[]
technische universitat fakultat fur informatik
dortmund informatik 12

Evaluation and Validation

Peter Marwedel
TU Dortmund, Informatik 12
Germany

2008/06/25

Structure of this course

New
3: Embedded clustering
System HW
5: Application
mapping: sche- _ ,
2: Specifications [duliag %W/SW- > 8: Testing
Partitioning
4: Standard

Software, Real-
Time Operating
Systems

6: Evaluation | | 7: Optimization of
& Validation Embedded Systems

technische universitat = fakultat far O p. marwedel, 2
dortmund informatik informatik 12, 2008 - e

Evaluation and Validation

Definition: Evaluation is the process of computing
quantitative information of some key characteristics of a
certain (possibly partial) design.

Definition: Validation is the process of checking whether or
not a certain (possibly partial) design is appropriate for its
purpose, meets all constraints and will perform as expected
(yes/no decision).

Definition: Validation with mathematical rigor is called
(formal) verification.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

How to evaluate designs
according to multiple criteria?

In practice, many different criteria are relevant for evaluating
designs:

" (average) speed

= worst case speed

= power consumption

= cost

" gjze

= weight

= radiation hardness

= environmental friendliness

How to compare different designs? (Some designs are
“better” than others)

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

Energy [mJ]

o > Pareto curves
490 - Y=o,
6 X ‘
480 - 5 4R 2
470- P -x
460 - = configuration 2
450 - - - - - configuration 3
440 — — global Pareto curve
430 - _+inferior design point
420 6 -
. . better to use these points
410 - =
400 - 4
390 | | | | | | =
24 25 26 27 28 29 30 Time [msl
technische universitat = fakultat far O p. marwedel,

dortmund informatik informatik 12, 2008 - 5-

Pareto points

Definition: A (design) point J. is dominated by point
J,, if J,is equal or better than J. in each criterion (J. <J)).

Definition: A (design) point is Pareto-optimal or a
Pareto point, if it is not dominated by any other point.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

Multi-objective Optimization

Definition 1 (Dominance relation)

Let f,g € R™. Then f is said to dominate g, denoted as f - g, iff

1. Yiel{l,...,m}: f; > g

2. 3je{l,...,m}: f; > g;

Definition 2 (Pareto set)

A

ominated byw

i

T

Let ' C R™ be a set of vectors. Then the Pareto set F* C F is defined
as follows: F* contains all vectors g € F which are not dominated by any

vector f € F, lLe.

F*'={geF|AfeF:f>g}

(1)

technische universitat = fakultat fir
dortmund informatik

O p. marwedel,
informatik 12, 2008

Multiobjective Optimization

Maximize (y1, Yz, ..., Yk) = f(X1, X2, ..., Xn)

y2 y2
F ‘éﬁare__tg_“_gptimal = not dominated
e
. : better : S
incomparable
O % O » ’
....’;) 0....."'-.--:;4
Q. 9., _-dominated
Q Q
worse 9 i 9 >
incomparable
0 o -.
> Y1 Y

Pareto set = set of all Pareto-optimal solutions

technische universitat = fakultat far O p. marwedel, 8
dortmund informatik informatik 12, 2008 - O-

6‘6'1

e Simulations

= Simulations try to imitate the behavior of the real system
on a (typically digital) computer.

= Simulation of the functional behavior requires executable
models.

= Simulations can be performed at various levels.

= Some non-functional properties (e.g. temperatures,
EMC) can also be simulated.

