[]
technische universitat fakultat fur informatik
dortmund informatik 12

Discrete event modeling: VHDL

Peter Marwedel
Informatik 12
Univ. Dortmund
Germany

Models of computation

VHDL as a prominent example of
discrete event modeling:

&

Communication/ |ghared Message passing
Computation memory blocking Non-blocking
FSM StateCharts SDL
Data flow model Kahn process
networks, SDL
Imperative von C, C++, Java C, C++, Java with message
Neumann computing passing libraries
CSP, ADA
Discrete event VHDL, Just experimental systems, e.q.
model Verilog, distributed discrete event
SystemC simulation in Ptolemy
technische universitat = fakultat far O p. marwedel,

dortmund informatik informatik 12, 2008

VHDL

HDL = hardware description language

Textual HDLs replaced graphical HDLs in the 1980'ies (better
description of complex behavior).

In this course:

VHDL = VHSIC hardware description language

VHSIC = very high speed integrated circuit

1980: Def. started by US Dept. of Defense (DoD) in 1980

1984 first version of the language defined, based on ADA
(which in turn is based on PASCAL)

1987: revised version became |IEEE standard 1076
1992: revised |IEEE standard

1999: VHDL-AMS: includes analog modeling
2006: Major extensions

technische universitat = fakultat far O p. marwedel, 3
dortmund informatik informatik 12, 2008 TV T

Entities and architectures

Each design unit is called an entity.
Entities are comprised of entity declarations and one or
several architectures.

Entity declaration

N

Architecture 1 Architecture 2 Architecture 3

Each architecture includes a model of the entity. By default,
the most recently analyzed architecture is used. The use of
another architecture can be requested in a configuration.

technische universitat = fakultat far O p. marwedel, 4
dortmund informatik informatik 12, 2008 -

The full adder as an example
- Entity declaration -

d ——=
—= SUm

b — = full_adder
——= carry_out

carry in ——

Entity declaration:

entity full _adder is

port(a, b, carry in: in Bit; -- input ports
sum,carry_out: out Bit); --output ports

end full_adder;

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

The full adder as an example
- Architectures -

Architecture = Architecture header + architectural bodies

architecture behavior of full _adder is
begin
sum <= (a xor b) xor carry_in after 10 Ns;
carry_out <= (a and b) or (a and carry_in) or

(b and carry_in) after 10 Ns;
end behavior;

Architectural bodies can be
- behavioral bodies or - structural bodies.

Bodies not referring to hardware components are called
behavioral bodies.

technische universitat = fakultat far O p. marwedel, 6
dortmund informatik informatik 12, 2008 -V

The full adder as an example
- Simulation results -

CARRY_IH:

SLUH:

CARRT_OUT

0 B 10 150 peLele Z50 20 250

Behavioral description different from the one shown (includes 5ns delays). I

technische universitat = fakultat far O p. marwedel, 7
dortmund _ informatik informatik 12, 2008 - T

Structural

. full_adder
bodies . X
a T i1
b _4>< half_adder | Y-, >
| i2:
carry_in -| half_adder

or_
gate

carry_out

architecture structure of full_adder is
component half adder

port (in1,in2:in Bit; carry:out Bit; sum:out Bit);

end component;
component or_gate
port (in1, in2:in Bit; o:out Bit);
end component;
signal x, y, z: Bit; -- local signals
begin -- port map section
i1: half_adder port map (a, b, x, y);
i2: half_adder port map (y, carry_in, z, sum);
13: or_gate port map (x, z, carry_out);
end structure;

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

—

sum
-

Multi-valued logic and standard IEEE 1164

How many logic values for modeling?

Two ('0' and '1') or more?

If real circuits have to be described, some abstraction of the

resistance (inversely-related to the strength) is required.

< We introduce the distinction between:

* the logic level (as an abstraction of the voltage) and

* the strength (as an abstraction of the current drive
capability) of a signal.

The two are encoded in logic values.

