[]
h ' technische universitat 'FL ~fakultat fur informatik
dortmund informatik 12

Imperative languages

Peter Marwedel
Informatik 12
TU Dortmund

Germany

Model of computation

Communication/ Message passing
Computation Shared
memory Synchronous | Asynchronous
FSM StateCharts SDL
Data flow model Kahn process
networks, SDF
Imperative von C, C++, C, C++, Java with message
Neumann Java passing libraries
computing CSP, ADA
technische universitat = fakultat far O P.Marwedel,

dortmund informatik Informatik 12, 2008

Java (1)

Potential benefits:
= Clean and safe language
= Supports multi-threading (no OS required?)
= Platform independence (relevant for telecommunications)

Problems:
= Size of Java run-time libraries”? Memory requirements.
= Access to special hardware features

= Garbage collection time

= Non-deterministic dispatcher

= Performance problems

= Checking of real-time constraints

technische universitat = fakultat far O P.Marwedel, 3
dortmund _ informatik Informatik 12, 2008 -V

Overview over Java 2 Editions

communicator ~ |

!l' POS

' PC, laptop

screen-
ohone

I set-top box,
net TV

cell phone

“J2ME ... addresses
the large, rapidly
growing consumer
space, which covers a
range of devices from
tiny commodities,
such as pagers, all
the way up to the TV
set-top box..”

S

Java Language Based on
HotSpot JVM Card VM http://java.sun.com/
Memory: 10MB ¢————p 1MB 512kB 44— 32kB products/cldc/wp/
64 bit 32 bit 16 bit 8 bit KVMwp.pdf
technische universitat = fakultat far O P.Marwedel,

dortmund informatik Informatik 12, 2008

-4 -

Profiles

Software stack for J2ME

Configuration

Java Virtual Machine

» Java Virtual Machine: implementation of a Java VM,

customized for a particular device’s host OS and

Host Operating System

supports a particular J2ME configuration.

» Configuration: defines the minimum set of Java VM features and
Java class libraries available on a particular “category” of devices
representing a particular “horizontal” market segment.

In a way, a configuration defines the “lowest common denominator”
of the Java platform features and libraries that the developers can
assume to be available on all devices.

* Profile: defines the minimum set of Application Programming
Interfaces (APIls) available on a particular “family” of devices
representing a particular “vertical” market segment. Profiles are
implemented “upon” a particular configuration. Applications are
written “for” a particular profile and are thus portable to any device
that “supports” that profile. A device can support multiple profiles.

technische universitat = fakultat fir O P.Marwedel,
dortmund informatik Informatik 12, 2008

Based upon
http://java.sun.com/products/cldc/wp/KVMwp.pd

1
(@)
1

KVM and CLDC

* The K Virtual Machine:
Highly portable Java VM designed for small memory,
limited-resource, network-connected devices,
e.g.: cell phones, pagers, & personal organizers.
Devices typically contain 16- or 32-bit processors
and a minimum total memory footprint of ~128 kilobytes.

= Connected, Limited Device Configuration (CLDC)
Designed for devices with intermittent network connections,
slow processors and limited memory — devices such as
mobile phones, two way pagers and PDAs. These devices
typically have either 16- or 32-bit CPUs, and a minimum of
128 KB to 512 KB of memory.

technische universitat = fakultat fir O P.Marwedel,
dortmund informatik Informatik 12, 2008

CDC Configuration and MIDP 1.0 + 2.0 Profiles

* CDC: Designed for devices that have more memory, faster
processors, and greater network bandwidth, such as TV set-
top boxes, residential gateways, in-vehicle telematics
systems, and high-end PDAs. Includes a full-featured Java
VM, & a larger subset of the J2SE platform. Most CDC-
targeted devices have 32- bit CPUs & = 2MB of memory.

* Mobile Information Device Profile (MIDP):

Designed for mobile phones & entry-level PDAs.

Offers core application functionality for mobile applications,
including Ul, network connectivity, local data storage, &
application management. With CLDC, MIDP provides Java
runtime environment leveraging capabilities of handheld
devices & minimizing memory and power consumption.

technische universitat = fakultat far O P.Marwedel, 7
dortmund informatik Informatik 12, 2008 - -

Real-time features of Java

J2ME, KVM, CLDC & MIDP not sufficient for real-time
behavior. Real-time specification for Java (JSR-1) addresses
[areas:

Thread Scheduling and Dispatching

Memory Management:

Synchronization and Resource Sharing
Asynchronous Event Handling

Asynchronous Transfer of Control
Asynchronous Thread Termination

Physical Memory Access

DeS|gned to be used with any edition of Java.