= Simulations can be used to evaluate and to validate a
design

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

Validating functional behavior by simulation

Various levels of abstractions used for
simulations:

= High-level of abstraction: fast, but
sometimes not accurate

= Lower level of abstraction: slow and typically
accurate

= Choosing a level is always a compromise

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

Non-functional behavior:
Examples of thermal simulations (1)

Encapsulated cryptographic coprocessor:

Plopss Losaiion Y = T8 T5 mm

Source: http://www.coolingzone.com/Guest/News/
NL_JUN_2001/Campi/Jun_Campi_2001.html

technische universitat = fakultat fir O p. marwedel, 11
dortmund informatik informatik 12, 2008 - -

Examples of thermal simulations (2)

Microprocessor

W
st 1 & 1A HHR

E o, Iuﬂlilﬁ”'“""“”"'"-"""""‘-Llﬂ -

T THEA s s
llgfi-i:il | | _]'“:
+aul=lih£|. . i | “ |‘ H h || |‘| H ‘h ||

R L e o o R - i s.in kel bR L

: i -4 i |
A Flumerimmage showing the thermal solution A Flomericsimage showing the thermal solution
with a metal lid. without a metal lid.

Source: http://www.flotherm.com/
applications/app141/hot_chip.pdf

technische universitat = fakultat far O p. marwedel, 12
dortmund informatik informatik 12, 2008 - -

EMC simulation

Example: car engine controller

€ Siemens Aufomotive Towlouse

Red: high emission

Validation of EMC properties often Source: http://intrage.insa-tlse.fr/
done at the end of the design phase_ ~etienne/emccourse/what_for.htmi
technische universitat = fakultat fir O p. marwedel, - 13-

dortmund informatik informatik 12, 2008

Simulations

Limitations
= Typically slower than the actual design. ,
= Violations of timing constraints likely if oy
simulator is connected to the actual environment
= Simulations in the real environment may be AN
dangerous /D

= There may be huge amounts of data and it may be (==—
iImpossible to simulate enough data in the available \@Eﬂ
time. -

* Most actual systems are too complex to allow .
simulating all possible cases (inputs). %
Simulations can help finding errors in designs, &}
but they cannot guarantee the absence of errors.

technische universitat = fakultat far O p. marwedel, 14
dortmund informatik informatik 12, 2008 - -

.2

A d

d\e&)‘e(Rapid prototyping/Emulation

" Prototype: Embedded system that can be generated
quickly and behaves very similar to the final product.

= May be larger, more power consuming and have other
properties that can be accepted in the validation phase

= Can be built, for example, using FPGAs.

Example: Quickturn
Cobalt System
(1997), ~0.5M$ for
500kgate entry level
system

Source & ©: http://www.
eedesign. com/editorial/1997/
toolsandtech9703.html

technische universitat = fakultat far O p. marwedel, 15
dortmund informatik informatik 12, 2008 - -

Example of a more recent commercial emulator

T I S EEIRRE] ETIEEITIITII N uEERRERE Hl'li
IFI"H ‘1“ . “’“’“Hl e ———)

[www.verisity.com/images/products/xtremep{1|3}.gif]

technische universitat = fakultat far O p. marwedel, 16
dortmund informatik informatik 12, 2008 - -

o
9‘6(6 Fault injection
e J

Fault simulation may be too time-consuming
<= If real systems are available, faults can be
injected.

Two types of fault injection:

5. local faults within the system, and

6. faults in the environment (behaviors which
do not correspond to the specification).
For example, we can check how the system
behaves if it is operated outside the
specified temperature or radiation ranges.

technische universitat = fakultat far O p. marwedel, 17
dortmund informatik informatik 12, 2008 B -

Physical fault injection

Hardware fault injection requires major effort, but generates
precise information about the behavior of the real system.

