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Recurrent Task Models (Revisited)

• When jobs (usually with the same computation requirement)
are released recurrently, these jobs can be modeled by a
recurrent task

• Periodic Task τi :
• A job is released exactly and periodically by a period Ti

• A phase φi indicates when the first job is released
• A relative deadline Di for each job of task τi , indicating the

length of the maximum interval before a job must be finished
• (φi ,Ci ,Ti ,Di ) is the specification of periodic task τi , where Ci

is the worst-case execution time. When φi is omitted, we
assume φi is 0.

• Sporadic Task τi :
• Ti is the minimal time between any two consecutive job

releases
• Di is the relative deadline for each job of task τi
• (Ci ,Ti ,Di ) is the specification of sporadic task τi , where Ci is

the worst-case execution time.
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Relative Deadline <=> Period (Revisit)

For a task set, we say that the task set is with

• implicit deadline when the relative deadline Di is equal to the
period Ti , i.e., Di = Ti , for every task τi ,

• constrained deadline when the relative deadline Di is no more
than the period Ti , i.e., Di ≤ Ti , for every task τi , or

• arbitrary deadline when the relative deadline Di could be
larger than the period Ti for some task τi .
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Some Definitions for Sporadic/Periodic Tasks

• Periodic Tasks:
• Synchronous system: Each task has a phase of 0.
• Asynchronous system: Phases are arbitrary.

• Hyperperiod: Least common multiple (LCM) of Ti .

• Task utilization of task τi : Ui := Ci
Ti

.

• System (total) utilization: U(T) :=
∑

τi∈T Ui .
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Static-Priority Scheduling

• Different jobs of a task are assigned the same priority.
• Note: we will assume that no two tasks have the same priority.

(Why?)

• We will implicitly index tasks in decreasing priority order, i.e.,
τi has higher priority than τk if i < k.

• Which strategy is better or the best?
• largest execution time first?
• shortest job first?
• least-utilization first?
• most importance first?
• least period first?
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Rate-Monotonic (RM) Scheduling (Liu and Layland, 1973)

Priority Definition: A task with a smaller period has higher priority,
in which ties are broken arbitrarily.

Example Schedule: τ1 = (1, 6, 6), τ2 = (2, 8, 8), τ3 = (4, 12, 12).
[(Ci ,Ti ,Di )]

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1 τ1 τ1 τ1 τ1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ2 τ2 τ2 τ2

0 2 4 6 8 10 12 14 16 18 20 22 24

τ3 τ3 τ3 τ3 τ3
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Liu and Layland (Journal of the ACM, 1973)

googled on 16,02,2016
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Deadline-Monotonic (DM) Scheduling (Leung and Whitehead)

Priority Definition: A task with a smaller relative deadline has
higher priority, in which ties are broken arbitrarily.

Example Schedule: τ1 = (2, 8, 4), τ2 = (1, 6, 6), τ3 = (4, 12, 12).
[(Ci ,Ti ,Di )]

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1 τ1 τ1 τ1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ2 τ2 τ2 τ2 τ2

0 2 4 6 8 10 12 14 16 18 20 22 24

τ3 τ3 τ3 τ3 τ3
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Optimality (or not) of RM and DM

Example Schedule: τ1 = (2, 4, 4), τ2 = (5, 10, 10)

0 2 4 6 8 10 12 14 16 18 20

τ1 τ1 τ1 τ1 τ1 τ1

0 2 4 6 8 10 12 14 16 18 20

τ2 τ2 τ2 τ2 τ2

No static-priority scheme is optimal for scheduling periodic tasks:
The above system is schedulable.

However, a deadline will be missed, regardless of how we choose to
(statically) prioritize τ1 and τ2.

Corollary

Neither RM nor DM is optimal.
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Worst-Case Response Time (Constrained-Deadline)

Suppose that we are analyzing the worst-case response time of
task τk . Let us assume that the other k − 1 higher-priority tasks
are already verified to meet their deadlines.

τ1

τ2

τ3

τ4

t ′

• Suppose t ′ is the arrival time of a job of task τk .

• A higher priority task τj may release a job before t ′ and this
job is executed after t ′.
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Properties of Worst-Case Response Time (cont.)

Let tj be the arrival time of the first job of task τj after or at time t ′.

• tj ≥ t ′.

• The remaining execution time of the job of task τj arrived before t ′

and unfinished at time t ′ is at most Cj .