TN~~~

[//Iwww.rtj.org] [https:/rtsj.dev.java.net/rtsj-V1.0.pdf]

technische universitat = fakultat far O P.Marwedel, 8
dortmund informatik Informatik 12, 2008 - -

Example: different types of memory areas

Area of memory may be used for the allocation of objects.
There are four basic types of memory areas
(partially excluded from garbage collection):

1. Scoped memory provides a mechanism for dealing with a class of
objects that have a lifetime defined by syntactic scope.

2. Physical memory allows objects to be created within specific
physical memory regions that have particular important
characteristics, such as memory that has substantially faster
access.

= 3. Immortal memory represents an area of memory containing
objects that, once allocated, exist until the end of the application,
l.e., the objects are immortal.

= 4. Heap memory represents an area of memory that is the heap.
The RTSJ does not change the determinant of lifetime of objects
on the heap. The lifetime is still determined by visibility.

[https://rtsj.dev.java.net/rtsj-V1.0.pdf]

technische universitat = fakultat fir O P.Marwedel,
dortmund informatik Informatik 12, 2008

Message passing libraries

Example: MPI/Open MPI

= Library designed for high-performance computing (hpc)

= Based on asynchronous/synchronous message passing

= Comprehensive, popular library

= Available on a variety of platforms

= Considered also for multiple processor system-on-a-chip
(MPSoC) programming for embedded systems;

= MPI includes many copy operations to memory ®
(memory speed ~ communication speed for MPSoCs);
Appropriate MPSoC programming tools missing.

http://www.mhpcc.edu/training/workshop/mpi/MAIN.html#Getting_Started

technische universitat = fakultat far O P.Marwedel, 10
dortmund informatik Informatik 12, 2008 - -

MPI (1)

Sample blocking library call (for C):
= MPI_Send(buffer,count,type,dest, tag,comm) where

- buffer. Address of data to be sent

- count. number of data elements to be sent

- type: data type of data to be sent
(e.g. MPI_CHAR, MPI_SHORT, MPI_INT, ...)

- dest: process id of target process

- tag. message id (for sorting incoming messages)

- comm: communication context = set of processes for
which destination field is valid

- function result indicates success

http://www.mhpcc.edu/training/workshop/mpi/MAIN.html#Getting_Started

technische universitat = fakultat far O P.Marwedel, 11
dortmund informatik Informatik 12, 2008 - -

MPI (2)

Sample non-blocking library call (for C):
= MPI_Isend(buffer,count,type,dest,tag,comm,request)
where

- buffer ... comm: same as above

- request. the system issues a unique "request
number”. The programmer uses this system
assigned "handle" later (in a WAIT type routine) to
determine completion of the non-blocking operation.

http://www.mhpcc.edu/training/workshop/mpi/MAIN.html#Getting_Started

technische universitat = fakultat far O P.Marwedel, 12
dortmund informatik Informatik 12, 2008 - -

Network Communication Protocols
- e.g. JXTA -

Open source peer-to-peer protocol specification.
Defined as a set of XML messages that allow any device
connected to a network to exchange messages and
collaborate independently of the network topology.
Designed to allow a range of devices to communicate.
Can be implemented in any modern computer language.
JXTA peers create a virtual overlay network, allowing a
peer to interact with other peers even when some of the
peers and resources are behind firewalls and NATs or
use different network transports. Each resource is
identified by a unique ID, so that a peer can change its
localization address while keeping a constant
identification number.

http://en.wikipedia.org/wiki/JXTA

technische universitat = fakultat far O P.Marwedel, 13
dortmund informatik Informatik 12, 2008 - -

Network Communication Protocols
- e.g. DPWS -

= The Devices Profile for Web Services (DPWS) defines a
minimal set of implementation constraints to enable secure
Web Service messaging, discovery, description, and eventing
on resource-constrained devices. ...

= DPWS specifies a set of built-in services:

- Discovery services: used by a device connected to a network to
advertise itself and to discover other devices.

- Metadata exchange services: provide dynamic access to a device’s
hosted services and to their metadata.

- Publish/subscribe eventing services: allowing other devices to
subscribe to asynchronous event messages
= [ightweight protocol, supporting dynamic discovery,
... Its application to automation environments is cleatr.

http:/en.wikipedia.org/wiki/Devices_Profile_for Web_Senices

technische universitat = fakultat far O P.Marwedel, 14
dortmund informatik Informatik 12, 2008 - -

Synchronous message passing:
CSP

= CSP (communicating sequential processes)
[Hoare, 1989],
rendez-vous-based communication:

Example:
process A process B
var a ... varb ...
a:=3;
cla; -- output c?b; -- input
end end

technische universitat = fakultat far O P.Marwedel,
dortmund _ informatik Informatik 12, 2008

Synchronous message passing:
ADA

After Ada Lovelace (said to be the 1st female programmer).

