
Worst-Case Execution Time Analysis

Prof. Dr. Jian-Jia Chen

LS 12, TU Dortmund

29, 30 April, 2019

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 53

Most Essential Assumptions for Real-Time Systems

Upper bound on the execution times:

• Commonly, called the Worst-Case Execution Time (WCET)

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 2 / 53

What does Execution Time Depend on

• Input parameters
• Algorithm parameters
• Problem size
• etc.

• Initial states and intermediate states of the system while
executing

• Cache configuration, replacement policies
• Pipelines
• Speculations
• etc.

• Interferences from the environment
• Scheduling
• Interrupts
• etc.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 3 / 53

How to Derive the Worst-Case Execution Time (WCET)

• Most of industry’s best practice
• Measure it: determine WCET directly by running or simulating

a set of inputs.
• There is no guarantee to give an upper bound of the WCET.
• The derived WCET could be too optimistic.

• Exhaustive execution: by considering the set of all the possible
inputs

• In general, not possible
• The inputs have to cover all the possible initial states and

intermediate states of the system, which is also usually not
possible.

• Compute it
• In general, not possible neither, as computing (tight) WCET

for a program is uncomputable by Turing machines.
• Based on some structures, it is possible and the derived

solution is a safe upper bound of the WCET.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 4 / 53

Why is It Uncomputable?

Halting Problem

Given the description of a Turing machine m and its input x , the
problem is to answer the question whether the machine halts on x .

Theorem

The Halting Problem is undecidable (uncomputable). In other
words, one cannot use an algorithm to decide whether another al-
gorithm m halts on a specific input.

WCET is undecidable

It is even undecidable if it terminates at all. Deriving the WCET is
of course undecidable.

Please refer to the textbook of Computational Complexity by Prof. Papadimitriou.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 5 / 53

Execution Time Distribution

from Reinhard Wilhelm

Our objectives:

• Upper bound of the execution time as tightly as possible.

• All control-flow paths, by considering all possible inputs.

• All paths through the architecture, resulting from the
potential initial and assumed intermediate architectural states.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 6 / 53

Timing Analysis

By considering systems, in general, with

• finite architectural configurations, finite input domains, and
bounded loops and recursion,

WCET is computable.

But......, the search space is too large to explore it exhaustively!

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 7 / 53

Timing Analysis

By considering systems, in general, with

• finite architectural configurations, finite input domains, and
bounded loops and recursion,

WCET is computable.

But......, the search space is too large to explore it exhaustively!

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 7 / 53

Why is It Hard for Analyzing WCET?

Execution time e(i) of machine instruction i

• In the good old time:
e(i) is a constant c , which could be found in the data sheet

• Nowadays, especially for high-performance processors:
e(i) also depends on the (architectural) execution state s.

min{e(i , s)|s ∈ S} ≤ e(i) ≤ max{e(i , s)|s ∈ S},

where S is the set of all states.

• Using max{e(i , s)|s ∈ S} is safe for WCET, but might be not
tight since some states in S might not be possible to reach by
some inputs.

• Execution history, resulting in a smaller set of reachable
execution states, has to be enforced to improve the tightness
of the analysis.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 8 / 53

Variability of Execution Times

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 9 / 53

Timing Accidents and Penalties

• Timing Accident: cause for an increase of the execution time
of an instruction

• Timing Penalty: the associated increase

• Types of timing accidents
• Cache misses
• Pipeline stalls
• Branch mispredictions
• Bus collisions
• Memory refresh of DRAM
• TLB miss

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 10 / 53

Overall Approach: Modularization

• Architecture Analysis:
• Use Abstract Interpretation.
• Exclude as many Timing Accidents as possible during analysis.

• Certain timing accidents will never happen, e.g., at a certain
program point, instruction fetch will never cause a cache miss.

• The more accidents excluded, the lower (better) the upper
bound.

• Determine WCET for basic blocks, based on context
information.

• Worst-Case Path Determination:
• Map control flow graph to an Integer Linear Program (ILP).
• Determine upper bound and associated path.