Since fixed-priority scheduling greedily executes an available job, the
system remains busy from t ′ till the time instant f at which task τk
finishes the job arrived at time t ′. That is,

∀t ′ < t < f , Ck +
k−1∑
j=1

Cj +
k−1∑
j=1

max

{⌈
t − tj
Tj

⌉
Cj , 0

}
> t − t ′.

As a result, (t − t ′ is replaced by t)

∀0 < t < f − t ′, Ck +
k−1∑
j=1

Cj +
k−1∑
j=1

⌈
t

Tj

⌉
Cj > t.
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Properties of Worst-Case Response Time (cont.)

The minimum 0 < t ≤ Dk such that

Ck +
k−1∑
j=1

Cj +
k−1∑
j=1

⌈
t

Tj

⌉
Cj = t.

is a safe upper bound on the worst-case response time of task τk .

Why do we need to constrain t ≤ Dk?
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Critical Instants in Static-Priority Systems

Theorem

[Liu and Layland, JACM 1973] The critical instance of task τk for
a set of independent, preemptable periodic tasks with relative dead-
lines equal to their respective periods is to release the first jobs of
all the higher-priority tasks at the same time.

We are not saying that τ1, . . . , τk will all necessarily release their
first jobs at the same time, but if this does happen, we are claiming
that the time of release will be a critical instant for task τk .

This argument also works for task sets with constrained deadlines.
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Critical Instants: Informal Proof

τ1

τ2

τ3

τ4

t−1 t ′ tR
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Shifting the release time of tasks together will increase the
response time of task τk .

• Consider a job of τk , released at time t ′, with completion time
tR .

• Let t−1 be the latest idle instant for τ1, . . . , τk−1 at or before tR .

• Let J be τk ’s job released at t ′.



Critical Instants: Informal Proof

τ1

τ2

τ3

τ4

t−1 t ′ tR
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We will show that shifting the release time of tasks together
will increase the response time of task τk .

• Moving J from t ′ to t−1 does not decrease the completion
time of J.
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We will show that shifting the release time of tasks together
will increase the response time of task τk .

• Releasing τ1 at t−1 does not decrease the completion time
of J.



Critical Instants: Informal Proof

τ1
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We will show that shifting the release time of tasks together
will increase the response time of task τk .

• Releasing τ2 at t−1 does not decrease the completion time
of J.

• Repeating the above movement proves the criticality of the
critical instant
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Necessary/Sufficient Schedulability Test

• The issue for timing analysis is on how to analyze the
schedulability.

• Sufficient Test: If A holds, then the task set is schedulable (by
EDF, RM, or DM).

• Necessary Test: If the task set is schedulable by EDF (or
RM/DM), then B holds.

• Exact Test: The task set is schedulable by EDF (or RM/DM)
if and only if A∗ holds.
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Necessary and Sufficient (Exact) RM-Schedulability

• Time-demand analysis (TDA) was proposed by Lehoczky, Sha,
and Ding [RTSS 1989].

• TDA can be applied to produce a schedulability test for any
fixed-priority algorithm that ensures that each job of every
task completes before the next job of that task is released.

• For some important task models and scheduling algorithms,
this schedulability test will be necessary and sufficient.
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Schedulability Condition

According to the critical instant theorem, to test the schedulability
of task τk , we have to

1 release all the higher-priority tasks at time 0 together with
task τk

2 release all the higher-priority task instances as early as they
can

We can simply simulate the above behavior to verify whether task
τk misses the deadline.

Several examples are used in Slide 6/8/9 to demonstrate this
behavior.
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Schedulability Test

The time-demand function Wk(t) of the task τk is defined as
follows:

Wk(t) = Ck +
k−1∑
j=1

⌈
t

Tj

⌉
Cj .

Theorem

A system T of periodic, independent, preemptable tasks is schedu-
lable on one processor by algorithm A if

∀τk ∈ T ∃t with 0 < t ≤ Dk and Wk(t) ≤ t

holds. This condition is also necessary for synchronous, periodic
task systems and also sporadic task sets.

Note that this holds for implicit-deadline and constrained-deadline
task sets. The sufficient condition can be proved by contradiction.
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How to Use TDA?

The theorem of TDA might look strong as it requires to check
every time t with 0 < t ≤ Dk for a given τk . There are two ways
to avoid this:

• Iterate using t(`+ 1) := Wk(t(`)), starting with
t(0) :=

∑k
j=1 Cj and stopping, when t(`) = Wk(t(`)) or

t(`) > Di for some `.

