'tLj technische universitat 'ﬁ ~fakultat fir informatik
dortmund informatik 12

StateCharts

Peter Marwedel
Informatik 12

TU Dortmund
Germany

StateCharts

Used here as a (prominent) example of a
model of computation based on shared
memory communication.

<= appropriate only for local (non-
distributed) systems

technische universitat = fakultat far O p. marwedel, 2
dortmund informatik informatik 12, 2008 T eT

Models considered in this course

Communication/ Shared Message passing

local computations | memory Synchronous |
—— Asynchronous

Communicating StateCharts -

finite state

machines

Data flow model

Von Neumann
model

Discrete event (DE)
model

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

StateCharts: recap of classical automata

Classical automata:

iInput X " Internal state Z > output Y
clock .

Moore- + Mealy
Next state Z* computed by function & | automata=finite state

Output computed by function A machines (FSMs)

/—\
. I\/Iooré-automata:

Y=\(2); Z'=3(X 2) o=1
* Mealy-automata
Y=A(XZ), Z"=0(X Z

technische universitat = fakultat far O p. marwedel,
dortmund _ informatik informatik 12, 2008

StateCharts

Classical automata not useful for complex systems
(complex graphs cannot be understood by humans).

% Introduction of hierarchy = StateCharts [Harel, 1987]
StateChart = the only unused combination of

LHow" or ,state” with ,diagram* or ,chart”

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

Introducing hierarchy

FSM will be in exactly
one of the substates of S
If S is active

(eitherin AorinBor..)

I |
f
e

technische universitat = fakultat far O p. marwedel, 6
dortmund _ informatik informatik 12, 2008 -V

Definitions

= Current states of FSMs are also called active states.

= States which are not composed of other states are called
basic states.

= States containing other states are called super-states.

= For each basic state s, the super-states containing s are
called ancestor states.

= Super-states S are called OR-super-states, if exactly one
of the sub-states of S is active whenever S is active.

5] . superstate
{@g @h @i @j @4— __________ ancestor state of E

é " substates

technische universitat = fakultat far O p. marwedel, 7
dortmund informatik informatik 12, 2008 - T

Default state mechanism

Try to hide internal
structure from outside
world!

& Default state -

~

Filled circle AN

indicates sub-state B

entered whenever
super-state is entered.

Not a state by itself!

technische universitat = fakultat fir
dortmund informatik

[p. marwedel,
informatik 12, 2008

History mechanism

\. S } (behavior different
k from last slide)

m

For input m, S enters the state it was in before S was left (can
be A, B, C,D, or E).

If S is entered for the first time, the default mechanism applies.
History and default mechanisms can be used hierarchically.

technische universitat = fakultat far O p. marwedel, 9
dortmund informatik informatik 12, 2008 - YT

Combining history and default state mechanism

S

\é) I
m

same meaning
S

e f . .)
RoZorororo)
\ké)

technische universitat = fakultat far O p. marwedel, 10
dortmund informatik informatik 12, 2008 - -

\.

Concurrency

Convenient ways of describing concurrency are required.
AND-super-states: FSM is in all (immediate) sub-states of
a super-state; Example:

answering—machine

-

on

key—monitoring (excl. on/off) A

I

|

|

ring | key pressed
v | .

|

|

) :

N I

4 line—monitoring

hangup done
(caller) i

/

k.

technische universitat = fakultat far O p. marwedel,

dortmund informatik informatik 12, 2008 - 11 -

Entering and leaving AND-super-states

answering—machine

p

on

line—monitoring

ring
@.
hangup

ﬁ (caller)

N

key—monitoring (incl. on/off)

key pressed
o T
done

Jﬁ

=

S

-

Line-monitoring and key-monitoring are entered and left,

when service switch is operated.

technische universitat = fakultat fir
dortmund informatik

[p. marwedel,
informatik 12, 2008

Types of states

In StateCharts, states are either
= basic states, or
= AND-super-states, or
* OR-super-states.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

_ 13-

Timers

Since time needs to be modeled in embedded systems,
timers need to be modeled.
In StateCharts, special edges can be used for timeouts.