US Department of Defense (DoD) wanted to avoid multitude
of programming languages

= Definition of requirements

= Selection of a language from a set of competing designs
(selected design based on PASCAL)

ADA’95 is object-oriented extension of original ADA.

Salient: task concept

technische universitat = fakultat far O P.Marwedel, 16
dortmund informatik Informatik 12, 2008 - -

Synchronous message passing:
Using of tasks in ADA

procedure example1 is
task a;
task D;
task body a is

- - local declarations for a

begin

- - statements for a
end a;
technische universitat = fakultat for

dortmund informatik

task body b is
- - local declarations for b
begin
- - statements for b

end b;

begin

- - Tasks a and b will start before the first

- - statement of the body of example1

end;

O P.Marwedel, 17
Informatik 12, 2008 - -

Synchronous message passing:
ADA-rendez-vous

task screen outis

entry call_ch(val:character; X, y: integer);
entry call_int(z, x, y: integer);

end screen_out;
task body screen outis

select

acceptcall ch... do..
end call_ch;

or

accept call int... do ..
end call_int;

end select;

Sending a message:
begin
screen_out.call_ch('Z',10,20);
exception
when tasking_error =>
(exception handling)

end;

technische universitat = fakultat fir
dortmund informatik

O P.Marwedel, 1
Informatik 12, 2008 - 18 -

Other imperative languages

= Pearl: Designed in Germany for process control
applications. Dating back to the 70s. Popular in Europe.

= Chill: Designed for telephone exchange stations.
Based on PASCAL.

technische universitat = fakultat fir O P.Marwedel,
dortmund informatik Informatik 12, 2008

- 19-

Threads revisted

= Talk of Ed Lee at the Graz ARTEMIS conference:

http://www.artemis-office.org/DotNetNuke/LinkClick.

aspx?link=10_00-Lee.pdf&tabid=98&mid=488

technische universitat = fakultat fir O P.Marwedel,
dortmund informatik Informatik 12, 2008

- 20 -

Consider a Simple Example

“The Observer pattern defines a one-to-many
dependency between a subject object and any
number of observer objects so that when the
subject object changes state, all its observer
objects are notified and updated
automatically.”

Design Patterns, Eric Gamma, Richard Helm, Ralph Johnson, John
Vlissides (Addison-Wesley Publishing Co., 1995. ISBN:
0201633612):

Lee, Berkeley 13

- 21 -

0 Example: Observer Pattern in Java

public void addListener(/7stener) {..}

public void setvalue(newvalue) {
myvalue = newvalue;

for (int 7 = 0; 1 < myListeners.length; 1++) {
myListeners[1].valueChanged(newvalue)
¥

Will this work in a
multithreaded context?
Thanks to Mark S. Miller for the details

of this example. Lee, Berkeley 14

- 22 -

Example: Observer Pattern
With Mutual Exclusion (Mutexes)

public synchronized void addListener(/7stener) {..}

public synchronized void setvalue(newvalue) {
myvalue = newvalue;

for (int 7 = 0; 1 < myListeners.length; 1++) {
myListeners[1].valueChanged(newvalue)

}

Javasoft recommends against this.
What’s wrong with it?

Lee, Berkeley 15 - 23.

o Mutexes using Monitors are Minefields

public synchronized void addListener(/7stener) {.}

public synchronized void setvalue(newvalue) {
myvalue = newvalue;

for (int 7 = 0; 1 < myListeners.length; 1++) {
myListeners[1].valueChanged(newvalue)
}

valueChanged() may attempt to
acquire a lock on some other object
and stall. If the holder of that lock
calls addListener(), deadlock!

Lee, Berkeley 16 - 24 -

Simple Observer Pattern Becomes
Not So Simple

public synchronized void addListener(/7stener) {..}

public void setvalue(newvalue) {
synchronized(this) { while holding lock, make copy
of listeners to avoid race
myvalue = newvalue; conditions

1i1steners = myListeners.clone();

} notify each listener outside of
synchronized block to avoid
deadlock

for (int 7 = 0; 1 < listeners.length; 1++) {
11steners[1].valueChanged(newvalue)

}

} This still isn’t right.
What’s wrong with it?