High-Level Objectives: Upper Bound of WCET

• It must be safe, i.e., not underestimate.

• It should be tight, i.e., not far away from real WCET.

• The analysis effort must be tolerable.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 11 / 53

Overall Structure

Executable Binary
Program

Reconstruction
Control−Flow−Graph (CFG)

Loop Analysis and Unfolding

Path Analysis

ILP−Generator

ILP−Solver

Evaluation
WCET Visualization

and Analysis

Timing Information

Abstraction
Micro−Architecture

Cache/Pipeline
Analyzer

Value Analyzer

Worst−Case Path AnalysisMicro−architecture Analysis

Loop Bounds

Static Analysis

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 12 / 53

Outline

Introduction

Program Path Analysis

Static Analysis
Value Analysis
Cache Analysis
Pipeline Analysis

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 13 / 53

Control Flow Graph (CFG)

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 14 / 53

Basic Blocks

Definition: A basic block is a
sequence of instructions
where the control flow enters
at the beginning and exits at
the end, in which it is highly
amenable to analysis.

a[0] := b[0] + c[0]

a[1] := b[3] + c[3]

a[2] := b[6] + c[6]

d := a[0] ∗ a[1]

e := d/a[2]

if e < 10 goto L

Determining the basic blocks

• Beginning:
• the first instruction
• targets of

un/conditional jumps
• instructions that

follow un/conditional
jumps

• Ending:
• the basic block

consists of the block
beginning and runs
until the next block
beginning (exclusive)
or until the program
ends

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 15 / 53

Basic Blocks

Definition: A basic block is a
sequence of instructions
where the control flow enters
at the beginning and exits at
the end, in which it is highly
amenable to analysis.

a[0] := b[0] + c[0]

a[1] := b[3] + c[3]

a[2] := b[6] + c[6]

d := a[0] ∗ a[1]

e := d/a[2]

if e < 10 goto LDetermining the basic blocks

• Beginning:
• the first instruction
• targets of

un/conditional jumps
• instructions that

follow un/conditional
jumps

• Ending:
• the basic block

consists of the block
beginning and runs
until the next block
beginning (exclusive)
or until the program
ends

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 15 / 53

Program Path Analysis

• Problem: Which sequence of instructions is executed in the
worst case (i.e., the longest execution time)?

• Input:
• Timing information for each basic block, derived from static

analysis (value/cache/pipeline analysis)
• Loop bounds by specification
• CFG derived from the executable binary program

• Basic Concept:
• Transform structure of CFG into a set of (integer) linear

equations
• Solution of the Integer Linear Program (ILP) yields bound on

the WCET.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 16 / 53

Program Path Analysis: Formal Definition

Input

A CFG with N basic blocks, in which each basic block Bi has a
worst-case execution time ci , given by static analysis.

Output

Suppose that each block Bi is executed exactly xi times. What is
the worst-case execution time

WCET =
N∑
i=1

ci · xi ,

such that the values of xi s satisfy the structural constraints in the
CFG?

Note that additional constraints provided by the programmer
(bounds for loop counters, etc.) can also be included.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 17 / 53

Example for CFG Constraints

d2

d1

d3

d9

d6

d4 d5

d7

d8

d10

s=k;

while (k < 20)

if (ok)

j++;

k++;

r=j

j=0; ok=true;

Flow equations: (xi is a
variable)
d1 = d2 = x1
d3 + d9 = d2 + d8 = x2
d4 + d5 = d3 = x3
d6 + d7 = d8 = x4
d4 = d6 = x5
d5 = d7 = x6

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 18 / 53

Example for Additional Constraints

d2

d1

d3

d9

d6

d4 d5

d7

d8

d10

s=k;

while (k < 20)

if (ok)

j++;

k++;

r=j

j=0; ok=true;

The loop is executed for at
most 20 times when k is
initialized with a
non-negative number:

x3 ≤ 20x1.