% CSA (connector, switch, attenuator) - theory [Hayes]

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

1 signal strength

Logic values '0' and '1".
Both of the same strength.
Encoding false and true, respectively.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 10 -

2 signal strengths

Many subcircuits can
effectively disconnect
themselves from the
rest of the circuit
(they provide ,high
iImpedance” values to
the rest of the circuit).
Example: subcircuits
with open collector or
tri-state outputs.

technische universitat = fakultat fir
dortmund informatik

Open-collector

VDD

Output A

—

GROUND

Input ='0" —> A disconnected

[p. marwedel,
informatik 12, 2008

- 11 -

TriState circuits

NMOS-Tristate CMOS-Tristate +§
VDD '
f =y o P type
L I—
i [N e
enable — A v ‘ s [uT
f [i ! ‘E N Type
| Fnable D+
GROUND 1

enable =’0’ —> A disconnected o
Source: http://www-unix.oit.umass.edu/

~phys532/lecture3.pdf

< We introduce signal value 'Z', meaning ,high impedance “

technische universitat = fakultat far O p. marwedel, 12
dortmund informatik informatik 12, 2008 - -

2 signal strengths (cont’ed)

We introduce an operation #, which generates the effective
signal value whenever two signals are connected by a wire.
#('0','Z")="0" #('1','Z2")="1", '0" and "1" are ,stronger” than 'Z’

According to the partial order in
\ the diagram, # returns the

X larger of the two arguments.
¥\ ' 1 strength ,
0 7 In order to define #('0','1"), we

"% introduce 'X', denoting an

7 undefined signal level.
'X' has the same strength as 'O’
and '1'.

technische universitat = fakultat far O p. marwedel, 13
dortmund informatik informatik 12, 2008 - -

Application example

VDD ' *
enable="0’ i 'z => bus I enable’="1’

T—H pp INPUt(s) pp FC—f_

GROUND

signal value on bus = #(value from left subcircuit, value from right subcircuit)
#('Z', value from right subcircuit)
value from right subcircuit

,as if left circuit were not there".

technische universitat == fakultat fir O p. marwedel, 14
dortmund . W informatik informatik 12, 2008 - -

3 signal strengths

Current values insufficient VDD
for describing real circuits: depletion [
transistor
A
f I [PD
GROUND

Depletion transistor contributes a weak value to be
considered in the #-operation for signal A

< |Introduction of 'H', denoting a weak signal of the same
level as '1'.

#('H', '0")="0"; #('H','Z") ="H'

technische universitat = fakultat far O p. marwedel, 15
dortmund _ informatik informatik 12, 2008 - -

3 signal strengths

There may also be weak

signals of the same level as '0'

< Introduction of 'L', denoting a 5 // \\! | } strongest
weak signal of the same level
aS IOl: #(ILl, IO|)=IO|; #(IL,IZI) \ /

=|L|;
// \\ } medium strength

% |Introduction of '"W', denoting
a weak signal of the same level \ //
as 'X': #('L', 'H)="WF
#('L,'W') = "W,

reflected by the partial order
shown.

L weakest

technische universitat = fakultat far O p. marwedel, 16
dortmund informatik informatik 12, 2008 - -

4 signal strengths (1)

Current values VDD T
insufficient for 0 [
describing pre- Bus
charging: I I
f [o ==c
GROUND ’

Pre-charged '1'-levels weaker than any of the values
considered so far, except 'Z'.

% |Introduction of 'h', denoting a very weak signal of the
same level as '1".

#('h', '0N='0"; #(h''Z') ='h

technische universitat == fakultat fir O p. marwedel, 17
dortmund . W informatik informatik 12, 2008 - -

4 signal strengths (2)

There may also be weak X
signals of the same level as '0' / \ } strongest
o .