Lee, Berkeley 18

- 25-

Simple Observer Pattern:
How to Make It Right?

public synchronized void addListener(/7stener) {..}

public void setvalue(newvalue) {
synchronized(this) {
myvalue = newvalue;
li1steners = myListeners.clone();

}

for (int 7 = 0; 1 < listeners.length; 1++) {
11steners[1].valueChanged(newvalue)
¥

Suppose two threads call setValue(). One of them will set the value last,
} leaving that value in the object, but listeners may be notified in the opposite
order. The listeners may be alerted to the value changes in the wrong order!

Lee, Berkeley 19 - 26 -

What it Feels Like to Use the synchronized
Keyword in Java

software and disk drives, Scientific American, September 1999.

Image "borrowed” from an Tomega advertisement for ¥Y2K

Lee, Berkeley 21

technische universitat = fakultat fr O P.Marwedel, 27
dortmund informatik Informatik 12, 2008 - -

Families of Possible Solutions

o Train programmers to use threads.

o Improve software engineering processes.
o |dentify and apply design patterns.

o Quantify quality of service.

o Verify system properties formally.

None of these deliver a rigorous, analyzable,
and understandable model of concurrency.

Lee, Berkeley 22

- 28 -

A stake in the ground...

Nontrivial software written with threads,
semaphores, and mutexes Is
incomprehensible to humans.

Lee, Berkeley 23

- 29.

Succinct Problem Statement

Threads are wildly nondeterministic.

The programmer’s job is to prune away the
nondeterminism by imposing constraints on
execution order (e.g., mutexes).

Lee, Berkeley 24

- 30 -

Improve Threads?
Or Replace Them?

o Improve threads
Pruning tools (mutexes, semaphores, ...)
OO programming
Coding rules (Acquire locks in the same order...)
Libraries (Stapl, Java 5.0, ...)
Patterns (MapReduce, Transactions, ...)
Formal verification (Blast, thread checkers, ...)
Enhanced languages (Split-C, Cilk, Guava, ...)
Enhanced mechanisms (Promises, futures, ...)

o Change concurrency models

Lee, Berkeley 25 - 31-

Threads are Not the Only Possibility:
15t example: Hardware Description
Languages

(Reset) R

e.g. VHDL: (Set) 3 Q (ng)

entity latch is SR Latch
port (s,r : in bit;
a,ng : out bit);
end latch:;

architecture dataflow of latch is
begin

g<=f nor ng;

Ng<=$ Nor q;
end dataflow:

Lee, Berkeley 26 - 32 -

e.g. nesC/TinyOS

Yv,

interface provided

Component 1

MY /\fﬂ

command invoked

command implemented

interface used

event handled

MV /\“

event signaled

interface provided

Command
implementers can
invoke other
commands or
post tasks, but do

not trigger events.

Component 2

interface used

vV A

Threads are Not the Only Possibility:
2"d example: Sensor Network Languages

Typical usage pattern:

0

hardware interrupt
signals an event.

event handler posts a
task.

tasks are executed when
machine is idle.

tasks execute atomically
w.r.t. one another.

tasks can invoke
commands and signal
events.

hardware interrupts can
interrupt tasks.

exactly one monitor,
implemented by disabling
interrupts.

Lee, Berkeley 27

- 33 -

FHEEEDIT

1L 3L L Jidls

)

(T actor library
® elick
& Jip
® [standard
L BandwicthMeter
L BandwidthRateds

T CheckPaint
L1 Classifier

sl v

s

CJpRrR

Packetinputl

FromDevice

click

S O E—

Packetinput2

agnostic output port

FromDevice

I
CheckiPHeader

-

2 DelaysShape

C Discard

Spelavingud pUSh input port

.-'—'—-.$+

7 DiscardioFree

L1 DropBroadcasts

L FrontDropQueue
HashSwitch

L 1idle

C InfiniteSource

Cd Meter v

=

H ek Tl

i '.-:-:-:-:-:-:;:;:E:E:E:EI | (] |_ -

push output port

LookuplPRoute

I‘F DropBroadeasts |]'|

g Fiviesre (B

DropBroadcasts i‘l

P FixiPsre |B

Pa

Queuel

PacketOutput?

pull output port

ind

[—F ToDevice

| L]

Click with a visual syntax in Mescal

Threads are Not the Only Possibility:
3" example: Network Languages

File View Edit Graph Debug Help

Typical usage

o

pattern:

queues have
push input,
pull output.
schedulers
have pull
input, push
output.

thin f
wrappers for
hardware
have push
outFut or
pull input
only.