• Only consider t ∈ {`Tj − ε | 1 ≤ j ≤ i , ` ∈ N+}, where ε is a
constant close to 0. That is, only consider t at which a job of
higher-priority tasks arrives.
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Complexity of TDA Analysis

The complexity to analyze weather a task τk can meet the timing
constraint is O(kDk).

• O(kDk) has polynomial time complexity, if the input is in the
unary format, i.e. if Dk is 6, the input is 111111 instead of
the binary 110.

• It has exponential runtime for input in the binary format.

• Formally, this is called with pseudo-polynomial time
complexity.

Theorem

Eisenbrand and Rothvoss [RTSS 2008]: Fixed-Priority Real-Time
Scheduling: Response Time Computation Is NP-Hard
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Optimality Among Static-Priority Algorithms

Theorem

A system T of independent, preemptable, synchronous periodic tasks
that have relative deadlines equal to their respective periods can be
feasibly scheduled on one processor according to the RM algorithm
whenever it can be feasibly scheduled according to any static priority
algorithm.

We will only discuss systems with 2 tasks, and the generalization is
left as an exercise.
• Suppose that T1 = D1 < D2 = T2 and τ2 has the higher priority.
• We would like to swap the priorities of τ1 and τ2.
• Without loss of generality, the response time of τ1 after priority

swapping is always equal to (or no more than) C1.
• By the critical instant theorem, we only need to check response

time of the first job of τ2 during a critical instant.
• Assuming that non-RM priority ordering is schedulable, the critical

instant theorem also implies that C1 + C2 ≤ T1.
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Optimality Among Static-Priority Algorithms (cont.)

After swapping (τ1 has higher priority), there are two cases:

Case 1

There is sufficient time to complete all F jobs of τ1 before the second job

arrival of τ2, where F =
⌊
T2

T1

⌋
. In other words, C1 + F · T1 < T2.

τ1

FT1

τ2

To be schedulable

(F + 1)C1 + C2 ≤ T2

must hold.

By C1 + C2 ≤ T1, we have

F (C1 + C2) ≤ F · T1

F≥1 ⇒FC1 + C2 ≤ F · T1

(F + 1)C1 + C2 ≤ F · T1 + C1

⇒(F + 1)C1 + C2 < T2
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Optimality Among Static-Priority Algorithms (cont.)

After swapping (τ1 has higher priority), there are two cases:

Case 2

The F -th job of τ1 does not complete before the arrival of the second job

of τ2. In other words, C1 + F · T1 ≥ T2, where F =
⌊
T2

T1

⌋
.

τ1

FT1

τ2

To be schedulable

FC1 + C2 ≤ FT1 must
hold.

By C1 + C2 ≤ T1, we have

F (C1 + C2) ≤ F · T1

F≥1 ⇒FC1 + C2 ≤ F · T1 ≤ T2
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Remarks on the Optimality

We have shown that if any two-task system with implicit deadlines
(Di = Ti ) is schedulable according to arbitrary fixed-priority
assignment, then it is also schedulable according to RM.

Exercise: Complete proof by extending argument to n periodic
tasks.

Note: When Di ≤ Ti for all tasks, DM (Deadline Monotonic) can
be shown to be an optimal static-priority algorithm using similar
argument. The proof is also left as an exercise.
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Definitions

• Task utilization:

Ui :=
Ci

Ti
.

• System (total) utilization:

U(T) :=
∑
τi∈T

Ci

Ti
.
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Harmonic Real-Time Systems

Definition

A system of periodic tasks is called with harmonic periods (also:
simply periodic) if for every pair of tasks τi and τk in the system
where Ti < Tk , Tk is an integer multiple of Ti .

For example: Periods are 2, 6, 12, 24.

Theorem

[Kuo and Mok]: A system T of harmonic, independent, preemptable,
and implicit-deadline tasks is schedulable on one processor according
to the RM algorithm if and only if its total utilization U(T) =∑

τj∈T
Cj

Tj
is less than or equal to 1.
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Proof for Harmonic Systems

The case for the “only-if” part is skipped.

τ1

τ2

τ3

By using the contrapositive proof approach, suppose that T is not
schedulable and τk misses its deadline. We will prove that the
utilization must be larger than 1.

• The response time of τk is larger than Dk .

