In Correct System Design, 2015.

20

A Timing Anomaly

load ...

nop (load r1,0)

lc?ad rl, (load,0)

div ..., rl loadM loadr1 M IF ret
——————————— ~ EX div
ret

Hit case:

* Instruction fetch starts before second load becomes ready
» Stalls second load, which misses the cache

Miss case:
« Second load can catch up during first load missing the cache
» Second load is prioritized over instruction fetch

» Loading before fetching suits subsequent execution
21

Bad News Il: Timing Compositionality

Maximal cost of an additional cache miss?
Intuitively: main memory latency
Unfortunately: ~ 2 times main memory latency

- ongoing instruction fetch may block load
- ongoing load may block instruction fetch

22

Some References

Enabling Compositionality for Multicore Timing Analysis
S. Hahn, M. Jacobs, and J. Reineke. In RTNS, 2016.

MIRROR: Symmetric Timing Analysis for Real-Time Tasks on Multicore Platforms with Shared Resources
W.-H. Huang, J.-J. Chen, and J. Reineke. In DAC, 2016.

A Generic and Compositional Framework for Multicore Response Time Analysis
S. Altmeyer, R.I. Davis, L.S. Indrusiak, C. Maiza, V. Nelis, and J. Reineke. In RTNS, 2015.

On the Smoothness of Paging Algorithms
J. Reineke and A. Salinger. In WAOA, 2015.

Toward Compact Abstractions for Processor Pipelines
S. Hahn, J. Reineke, and R. Wilhelm. In Correct System Design, 2015.

Architecture-Parametric Timing Analysis
J. Reineke and J. Doerfert. In RTAS, 2014.

Selfish-LRU: Preemption-Aware Caching for Predictability and Performance
J. Reineke, S. Altmeyer, D. Grund, S. Hahn, C. Maiza. In RTAS, 2014.

Towards Compositionality in Execution Time Analysis - Definition and Challenges
S. Hahn, J. Reineke, and R. Wilhelm. In CRTS, 2013.

Measurement-based Modeling of the Cache Replacement Policy
A. Abel and J. Reineke. In RTAS, 2013.

PRET DRAM Controller: Bank Privatization for Predictability and Temporal Isolation
J. Reineke, I. Liu, H.D. Patel, S. Kim, and E.A. Lee. In CODES+ISSS, 2011.

Timing Predictability of Cache Replacement Policies

J. Reineke, D. Grund, C. Berg, and R. Wilhelm. In Real-Time Systems, 2007. 23