/
a 20 ms Q]ti/meo\ut[
If event a does not happen while the system is in the left
state for 20 ms, a timeout will take place.

technische universitat = fakultat far O p. marwedel, 14
dortmund _ informatik informatik 12, 2008 - -

Using timers in an answering machine

Lproc ‘

Iift ff return
4 ° talk oo dead
S (callee)
tlmeout T
tlmeout
beep = beep
l‘eCOI‘d Silent
J
technische universitat = fakultat far O p. marwedel,

dortmund . W informatik informatik 12, 2008 - 15-

General form of edge labels

Q event [condition] / reaction Q
Events:

= Exist only until the next evaluation of the model
= Can be either internally or externally generated
Conditions:
= Refer to values of variables that keep their value until
they are reassigned
Reactions:
= Can either be assignments for variables or creation of
events
Example:
= service-off [not in Lproc] / service:=0

technische universitat = fakultat far O p. marwedel, 16
dortmund informatik informatik 12, 2008 - -

The StateCharts simulation phases
(StateMate Semantics)

How are edge labels evaluated?

Three phases:

3. Effect of external changes on events and conditions is
evaluated,

4. The set of transitions to be made in the current step and
right hand sides of assignments are computed,

5. Transitions become effective, variables obtain new
values.

Separation into phases 2 and 3 guarantees deterministic

and reproducible behavior.

technische universitat = fakultat far O p. marwedel, 17
dortmund informatik informatik 12, 2008 - -

Example

swap
s : N
: /la:=1; b:=0
| e
|
|
:
e/a:=b : e/b:=a
|

. A

In phase 2, variables a and b are assigned to temporary
variables. In phase 3, these are assigned toaand b. As a
result, variables a and b are swapped.

In a single phase environment, executing the left state first
would assign the old value of b (=0) to a and b. Executing the
right state first would assign the old value of a (=1) to a and
b. The execution would be non-deterministic.

technische universitat = fakultat far O p. marwedel, 18
dortmund informatik informatik 12, 2008 - -

Reflects model of clocked hardware

clock -———=14
— O

—= b

|’ @
In an actual clocked (synchronous) hardware system,
both registers would be swapped as well.

Same separation into phases found in other languages
as well, especially those that are intended to model

hardware.

technische universitat = fakultat far O p. marwedel, 19
dortmund _ informatik informatik 12, 2008 - -

Steps

Execution of a StateMate model consists of a sequence of
(status, step) pairs

Status Step Status Step Status Step Status
& --------- (O — —————— = 2 > ———m————— 2 =0

Status= values of all variables + set of events + current time
Step = execution of the three phases (StatelMiate semantics)

W Other implementations of
phase 2 StateCharts do not have these
‘p\, 3 phases (and hence are

hasg 37— nondeterministic)!

technische universitat = fakultat far O p. marwedel, 20
dortmund _ informatik informatik 12, 2008 - -

Other semantics

Several other specification languages for
hierarchical state machines (UML, dave, ...)
do not include the three simulation phases.

These correspond more to a SW point of view
with no synchronous clocks.

LabView seems to allow turning the multi-
phased simulation on and off.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 21 -

) Broadcast mechanism

! RS

)) X

74
AN

% Values of variables are visible to all parts of the
StateChart model
New values become effective in phase 3 of the

current step and are obtained by all parts of the
model in the following step.

—— —-— -
ce.

= StateCharts implicitly assumes a broadcast mechanism
for variables
(- implicit shared memory communication
—other implementations would be very inefficient -).

= StateCharts is appropriate for local control systems (©),
but not for distributed applications for which updating
variables might take some time (®).

technische universitat = fakultat far O p. marwedel, 29
dortmund informatik informatik 12, 2008 - -

Lifetime of events

Events live until the step following the one in which
they are generated (,one shot-events®).

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

_ 23 -

StateCharts deterministic or not?

Deterministic (in this context) means:

Must all simulators return the same result for a given input?