• By critical instants, releasing all the tasks τ1, τ2, . . . , τk at
time 0 will lead to a response time of τk larger than Dk .
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Proof for Harmonic Systems (cont.)

As the schedule is workload-conserving, we know that from time 0
to time Dk , the whole system is executing jobs. Therefore,

Dk < the workload released in time interval [0,Dk)

=
k∑

j=1

Cj · ( the number of job releases of τj in time interval [0,Dk))

=
k∑

j=1

Cj ·
⌈
Dk

Tj

⌉
=∗

k∑
j=1

Cj ·
Dk

Tj
,

where =∗ is because Dk = Tk is an integer multiple of Tj when
j ≤ k.

By canceling Dk , we reach the contradiction by having

1 <
k∑

j=1

Cj

Tj
≤
∑
τj∈T

Cj

Tj
.
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Utilization-Based Schedulability Test

• Task utilization:

ui :=
Ci

Ti
.

• System (total) utilization:

U(T) :=
∑
τi∈T

Ci

Ti
.

A task system T fully utilizes the processor under scheduling
algorithm A if any increase in execution time (of any task) causes
A to miss a deadline. In this case, U(T) is an upper bound on
utilization for A, denoted Uub(T,A).

Ulub(A) is the least upper bound for algorithm A:

Ulub(A) = min
T

Uub(T,A)
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What is Ulub(A) for?

Feasible Unsure Infeasible

T? Uub(T?,A)

T5 Uub(T5,A)

T4 Uub(T4,A)

T3 Uub(T3,A)

T2 Uub(T2,A)

T1 Uub(T1,A)

0 Ulub(A) 1

...
...

...
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Liu and Layland Bound

Theorem

[Liu and Layland] A set of n independent, preemptable periodic
tasks with relative deadlines equal to their respective periods can
be scheduled on a processor according to the RM algorithm if its

total utilization U is at most n(2
1
n − 1). In other words,

Ulub(RM, n) = n(2
1
n − 1) ≥ 0.693.

n Ulub(RM, n) n Ulub(RM, n)
2 0.828 3 0.779
4 0.756 5 0.743
6 0.734 7 0.728
8 0.724 9 0.720

10 0.717 ∞ 0.693 = ln2
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Least Upper Bound
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Proof Sketch for Uulb(RM , n)

Note: The original proof for this theorem by Liu and Layland is not
correct. For a corrected proof, see R. Devillers & J. Goossens at
http://dev.ulb.ac.be/sched/articles/lub.ps. Note the
proof presented here is VERY different from the others, including
the one from Buttazzo’s textbook.

1 We will start from the exact test and analyze the
schedulability under RM of task τn.

2 This will easily lead us to consider only the special case where
Tn ≤ 2T1.

3 We will then show the schedulability condition of τn under RM

4 The least utilization bound is then derived based on the above
schedulability condition.
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Utilization Bound Proof: Step 1

Theorem

[Bini and Buttazzo, ECRTS 2001] A system of n independent, pre-
emptable periodic tasks with relative deadlines equal to their respec-
tive periods can be scheduled on a processor according to the RM
algorithm if

Πn
i=1(Ui + 1) ≤ 2.

Suppose that task τn is not schedulable under RM. We will prove
that Πn

i=1(Ui + 1) > 2.
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Worst-Case: Tn ≤ 2T1

By the exact test, we know that for all 0 < t ≤ Tn

Wn(t) = Cn +
n−1∑
i=1

⌈
t

Ti

⌉
Ci > t.

Now, suppose again Fi is
⌊
Tn
Ti

⌋
. For all 0 < t ≤ Tn⌈

t

Ti

⌉
Ci ≤

⌈
t

FiTi

⌉
FiCi

Therefore, by changing the period of task τi to FiTi and the
execution time from Ci to FiCi , task τn in the new task set
remains unschedulable under RM.
After changing the periods, we reorder the tasks according to their
new periods. Does this affect the non-schedulability of task τn?
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Tn ≤ 2T1 (cont.)

τi

τn

τ ′i

τ ′n

FiTi Tn
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Hyperbolic Bound: Structure

For the rest of the proof, we only consider Tn ≤ 2T1. The
non-schedulability also implies the following structure:

τ1

τ2

τ3

τn−1

τn

Cn +
n−1∑
j=1

Cj +
i−1∑
j=0

Cj > Ti , ∀i = 1, 2, . . . , n − 1,

Cn + 2
n−1∑
j=1

Cj > Tn,

where C0 is defined as 0 for brevity.
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Hyperbolic Bound: Structure

This means, Cn must be sufficiently large to enforce the above
conditions.