The basic block for
j = 0; ok = true; is
executed for at most one
time:

x6 ≤ x1.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 19 / 53

WCET: ILP Formulation

WCET = max{
N∑
i=1

ci · xi

|d1 = 1

and
∑

j∈in(Bi)

dj =
∑

k∈out(Bi)

dk = xi , i = 1, . . . ,N

and additional constraints}

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 20 / 53

Outline

Introduction

Program Path Analysis

Static Analysis
Value Analysis
Cache Analysis
Pipeline Analysis

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 21 / 53

Overall Structure

Executable Binary
Program

Reconstruction
Control−Flow−Graph (CFG)

Loop Analysis and Unfolding

Path Analysis

ILP−Generator

ILP−Solver

Evaluation
WCET Visualization

and Analysis

Timing Information

Abstraction
Micro−Architecture

Cache/Pipeline
Analyzer

Value Analyzer

Worst−Case Path AnalysisMicro−architecture Analysis

Loop Bounds

Static Analysis

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 22 / 53

Outline

Introduction

Program Path Analysis

Static Analysis
Value Analysis
Cache Analysis
Pipeline Analysis

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 23 / 53

Value Analysis: Motivation and Method

• Motivation
• Provide access information to data-cache/pipeline analysis
• Detect infeasible paths
• Derive loop bounds

• Method
• Calculate intervals at all program points
• By considering addresses, register contents, local and global

variables.

Abstract Interpretation

Perform the program’s computation using value descriptions or
abstract values in place of the concrete values.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 24 / 53

Abstract Interpretation: Manipulation

• abstract domain - related to concrete domain by abstraction
and concretization functions

• Replace an integer/double operator by using intervals
• e.g., L = [3, 5] stands for L is a value between 3 and 5

• abstract transfer functions for each statement type
• e.g., operator +: [3, 5] + [2, 6] = [5, 11]
• e.g., operator −: [3, 5]− [2, 6] = [−3, 3]

• a join function combining intervals from different paths
• [a, b] join [c , d] becomes [min{a, c},max{b, d}]
• [3, 5] join [2, 4] becomes [2, 5].

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 25 / 53

Value Analysis

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 26 / 53

Outline

Introduction

Program Path Analysis

Static Analysis
Value Analysis
Cache Analysis
Pipeline Analysis

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 27 / 53

Overall Structure

Executable Binary
Program

Reconstruction
Control−Flow−Graph (CFG)

Loop Analysis and Unfolding

Path Analysis

ILP−Generator

ILP−Solver

Evaluation
WCET Visualization

and Analysis

Timing Information

Abstraction
Micro−Architecture

Cache/Pipeline
Analyzer

Value Analyzer

Worst−Case Path AnalysisMicro−architecture Analysis

Loop Bounds

Static Analysis

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 28 / 53

Caches: Fast Memory to Deal with the Memory Wall

• How they work:
• dynamically
• managed by replacement policy

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

“hit”
[ab]

• Why they work: principle of locality
• spatial
• temporal

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 29 / 53

Caches: Fast Memory to Deal with the Memory Wall

• How they work:
• dynamically
• managed by replacement policy

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

a1

“hit”
[ab]

• Why they work: principle of locality
• spatial
• temporal

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 29 / 53

Caches: Fast Memory to Deal with the Memory Wall

• How they work:
• dynamically
• managed by replacement policy

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

a1!

“hit”
[ab]

• Why they work: principle of locality
• spatial
• temporal

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 29 / 53

Caches: Fast Memory to Deal with the Memory Wall

• How they work:
• dynamically
• managed by replacement policy

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c3?

“miss”
[ab]

• Why they work: principle of locality
• spatial
• temporal

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 29 / 53

Caches: Fast Memory to Deal with the Memory Wall

• How they work:
• dynamically
• managed by replacement policy

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c3? c?

“miss”
[ab]

• Why they work: principle of locality
• spatial
• temporal

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 29 / 53

Caches: Fast Memory to Deal with the Memory Wall

• How they work:
• dynamically
• managed by replacement policy

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c3? c = 〈c1c2c3c4〉!

