FPGA Synthesis
Different specification techniques

Peter Marwedel
Informatik XII, TU Dortmund
Gliederung

- Einführung
- SystemC
  - Vorlesungen und Programmierung
- FPGAs
  - Vorlesungen
  - VHDL-basierte Konfiguration von FPGAs mit dem XUP VII Pro Entwicklungssystem
- Algorithmen
  - Mikroarchitektur-Synthese
  - Automatensynthese
  - Logiksynthese
  - Layoutsynthese

Zeitplan

- 3,5 Wochen
- 3,5 Wochen
- 6 Wochen
Different specification techniques

- HDL-based specification (with and w/o templates)
- Schematics-based specification
- State diagrams

The three techniques can be combined in ISE
Example of combining the three techniques

- Complete redesign for version 9.1
- Xilinx copyright applies; not to be disclosed

© and source: http://upload.wikimedia.org/wikipedia/commons/thumb/5/54/Leet_stopwatch.JPG/510px-Leet_stopwatch.JPG
Inputs

- **strtstop**: Starts and stops the stopwatch. Active-low signal, acts like the start/stop button on a stopwatch.
- **reset**: Resets the stopwatch to 0:00:00.
- **clk**: External system clock for the stopwatch design.
- **mode**: Toggles between clocking and timer modes. Only functional while the clock or timer is not counting.
- **lap_load**: This is a dual function signal: In clocking mode: displays the ‘Lap’ display area. In timer mode: loads the pre assigned values from the ROM to the timer display when the timer is not counting.
Outputs

The following are output signals for the design:

- **lcd_e, lcd_rs, lcd_rw**
  Control signal for the LCD display of the Spartan-3A board

- **sf_d[7:0]**
  Data values for LCD display
Functional blocks (1)

- **clk_div_262k**: Macro which divides a clock frequency by 262,144. Converts 26.2144 MHz clock into 100 Hz 50% duty cycle clock.

- **dcm1**: Clocking Wizard macro with internal feedback, frequency controlled output, and duty-cycle correction. The CLKFX_OUT output converts the 50 MHz clock of the Spartan-3A demo board to 26.2144 MHz.

- **debounce**: Schematic module implementing a simplistic debounce circuit for the `strtstop`, `mode`, and `lap_load` input signals.

- **lcd_control**: Module controlling the initialization of and output to the LCD display.
Functional blocks (2)

- **statmach**: State Machine module defined and implemented in State Diagram Editor. Controls the state of the stopwatch.

- **timer_preset**: CORE Generator™ 64x20 ROM. This macro contains 64 preset times from 0:00:00 to 9:59:99 which can be loaded into the timer.

- **time_cnt**: Up/down counter module which counts between 0:00:00 to 9:59:99 decimal. This macro has five 4-bit outputs, which represent the digits of the stopwatch time.
Completed schematic
Now just follow the Xilinx tutorial
Summary

- HDL-based specification (with and w/o templates)
- Schematics-based specification
- State diagrams

The three techniques can be combined in ISE