Lee, Berkeley 28

Threads are Not the Only Possibility:
41 example: Synchronous Languages

Typical usage pattern:

i%‘iiﬂf o specify tasks aligned to a
aus master “clock” and subclocks
Eﬁ: | —~} o clock ctalculus %hgckg |1‘0rk
— ! consistency and deadloc
e -|_|— o decision logic is given with

. . hierarchical state machines.

Jpitch,_stick, MANUAL MODE o)
SPEED_SETTING _INIT oo [speed_selling{ ?measwed_spoed). alitude_tetting fmeasured_altitude)

speed_bution_tumeds

gtait_AP1_bmer

state machine giving decision logic [\ fspeed_dash spood_disp(Pspoed_en

Lustre/SCADE, from http://www.esterel-technologies.com/ Lee, Berkeley 29 _ 35

B> Signal Generation and Processing.vi Diagram
File Edit_ Operate Tools Browse Window Help .
@ 13pt Application Font |+ | [B || o0 + || €5+

Threads are Not the Only Possibility:
5t example: Instrumentation Languages

- BX

Acquired Waveform
| 4 Processed Waveform

Input Signal 1 :
Frequency (Hz) [05L), :
Input Signal 2 @_ i

Frequency (Hz) J

select Fiter L0

Power Spectrum Select Window

(77—

EI—'. — [
'_l> gg window |ﬂNona 'l
'

. limit to reasonable

sampling rate = :; cutoff frequendes
n '

Student Edition 4 |

e.g. LabVIEW, Structured dataflow model of computation

Power Spectrum

Threads are Not the Only Possibility:
6" example: Continuous-Time Languages

Typical usage pattern:

ﬁ cruisecontrolonoff *

Fle Edt Yiew Smuation Format Tools Help o model the QOH“HUOUS dynamiCS
DEHS LR O REL®) of the physical plant
s o model the discrete-time
- controller
™ . .
T o code generate the discrete-time
Sine Wave
= 3 L controller
onstan ~.|[: }ﬁ +
o Gain n et
4 et [— £~ continuous-time signal
Enabled Car model (F = ma)
Subsystem s
(force) D‘;‘;@%:&W Tl S| CT
Dg; 1imass Inte:rator Integ?aton Position
i N
Speed
Simulink + Real-Time Workshop
Ready 100% ode45

Lee, Berkeley 31

A Common Feature

o None is mainstream in computing.
o All are domain-specific.

o Emphasis on concurrent composition with determinism:
Composabllity
Security
Robustness
Resource management
Evolvability

Compared with message passing schemas, such as
PVM, MPI, OpenMP, these impose stricter interaction
patterns that yield determinism in the face of
concurrency.

Lee, Berkeley 32 - 38 -

Many of These and Other Concurrent
Component Models are Actor Oriented

The established: Object-oriented:

class name
data What flows through
an object is
r methods 1 sequential control
call return Thlngs happen (6] objects

The alternative: Actor oriented:

Actors make things happen
actor name

data (state) What flows through

— | mters mmm) anobjectis

streams of data

ports

Input data Output data
Lee, Berkeley 33

- 39 -

Recall the Observer Pattern

“The Observer pattern defines a one-to-many
dependency between a subject object and any
number of observer objects so that when the
subject object changes state, all its observer
objects are notified and updated
automatically.”

Lee, Berkeley 35

- 40 -

Observer Pattern using Process Networks
[Kahn 1974] Extended with
Nondeterministic Merge

PN Director

NondeterministicMerge

Value Producer 1

Value Consumer

Observer

Each actor is a process, communication is via
streams, and the NondeterministicMerge
explicitly merges streams nondeterministically.

Lee, Berkeley 38

- 41 -

Observer Pattern using Discrete Events

DE Director

Clock

D@—* Value Producer 1 == Mergo

PoissonClock

D@—* Value Producer 2

Messages have a (semantic) time, and actors react to
messages chronologically. Merge now becomes
deterministic.

Value Consumer

Observer

Lee, Berkeley 40 - 42 -

So What is the Future of
Embedded Software?

| don't know...

But | know what it should be:

Foundational architectures that combine
software and models of physical dynamics with
composition languages that have concurrency
and time in a rigorous, composable, semantic
framework.

Lee, Berkeley 45

- 43 -

Summary

Imperative languages
= Java
* Java Micro edition
* Real-time Java
= Message passing libraries
= CSP
= ADA
= Other languages: Pearl, Chill
* Threads revisited (Ed Lee)

technische universitat = fakultat fir O P.Marwedel,
dortmund informatik Informatik 12, 2008

- 44 -