3 techniques compared in the PDCS project on the MARS
hardware [Kopetz]:

Injection Technique |Heavy-ion |Pin-level N@E EMI ﬁ
Controllability, space Low “‘ High) Low
Controllability, time None | High/medium Low
Flexibility Low Medium High
Reproducibility Medium High Low
Physical reachability High Medium Medium
Timing measurement Medium high Low

technische universitat = fakultat far O p. marwedel, 18
dortmund informatik informatik 12, 2008 - -

Software fault injection

Errors are injected into the memories.
Advantages:
= Predictability: it is possible to reproduce every injected
fault in time and space.
= Reachability: possible to reach storage locations within
chips instead of just pins.
= Less effort than physical fault injection: no modified
hardware.
Same quality of results?

technische universitat = fakultat far O p. marwedel, 19
dortmund informatik informatik 12, 2008 B -

1
S
Ox\fa@‘e(Risk- and dependability analysis

Example : metal
migration @
Pentium 4

www.jrwhipple.com/computer_hangs.html

,10°": For many systems, probability of a catastrophe has to
be less than 10-° per hour = one case per 100,000 systems
for 10,000 hours.

FIT: failure-in-time unit for failure rate (=1/MTTF=1/MTBF);
1 FIT: rate of 10-° failures per hour

Damages are resulting from hazards.

For every damage there is a severity and a probability.
Several techniques for analyzing risks.

technische universitat = fakultat far O p. marwedel, 20
dortmund . W informatik informatik 12, 2008 - -

Actual failure rates

: 21090 Different devices
Example: failure rates less E 100
than 100 FIT for the first W
. =
20 years of lifeat 150°C @ ¢ |
TriQuint (GaAs) £ o
[www.triquint.com/company/quality/fags/faq_11.cfm] W
£ 0.01

10 100 10 10 10 10 10 10 10 10"
Time (Hours) at 150°C

Target: Failures rates of systems < 1FIT
Reality: Failures rates of circuits < 100 FIT
®redundancy is required to make a system more reliable

than its components
Analysis frequently works with simplified models <

technische universitat = fakultat far O p. marwedel, 21
dortmund informatik informatik 12, 2008 - -

Fault tree Analysis (FTA)

* FTA is a top-down method of analyzing risks.
Analysis starts with possible damage, tries to
come up with possible scenarios that lead to
that damage.

* FTA typically uses a graphical representation of
possible damages, including symbols for AND-
and OR-gates.

* OR-gates are used if a single event could result
In a hazard.

* AND-gates are used when several events or
conditions are required for that hazard to exist.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

:

- 22

Example

AND

Floppy includes boot virus

Boot sequence checks floppy

N

Floppy in drive at boot time

TCP/IP port open + OS bug

No firewall used) OR
PC connected to internet)1— OS hazard

o
User receives mail }

User clicks on attachment

Attachment has virus

technische universitat = fakultat far O p. marwedel, 23
dortmund informatik informatik 12, 2008 - -

Limitations

The simple AND- and OR-gates cannot model all situations.
For example, their modeling power is exceeded if shared
resources of some limited amount (like energy or storage
locations) exist.

Markov models may have to be used to cover such cases.

technische universitat = fakultat far O p. marwedel, 24
dortmund informatik informatik 12, 2008 B -

Failure mode and effect analysis (FMEA)

* FMEA starts at the components and tries to estimate their
reliability. The first step is to create a table containing
components, possible faults, probability of faults and
conseguences on the system behavior.

Component Failure Consequences Probability Critical?

Processor metal migration no service 10° /h yes

= Using this information, the reliability of the system
Is computed from the reliability of its parts l
(corresponding to a bottom-up analysis).

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

A

Safety cases

Both approaches may be used in “safety cases”. In such
cases, an independent authority has to be convinced that
certain technical equipment is indeed safe.

One of the commonly requested properties of technical
systems is that no single failing component should potentially
cause a catastrophe.

technische universitat = fakultat far O p. marwedel, 26
dortmund informatik informatik 12, 2008 B -

o2
(u [| u
e Formal verification

= Formal verification = formally proving a system correct,
using the language of mathematics.
= Formal model required. Obtaining this cannot be
automated.
* Model available = try to prove properties.
= Even a formally verified system can fail (e.g. if
assumptions are not met).
= Classification by the type of logics.
Ideally: Formally verified tools transforming specifications
into implementations (,,correctness by construction®).
In practice: Non-verified tools and manual design steps
< validation of each and every design required Unfortunately
has to be done at intermediate steps and not just for the final
design = Major effort required.

technische universitat = fakultat far O p. marwedel, 27
dortmund informatik informatik 12, 2008 B -

Propositional logic (1)

= Consisting of Boolean formulas comprising Boolean
variables and connectives such as [Jand L

= Gate-level logic networks can be described.