= Separation into 2 phases a required condition

= Semantics # StateMate semantics may be non-deterministic
Potential other sources of non-deterministic behavior:

= Choice between conflicting transitions resolved arbitrarily

®~--® A Tools typically issue a warning if
such non-determinism could exist
- Deterministic behavior for StateMate semantics if

transition conflicts are resolved deterministically and no
other sources of non-determinism exist

technische universitat = fakultat far O p. marwedel, 24
dortmund informatik informatik 12, 2008 - -

Evaluation of StateCharts (1)

Pros:

= Hierarchy allows arbitrary nesting of AND- and OR-super
states.

= (StateMate-) Semantics defined in a follow-up paper to
original paper.

= Large number of commercial simulation tools available
(StateMate, StateFlow, BetterState, ...)

= Available ,back-ends” translate StateCharts into C or
VHDL, thus enabling software or hardware
iImplementations.

technische universitat = fakultat far O p. marwedel, 25
dortmund informatik informatik 12, 2008 - -

Evaluation of StateCharts (2)

Cons:
= Generated C programs frequently inefficient,
= Not useful for distributed applications,
= No program constructs,
= No description of non-functional behavior,
= No object-orientation,
* No description of structural hierarchy.

Extensions:
= Module charts for description of structural hierarchy.

technische universitat = fakultat far O p. marwedel, 26
dortmund _ informatik informatik 12, 2008 - -

[]
technische universitat fakultat fur informatik
dortmund informatik 12

Some general properties of languages

Peter Marwedel
Informatik 12
Univ. Dortmund
Germany

1. Specifying timing (1)

4 types of timing specs required [Burns, 1990]:

* Measure elapsed time
Check, how much time has elapsed
since last call

execute

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 28 -

2. Specifying timing (2)

* Possibility to specify timeouts
Stay in a certain state a maximum time.

\l/
* Methods for specifying deadlines @
Not available or in separate control file.
execute
t

= StateCharts comprises a mechanism for specifying
timeouts. Other types of timing specs not supported.

technische universitat = fakultat far O p. marwedel, 29
dortmund _ informatik informatik 12, 2008 - -

2. Properties of processes (1)

Number of processes
static;
dynamic (dynamically changed hardware architecture?)

Nesting:
= Nested declaration of processes
process {

process {
process {

1
= or all declared at the same level
process { ...}
process { ...}
process { ...}

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 30 -

2. Properties of processes (2)

Different techniques for process creation

= Elaboration in the source (c.f. ADA, below)

declare
process Pl ..

= explicit fork and join (c.f. Unix)
id = fork() ;

= process creation calls
id = create process(Pl);

= StateCharts comprises a static number of processes,
nested declaration of processes, and process
creation through elaboration in the source.

technische universitat = fakultat far O p. marwedel, 31
dortmund informatik informatik 12, 2008 - -

3. Using non-standard I/O devices -

Direct access to switches, displays etc;
No protection required; OS can be much faster than
for operating system with protection.

< No support in standard StateCharts.
< No particular OS support anyhow.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

_ 32-

4. Synchronous vs. asynchronous languages (1)

Description of several processes in many languages non-
deterministic:

The order in which executable tasks are executed is not
specified (may affect result).

Synchronous languages: based on automata models.

“Synchronous languages aim at providing high level, modular
constructs, to make the design of such an automaton easier
[Halbwachs].

Synchronous languages describe concurrently operating
automata. “.. when automata are composed in parallel, a
transition of the product is made of the "simultaneous”
transitions of all of them®.

technische universitat = fakultat far O p. marwedel, 33
dortmund informatik informatik 12, 2008 - -

4. Synchronous vs. asynchronous languages (2)

Synchronous languages implicitly assume the presence of a
(global) clock. Each clock tick, all inputs are considered, new
outputs and states are calculated and then the transitions are
made.

Requires a broadcast mechanism for all parts of the model.
|dealistic view of concurrency.
Has the advantage of guaranteeing deterministic behavior.

& StateCharts using StateMate semantics is a
synchronous language.

technische universitat = fakultat far O p. marwedel, 34
dortmund _ informatik informatik 12, 2008 - -

Summary

StateCharts as an example of shared memory MoCs
= AND-states
* OR-states
= Timer
* Broadcast
= Semantics
* multi-phase models
* single-phase models
Some general language properties
" Process creation techniques,
= asynchronous/synchronous languages

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 35-