Let’s now recall what we were doing:

• We were given a set of tasks, in which the utilization Ui of
each task τi is given.

• We wanted to prove that the task set is always schedulable
under RM no matter how the periods are assigned under
certain utilization constraints.

• What we have done so far is using the contraposition that
there exists at least one assignment of periods to make task
τn not schedulable under RM, when the utilization is larger
than a value given by certain conditions.
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Hyperbolic Bound: Un

For a critical value of Un, if we reduce Un by a small value, the above
non-schedulability condition will not be satisfied any more. So, the critical
value is equivalent to the minimum Un to enforce the following condition:

Cn +
n−1∑
j=1

Cj +
i−1∑
j=0

Cj≥Ti ≥ 0,∀i = 1, 2, . . . , n − 1,

Cn + 2
n−1∑
j=1

Cj=Tn,

In fact, we can also normalize Tn to 1. The above condition to get the
minimum Un is equivalent to the following linear programming

minimize Cn = Tn − 2
n−1∑
j=1

UjTj

s.t.Tn − 2
n−1∑
j=1

UjTj +
n−1∑
j=1

UjTj +
i−1∑
j=0

UjTj ≥ Ti ≥ 0,∀i = 1, . . . , n − 1
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Extreme Point Theory in Linear Programming

minimize Cn = Tn − 2
n−1∑
j=1

UjTj

s.t.Tn −
n−1∑
j=i

UjTj ≥ Ti ≥ 0,∀i = 1, . . . , n − 1

The optimal solution of the above linear programming is achieved
when Ti > 0 and all the other n − 1 linear constraints are with =
instead of ≥ by the extreme point theory. (details omitted here
and to be discussed later in the lecture.) That is, the minimum Un

is achieved when

Ti = Tn −
n−1∑
j=i

UjTj , ∀i = 1, . . . , n − 1

Ci = Ti+1 − Ti , ∀i = 1, . . . , n − 1
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Hyperbolic Bound: Final

Ui =
Ci

Ti
=

Ti+1 − Ti

Ti
=

Ti+1

Ti
− 1, ∀i = 1, . . . , n − 1

C ∗n = 2T1 − Tn ⇒ U∗n = 2
T1

Tn
− 1,

where C ∗n is the optimal solution of the above linear programming.
The non-schedulability of task τn implies that

Un > U∗n = 2
T1

Tn
− 1 = 2

(
T1

T2

T2

T3
. . .

Tn−1
Tn

)
− 1

= 2
1

Πn−1
i=1 (Ui + 1)

− 1

⇒Πn
i=1(Ui + 1) > 2.
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Recall Utilization Bound Proof: Step 1

Theorem

[Bini and Buttazzo, ECRTS 2001] A system of n independent, pre-
emptable periodic tasks with relative deadlines equal to their respec-
tive periods can be scheduled on a processor according to the RM
algorithm if

Πn
i=1(Ui + 1) ≤ 2.
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Utilization Bound Proof: Step 2 Calculate Ulub(RM , n)

• So what is the minimum (infmum)
∑n

i=1 Ui to enforce
Πn
i=1(Ui + 1) > 2? (see A-Mathmatics.pdf)
• It should be clear that the infmum

∑n
i=1 Ui happens when

Πn
i=1(Ui + 1) = 2, and Ui = 2

1
n − 1.

• Ulub(RM, n) = n(2
1
n − 1) ≥ limn→∞ n(2

1
n − 1) = ln2.

This concludes the proof of the following theorem:

Theorem

[Liu and Layland, JACM 1973] A set of n independent, preemptable
periodic tasks with relative deadlines equal to their respective periods
can be scheduled on a processor according to the RM algorithm if

its total utilization U is at most n(2
1
n − 1). In other words,

Ulub(RM, n) = n(2
1
n − 1) ≥ 0.693.
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Least Upper Bound
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On-Site Exercise: Is This Schedulable under RM?

Ci 0.2 2 2 1.5 1 14 28.8

Ti 2 7 14 26 26 79 292

Di 2 6 13 25 26 77 291
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On-Site Exercise: Is This Schedulable under RM?