“miss”
[ac]

• Why they work: principle of locality
• spatial
• temporal

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 29 / 53

Caches: Fast Memory to Deal with the Memory Wall

• How they work:
• dynamically
• managed by replacement policy

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c3!

“miss”
[ac]

• Why they work: principle of locality
• spatial
• temporal

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 29 / 53

Caches: Fast Memory to Deal with the Memory Wall

• How they work:
• dynamically
• managed by replacement policy

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c4?

“hit”
[ac]

• Why they work: principle of locality
• spatial
• temporal

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 29 / 53

Caches: Fast Memory to Deal with the Memory Wall

• How they work:
• dynamically
• managed by replacement policy

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c4!

“hit”
[ac]

• Why they work: principle of locality
• spatial
• temporal

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 29 / 53

Fully Associative Caches

Tag Block
offset

Address:

B b
b

k s

log2(s) log2(8 ∗ b)

•

•

•

Tag Data Block

Tag Data Block
...

Tag Data Block

B b
b

k s

log2(s) log2(8 ∗ b) s

•

•

•

=?

No:
Miss!

Yes:
Hit! MUX

Data

= associativity

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 30 / 53

Set-Associative Caches

...

B b
b

k s

log2(s) log2(8 ∗ b) s

•

•

•

Tag Index Block
offset

Address:

B b
b

k s

log2(s) log2(8 ∗ b)

•

•

•

B b
b

k s

log2(s) log2(8 ∗ b)

•

•

•

Tag Data Block

Tag Data Block
...

Tag Data Block
Cache Set:

B b
b

k s

log2(s) log2(8 ∗ b) s

•

•

•

Tag Data Block

Tag Data Block
...

Tag Data Block
Cache Set:

=?

No:
Miss!

Yes:
Hit! MUX

Data
Special cases:

• direct-mapped cache: only one line per cache set

• fully-associative cache: only one cache set

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 31 / 53

Replacement Policies

• Least-Recently-Used (LRU) used in
Intel Pentium I and MIPS 24K/34K

• First-In First-Out (FIFO or Round-Robin) used in
Motorola PowerPC 56x, Intel XScale, ARM9,

ARM11

• Pseudo-LRU (PLRU) used in
Intel Pentium II-IV and PowerPC 75x

• Most Recently Used (MRU) as described in literature

Each cache set is treated independently:
−→ Set-associative caches are compositions of fully-associative

caches.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 32 / 53

Cache Analysis for LRU

Two types of cache analyses:

1 Local guarantees: classification of individual accesses
• Must-Analysis −→ Underapproximates cache contents
• May-Analysis −→ Overapproximates cache contents

2 Global guarantees: bounds on cache hits/misses

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 33 / 53

Challenges for Cache Analysis

read
z

read
y

read
x

write
z

Always a cache hit/always a miss?

1. Initial cache contents unknown.

2. Different paths lead to these points.

3. Cannot resolve address of z .

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 34 / 53

Challenges for Cache Analysis

read
z

read
y

read
x

write
z

Always a cache hit/always a miss?

1. Initial cache contents unknown.

2. Different paths lead to these points.

3. Cannot resolve address of z .

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 34 / 53

Using Abstract Interpretation

read
z

read
y

read
x

write
z

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

⊆ Cache Semantics computable

⊆ γ(Abstract Cache Sem.) efficiently com-
putable

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 35 / 53

Using Abstract Interpretation

read
z

read
y

read
x

write
z

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

⊆ Cache Semantics computable

⊆ γ(Abstract Cache Sem.) efficiently com-
putable

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 35 / 53

Using Abstract Interpretation

read
z

read
y

read
x

write
z

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

⊆ Cache Semantics computable

⊆ γ(Abstract Cache Sem.) efficiently com-
putable

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 35 / 53

Using Abstract Interpretation

read
z

read
y

read
x

write
z

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

⊆ Cache Semantics computable

⊆ γ(Abstract Cache Sem.) efficiently com-
putable

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 35 / 53

Using Abstract Interpretation

read
z

read
y

read
x

write
z

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

⊆ Cache Semantics computable

⊆ γ(Abstract Cache Sem.) efficiently com-
putable

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 35 / 53

Least-Recently-Used (LRU): Concrete Behavior

“Cache Miss”:

z
y

x

t

s

s
z
y

x

LRU has
notion of age

“Cache Hit”:

z
y

s

t

s

s
z
y

t

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 36 / 53

LRU: Must-Analysis: Abstract Domain

• Used to predict cache hits.
• Maintains upper bounds on ages of memory blocks.
• Upper bound ≤ associativity −→ memory block definitely

cached.