= Typical aim: checking if two models are equivalent
(called tautology checkers or equivalence checkers).

= Since propositional logic is decidable, it is also decidable
whether or not the two representations are equivalent.

= Tautology checkers can frequently cope with designs which
are too large to allow simulation-based exhaustive
validation.

technische universitat = fakultat far O p. marwedel, 28
dortmund informatik informatik 12, 2008 B -

Propositional logic (2)

= Reason for power of tautology checkers: Binary Decision
Diagrams (BDDs)

= Complexity of equivalence checks of Boolean functions
represented with BDDs: O(number of BDD-nodes)
(equivalence check for sums of products is NP-hard).
#(BDD-nodes) not to be ignored!

= Many functions can be efficiently represented with BDDs.
In general, however, the #(nodes) of BDDs grows
exponentially with the number of variables.

= Simulators frequently replaced by equivalence checkers if
functions can be efficiently represented with BDDs.

= Very much limited ability to verify FSMs.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 29 .-

First order logic (FOL)

FOL includes quantification, using L1and L.
Some automation for verifying FOL models is feasible.
However, since FOL is undecidable in general, there may be

cases of doubt.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 30 -

Higher order logic (HOL)

Higher order allows functions to be manipulated like other

objects.
For higher order logic, proofs can hardly ever be automated

and typically must be done manually with some proof-
support.

technische universitat = fakultat far O p. marwedel, 31
dortmund informatik informatik 12, 2008 B -

Model checking

Aims at the verification of finite state systems.

Analyzes the state space of the system.

Verification using this approach requires three stages:
- generation of a model of the system to be verified,
- definition of the properties expected, and
. model checking (the actual verification step).

technische universitat = fakultat far O p. marwedel, 39
dortmund informatik informatik 12, 2008 B -

—
<state transition

graph
\

2 types of input

preprocessing

%.

@operties —

Model checker

¢

proof or
counterexample

Verification tools can prove or disprove the properties.
In the latter case, they can provide a counter-example.

technische universitat
dortmund

Example: Clarke’s EMC-system

= fakultat far O p. marwedel,
“ informatik informatik 12, 2008

- 33-

Computation tree logic (CTL)

Let V be a set of atomic propositions
CTL formulas are defined recursively:
1. Every atomic proposition is a formula
2. If f, and f, are CTL formulas, then so are -f,, f,[,,
AXT,, EXT,, Alf, Uf,] and E[f, U f)]
« AXf, means: holds in state s° iff f, holds in all successor
states of s°
« EXTf, means: There exists a successor such that f, holds
« AJlf, Uf,] means: always until.
- E[f, Uf,] means: There exists a path such that f, holds
until is £, satisfied.

Christoph Kem and Mark R. Greenstreet: Formal Verification In
Hardware Design: A Suney, ACM Transactions on Design Automation of
Electronic Systems, Vol. 4, No. 2, April 1999, Pages 123-193.

technische universitat = fakultat far O p. marwedel, 34
dortmund informatik informatik 12, 2008 - -

Computational properties

Model checking is easier to automate than FOL.

In 1987, model checking was implemented using
BDDs.

It was possible to locate several errors in the
specification of the future bus protocol.

Extensions are needed in order to also cover real-time
behavior and numbers.

technische universitat = fakultat far O p. marwedel, 35
dortmund informatik informatik 12, 2008 B -

Summary

= Simulation

* functional

* non-functional validation
= Emulation
* Formal verification

* ..., Model checking

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 36 -