Ci 0.2 2 2 1.5 1 14 28.8

Ti 2 7 14 26 26 79 292

Di 2 6 13 25 26 77 291

Ci 0.2 2 2 1.5 1 14 28.8

Ti 2 6 13 25 26 77 291

Di 2 6 13 25 26 77 291

Ci 0.2 2 2 1.5 1 14 28.8

T ′i 2 6 12 24 24 72 288

D ′i 2 6 12 24 24 72 288

U ′i 0.1 1/3 1/6 0.0625 0.0417 0.195 0.1
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Remarks on Harmonic Task Set

• Now, we know that if the total utilization is larger than 0.693,
the utilization-bound schedulability cannot provide guarantees
for schedulability or unschedulability.

• Sometimes, we can manipulate the periods such that the new
task set is a harmonic task set and its schedulability can be
used.
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Outline

Schedulability for Static-Priority Scheduling
Demand-Based Analysis
Optimality of RM
Utilization-Based Analysis (Relative Deadline = Period)
Arbitrary Deadlines

Schedulability for Dynamic-Priority Scheduling
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TDA for Arbitrary Deadlines (Details are in Appendix)

• The TDA scheduling condition is valid only if each job of every
task completes before the next job of that task is released.

• We now consider a schedulability check in which tasks may
have relative deadlines larger than their periods.

• Note: In this model, a task may have multiple ready jobs. We
assume they are scheduled on a First-Come-First Serve (FCFS)
basis.
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Straightforward Analysis for Arbitrary Deadlines

The worst-case response time of τi by only considering the first job
of τi at the critical instant is too optimistic when the relative
deadline of τi is larger than the period.

0 100 200 300 400 500 600 700

0 100 200 300 400 500 600 700

Consider two tasks:

• τ1 has period 70 and execution time 26 and τ2 is with period
100 and execution time 62.

• τ2’s seven jobs have the following response times, respectively:
114, 102, 116, 104, 118, 106, 94.

• Note that the first job’s response time is not the longest.
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Priority Ordering for Tasks with Arbitrary-Deadline

• There is no greedy strategy for optimal ordering
• DM or RM is not an optimal static-priority scheme any more.

• Audsley’s approach (1991):
• Use TDA to find the worst-case response time of task τi by

assuming the others have higher priority
• Among those tasks whose worst-case response times are less

than or equal to the relative deadlines, choose one of them as
the lowest-priority task

• Reduce the problem by removing this lowest-priority task and
repeat the above procedure

• Audsley’s approach is optimal.
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Utilization-Based Test for EDF Scheduling

Theorem

Liu and Layland: A task set T of independent, preemptable, periodic
tasks with relative deadlines equal to their periods can be feasibly
scheduled (under EDF) on one processor if and only if its total
utilization U is at most one.

Proof

• The only if part is obvious: If U > 1, then some task clearly
must miss a deadline. So, we concentrate on the if part.

• We prove the contrapositive, i.e., if T is not schedulable, then
U > 1.

• Let Ji,k be the first job to miss its absolute deadline at di,k .
• Let t−1 be the last idle instant or a job with absolute deadline
> di,k is executed before di,k .

• t−1 could be 0 if there is no idle time. (cont.)
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Proof of Utilization-Bound Test for EDF

Proof.

Because Ji ,k missed its deadline, we know that

di ,k − t−1 <
demand in [t−1, di ,k)
by jobs with arrival time ≥ t−1 and
absolute deadline no more than di ,k

=
n∑

j=1

⌊
di ,k − t−1

Tj

⌋
Cj ≤

n∑
j=1

di ,k − t−1
Tj

Cj

By cancelling di ,k − t−1, we conclude the proof by

1 <
n∑

j=1

Cj

Tj
= U.
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Relative Deadlines Less than Periods

Theorem

A task set T of independent, preemptable, periodic tasks with rel-
ative deadlines equal to or less than their periods can be feasibly
scheduled (under EDF) on one processor if

n∑
k=1

Ck

min{Dk ,Tk}
≤ 1.

Note: This theorem only gives a sufficient condition.
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Necessary and Sufficient Conditions

Theorem

Define demand bound function dbf (τi , t) as

dbf (τi , t) = max

{
0,

⌊
t + Ti − Di

Ti

⌋}
Ci = max

{
0,

⌊
t − Di

Ti

⌋
+ 1

}
Ci .