Example

Abstract state:

{x}
{}
{s,t}
{}

age 0

age 3

. . . and its interpretation:

Describes the set of all concrete cache states in
which x , s, and t occur,

• x with an age of 0,

• s and t with an age not older than 2.

γ([{x}, {}, {s, t}, {}]) =
{[x , s, t, a], [x , t, s, a], [x , s, t, b], . . .}

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 37 / 53

Sound Update – Local Consistency

(must) (must ′)
Abstract Update

concrete cache states concrete cache states

γ γ
Lifted
Concrete
Update

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 38 / 53

LRU: Must-Analysis: Update

“Definite Cache Hit”:

{x}
{}
{s,t}
{}

s

{s}
{x}
{t}
{}

“Potential Cache Miss”:

{x}
{}
{s,t}
{}

z

{z}
{x}
{}
{s,t}

Why does t remain in the same set in Abstract Interpretation
in the second case?

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 39 / 53

LRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
• γ(A) ⊆ γ(A t B)
• γ(B) ⊆ γ(A t B)

t
{a}
{}
{c,f}
{d}

{c}
{e}
{a}
{d}

{}
{}
{a,c}
{d}

“Intersection + Maximal Age”

How many memory blocks can be in the must-cache?

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 40 / 53

LRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
• γ(A) ⊆ γ(A t B)
• γ(B) ⊆ γ(A t B)

t
{a}
{}
{c,f}
{d}

{c}
{e}
{a}
{d}

{}
{}
{a,c}
{d}

“Intersection + Maximal Age”

How many memory blocks can be in the must-cache?

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 40 / 53

LRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
• γ(A) ⊆ γ(A t B)
• γ(B) ⊆ γ(A t B)

t
{a}
{}
{c,f}
{d}

{c}
{e}
{a}
{d}

{}
{}
{a,c}
{d}

“Intersection + Maximal Age”

How many memory blocks can be in the must-cache?

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 40 / 53

LRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
• γ(A) ⊆ γ(A t B)
• γ(B) ⊆ γ(A t B)

t
{a}
{}
{c,f}
{d}

{c}
{e}
{a}
{d}

{}
{}
{a,c}
{d}

“Intersection + Maximal Age”

How many memory blocks can be in the must-cache?

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 40 / 53

LRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
• γ(A) ⊆ γ(A t B)
• γ(B) ⊆ γ(A t B)

t
{a}
{}
{c,f}
{d}

{c}
{e}
{a}
{d}

{}
{}
{a,c}
{d}

“Intersection + Maximal Age”

How many memory blocks can be in the must-cache?

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 40 / 53

LRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
• γ(A) ⊆ γ(A t B)
• γ(B) ⊆ γ(A t B)

t
{a}
{}
{c,f}
{d}

{c}
{e}
{a}
{d}

{}
{}
{a,c}
{d}

“Intersection + Maximal Age”

How many memory blocks can be in the must-cache?

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 40 / 53

LRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
• γ(A) ⊆ γ(A t B)
• γ(B) ⊆ γ(A t B)

t
{a}
{}
{c,f}
{d}

{c}
{e}
{a}
{d}

{}
{}
{a,c}
{d}

“Intersection + Maximal Age”

How many memory blocks can be in the must-cache?