A task set T of independent, preemptable, periodic tasks can
be feasibly scheduled (under EDF) on one processor if and only
if ∀ L ≥ 0,

∑n
i=1 dbf (τi , L) ≤ L.

t
0 1 2 3 4 5 6 7 8 9 10 11 12

Ti = 2,Di = 1
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Proof for EDF Schedulability Test

• The processor demand in time interval [t1, t2] is the
computation demand that must be finished in interval [t1, t2].
That is, only jobs that arrive no earlier than t1 and have
absolute deadline no more than t2 are considered.

• The processor demand gi ([t1, t2]) contributed by task τi is

gi ([t1, t2]) = Ci ·max

{
0,

⌊
t2 + Ti − Di − φi

Ti

⌋
−
⌈
t1 − φi
Ti

⌉}

• The feasibility is guaranteed if and only if in any interval
[t1, t2], the processor demand is no more than the available
time, i.e.,

t2 − t1 ≥
n∑

i=1

gi (t1, t2) ≥
n∑

i=1

⌊
t2 + Ti − Di − t1

Ti

⌋
• Replacing t2 − t1 by L, we conclude the proof.
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Complexity of the Exact Analysis

For analyzing whether a task set can be schedulable by EDF, the
time complexity is O(nLmax), where Lmax is the hyper-period
LCM(T1,T2, . . . ,Tn).

• It takes exponential-polynomial time (not pseudo-polynomial
time). Why?

Theorem

Ekberg and Wang [ECRTS 2015]: testing EDF schedulability of such
a task set is (strongly) coNP-hard. That is, deciding whether a task
set is not schedulable by EDF is (strongly) NP-hard.
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Comparison between RM and EDF (Implicit Deadlines)

RM
• Low run-time overhead:O(1)

with priority sorting in
advance

• Optimal for static-priority

• Schedulability test is
NP-hard (even if the
relative deadline = period)

• Least upper bound: 0.693

• In general, more preemption

EDF
• High run-time

overhead:O(log n) with
balanced binary tree

• Optimal for dynamic-priority

• Schedulability test is easy
(when the relative deadline
= period)

• Least upper bound: 1

• In general, less preemption
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Appendix: TDA for Arbitrary Deadlines
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Busy Intervals

Definition

A τk -level busy interval (t0, t] of task τk begins at an instant t0
when

1 all jobs in τk released before t have completed, and

2 a job of τk releases.

The interval ends at the first instant t after t0 when all jobs in τk
released since t0 are complete.

τ2

τk

t0 busy interval t
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TDA Analysis (sketched)

Theorem

We are given a set T of sporadic, independent, preemptable tasks.

1 If ∀τk ∈ T ∃t with 0 < t ≤ min{Tk ,Dk} and Wk(t) ≤ t,
then T is schedulable on one processor by algorithm A for
priority ordering.

2 Otherwise, we have to solve the following equation iteratively

t(`+1) =
k∑

j=1

⌈
t(`)

Tj

⌉
Cj ,

with initialization t(0) =
∑k

j=1 Cj . If the maximum response
time of the jobs of τk released in time (0, t] is less than the
relative deadline, T is schedulable; otherwise T is not
schedulable.
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Response Times

Lemma

The maximum response time Wk,j of the j-th job of τk in an in-
phase τk busy period is equal to the smallest value of t that satisfies
the equation

t = wk,j(t + (j − 1) · Tk)− (j − 1) · Tk ,

where wk,j(t) = jCk +
∑k−1

i=1

⌈
t
Ti

⌉
Ci .

This should be clear now.
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An Example TDA Analysis

Suppose that D2 is 120 for this example.

0 100 200 300 400 500 600 700

0 100 200 300 400 500 600 700

t = w2,1(t)

= C2 +
1∑

i=1

⌈
t

Ti

⌉
Ci

= 62 +
⌈ t

70

⌉
26

→W2,1 = 114

t = w2,2(t + T2)− T2

= 124 +

⌈
t + 100

70

⌉
26

− 100

→W2,2 = 102

t = w2,3(t + 2T2)− 2T2

= 186 +

⌈
t + 200

70

⌉
26

− 200

→W2,3 = 116
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Correctness of the TDA for Arbitrary Relative Deadlines

Lemma

The response time Wk,j of the j-th job of τk executed in an in-phase
τk busy interval is no less than the response time of the j-th job of
τk executed in any τk busy interval.

Lemma

The number of jobs in τk that are executed in an in-phase τk busy
interval is never less than the number of jobs in this task that are
executed in a τk busy interval of arbitrary phase.
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