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 40 / 53

Example: Must-Analysis

entry [{}, {}, {}, {}]

A
⊥

B
⊥

C
⊥

D ⊥

exit ⊥

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 41 / 53

Example: Must-Analysis

entry [{}, {}, {}, {}]

A
⊥ t [{}, {}, {}, {}] = [{}, {}, {}, {}]

B
⊥

C
⊥

D ⊥

exit ⊥

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 41 / 53

Example: Must-Analysis

entry [{}, {}, {}, {}]

A
⊥ t [{}, {}, {}, {}] = [{}, {}, {}, {}]

B

[{A}, {}, {}, {}]
C

[{A}, {}, {}, {}]

D ⊥

exit ⊥

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 41 / 53

Example: Must-Analysis

entry [{}, {}, {}, {}]

A
⊥ t [{}, {}, {}, {}] = [{}, {}, {}, {}]

B

[{A}, {}, {}, {}]
C

[{A}, {}, {}, {}]

D
[{B}, {A}, {}, {}] t [{C}, {A}, {}, {}] =
[{}, {A}, {}, {}]

exit ⊥

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 41 / 53

Example: Must-Analysis

entry [{}, {}, {}, {}]

A

[{D}, {}, {A}, {}] t [{}, {}, {}, {}] =
[{}, {}, {}, {}]

B

[{A}, {}, {}, {}]
C

[{A}, {}, {}, {}]

D
[{B}, {A}, {}, {}] t [{C}, {A}, {}, {}] =
[{}, {A}, {}, {}]

exit [{D}, {}, {A}, {}]

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 41 / 53

No cache hits
can be
predicted!

Context-Sensitive Analysis/Virtual Loop-Unrolling

• Problem:
• The first iteration of a loop will always result in cache misses.
• Similarly for the first execution of a function.

• Solution:
• Virtually Unroll Loops: Distinguish the first iteration from

others
• Distinguish function calls by calling context.

Virtually unrolling the loop once:

• Accesses to A and D are
provably hits after the first
iteration

• Accesses to B and C can still
not be classified. Within each
execution of the loop, they may
only miss once.

−→ Persistence Analysis

entry

A
[{}, {}, {}, {}]

B

[{A}, {}, {}, {}]
C

[{A}, {}, {}, {}]

D
[{}, {A}, {}, {}]

exit

A
[{D}, {}, {A}, {}]

B

[{A}, {D}, {}, {}]
C

[{A}, {D}, {}, {}]

D
[{}, {A}, {D}, {}]

exit

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 42 / 53

LRU: May-Analysis: Abstract Domain

• Used to predict cache misses.

• Maintains lower bounds on ages of memory blocks.

• Lower bound ≥ associativity
−→ memory block definitely not cached.

Abstract state:

{x,y}
{}
{s,t}
{u}

age 0

age 3

and its interpretation:

Describes a set of all concrete cache states, where
no memory blocks except x , y , s, t, and u occur,

• x and y with an age of at least 0,

• s and t with an age of at least 2,

• u with an age of at least 3.

γ([{x , y}, {}, {s, t}, {u}]) =
{[x , y , s, t], [y , x , s, t], [x , y , s, u], . . .}

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 43 / 53

LRU: May-Analysis: Update

“Definite Cache Miss”:

{x}
{}
{s,t}
{y}

z

{z}
{x}
{}
{s,t}

“Potential Cache Hit”:

{x}
{}
{s,t}
{y}

s

{s}
{x}
{}
{y,t}

Why does t move to an older set in Abstract Interpretation in
the second case?

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 44 / 53

LRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:

• γ(A) ⊆ γ(A t B)

• γ(B) ⊆ γ(A t B)

t
{a}
{}
{c,f}
{d}

{c}
{e}
{a}
{d}

=

{a,c}
{e}
{f}
{d}

“Union + Minimal Age”

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 45 / 53

LRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:

• γ(A) ⊆ γ(A t B)

• γ(B) ⊆ γ(A t B)

t
{a}
{}
{c,f}
{d}

{c}
{e}
{a}
{d}

=

{a,c}
{e}
{f}
{d}

“Union + Minimal Age”

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 45 / 53

LRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:

• γ(A) ⊆ γ(A t B)

• γ(B) ⊆ γ(A t B)

t
{a}
{}
{c,f}
{d}

{c}
{e}
{a}
{d}

=

{a,c}
{e}
{f}
{d}

“Union + Minimal Age”

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 45 / 53

LRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:

• γ(A) ⊆ γ(A t B)

• γ(B) ⊆ γ(A t B)

t
{a}
{}
{c,f}
{d}

{c}
{e}
{a}
{d}

=

{a,c}
{e}
{f}
{d}

“Union + Minimal Age”

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 45 / 53

LRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:

• γ(A) ⊆ γ(A t B)

• γ(B) ⊆ γ(A t B)

t
{a}
{}
{c,f}
{d}

{c}
{e}
{a}
{d}

=

{a,c}
{e}
{f}
{d}

“Union + Minimal Age”

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 45 / 53

LRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:

• γ(A) ⊆ γ(A t B)

• γ(B) ⊆ γ(A t B)

t
{a}
{}
{c,f}
{d}

{c}
{e}
{a}
{d}

=

{a,c}
{e}
{f}
{d}

“Union + Minimal Age”

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 45 / 53

Outline

Introduction

Program Path Analysis

Static Analysis
Value Analysis
Cache Analysis
Pipeline Analysis

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 46 / 53

Overall Structure

Executable Binary
Program

Reconstruction
Control−Flow−Graph (CFG)

Loop Analysis and Unfolding

Path Analysis

ILP−Generator

ILP−Solver

Evaluation
WCET Visualization

and Analysis

Timing Information

Abstraction
Micro−Architecture

Cache/Pipeline
Analyzer

Value Analyzer

Worst−Case Path AnalysisMicro−architecture Analysis

Loop Bounds

Static Analysis

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 47 / 53

Pipelines

An instruction execution consists of several sequential phases, e.g.,

• Fetch

• Decode

• Execute

• Write Back

Inst 1 Inst 2 Inst 3 Inst 4

Fetch

Decode Fetch

Execute Decode Fetch

Write Back Execute Decode Fetch

Write Back Execute Decode

Write Back Execute

Write Back

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 48 / 53

Hardware Features: Pipelines

• Instruction execution is split into several stages.

• Several instructions can be executed in parallel.

• Some pipelines can begin more than one instruction per cycle:
VLIW, Superscalar.

• Some CPUs can execute instructions out-of-order.
• Practical Problems: Hazards and cache misses.

• Data Hazards: Operands not yet available (Data
Dependences)

• By applying dependence analysis

• Control Hazards: Conditional branch
• By applying dependence analysis

• Resource Hazards: Consecutive instructions use same resource
• By applying analysis on the resource reservation tables

• Instruction-Cache Hazards: Instruction fetch causes cache miss

• By applying static cache analysis

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 49 / 53

CPU as a (Concrete) State Machine

• Processor (pipeline, cache, memory, inputs) viewed as a big state
machine, performing transitions every clock cycle.

• Starting in an initial state for an instruction, transitions are performed,

until a final state is reached:

• end state: instruction has left the pipeline
• # transitions: execution time of instruction

• function exec (b: basic block, s: concrete pipeline state) t: trace

• interprets instruction stream of b starting in state s producing
trace t

• successor basic block is interpreted starting in initial state
last(t)

• length(t) gives number of cycles
• function exec (b: basic block, s: abstract pipeline state) t: trace

• interprets instruction stream of b (annotated with cache
information) starting in state s producing trace t

• length(t) gives number of cycles
• Alternatives: use a set of states for an instruction instead of one starting

state. This is useful when there are multiple predecessors.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 50 / 53

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 51 / 53

Summary of WCET Analysis

• Value analysis

• Cache analysis
• using statically computed effective addresses and loop bounds

• Pipeline analysis
• assume cache hits where predicted,
• assume cache misses where predicted or not excluded.
• Only the “worst” result states of an instruction need to be

considered as input states for successor instructions!

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 52 / 53

aiT-Tool

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 53 / 53

	Introduction
	Program Path Analysis
	Static Analysis
	Value Analysis
	Cache Analysis
	Pipeline Analysis