Introduction of 'I', denoting a N 4
very weak signal of the same W’
level as '0": #('I', '0")='0", ¥\ medium strength
#('I,'Z') — lII; ’L’\ /’H’
< |ntroduction of 'w', denoting W’
a very weak signal of the same 4N\ pre-charged
level as 'W': #('I', 'h")='w/; I n

L) o I |] . | I. ’ , \ %
#(h,W)— W, ... '/’ weakest

reflected by the partial order
shown.

technische universitat = fakultat far O p. marwedel, 18
dortmund informatik informatik 12, 2008 - -

9 signal strengths

Current values vob T —1

insufficient for ~ f \ :

describing strength.{ -

of supply voltage I I
............ f [PD —c

GROUND

Supply voltage stronger than any voltage considered so far.

< Introduction of 'FO' and 'F1', denoting a very strong signal
of the same level as '0 ' and '1".

<= Definition of 46-valued logic, also modeling uncertainty
(Coelho); initially popular, now hardly used.

technische universitat = fakultat far O p. marwedel, 19
dortmund _ informatik informatik 12, 2008 - -

IEEE 1164

VHDL allows user-defined value sets.
<= Each model could use different value sets (unpractical)

<= Definition of standard value set according to standard
IEEE 1164

{IOl, |1|, IZl, |X|, IHl, |LI, IWI, IUI, I_I}
First seven values as discussed previously.

<. Everything said about 7-valued logic applies.

<. Combination of pre-charging and depletion transistors
cannot be described in IEEE 1164.

'U". un-initialized signal; used by simulator to initialize all not
explicitly initialized signals.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 20 -

Input don‘t care

'-' denotes input don't care.
Suppose:
f(a,b,c) = ab+ bc except for a=b=c="0" where fis undefined
Then, we could like specifying this in VHDL as
f<=selecta&b&c
1" when "10-" --first term
1" when "-11" -- second term
'X'when "000" --'X"2 ('0'or '1") here (output don't care)
'0' otherwise;
Simulator would check if a & b & ¢ ="10-", i.e. if c="-'.
Since c is never assigned a value of -, this test would always
fail. Simulator does not know that '-' means either '1' or

'0', since it does not include any special handling for '-",
(at least not for pre-VHDL’2006).

technische universitat = fakultat far O p. marwedel, 21
dortmund informatik informatik 12, 2008 - -

Function std_match

Special meaning of '-"' can be used in special function
std_match.

if std_match(a&b&c,"10-")
IS true for any value of ¢, but this does not enable the use of
the compact select statement.

= & The flexibility of VHDL comes at the price of less
convenient specifications of Boolean functions.

VHDL2006 has changed this: '-"' can be used in the
“intended” way in case selectors

technische universitat = fakultat far O p. marwedel, 29
dortmund informatik informatik 12, 2008 - -

Outputs tied together

In hardware, connected outputs can be used:

Resolution function =~ . bus
used for assignmentsto 'Z'\ 'Z'| '0'| 'h'

bus, if bus is declared outputs
as Std_l Og| C. o

Modeling in VHDL.: resolution functions

type std_ulogicis ('U', 'X','0', "1, 'Z', 'W', 'I', 'h', '-");
subtype std logic is resolved std ulogic;

-- involve function resolved for assignments to std logic

technische universitat = fakultat far O p. marwedel, 23
dortmund _ informatik informatik 12, 2008 - -

Resolution function for IEEE 1164

type std_ulogic_vector is array(natural range<>)of std ulogic;

function resolved (s:std;ulogic_vector) return std ulogic is

variable result: std ulogic:='Z"; --weakest value is default
begin

if (s'length=1) then return s(s'low) --no resolution

else for i in s'range loop

result:=resolution table(result,s(i))

end loop

end if;

return result;
end resolved,;

technische universitat = fakultat far O p. marwedel, 24
dortmund informatik informatik 12, 2008 - -

Using # (=sup) in resolution functions

constant resolution_table : stdlogic_table := (
- X 01 Z2W L H -
Ul IUI IUI lUI IUI |U| lUI, IUI, IU!)’ __ U / \,
IXI, IXl, lXI, IXI, IXI, lXI, IXI, IXI), __ X
IXI, IOI, lXI, IOI, IOI, lOl, lOl, lXI), _ O ’W’
IXI, IXl, |1|, |1|, |1|, |1|, |1|, lXI), __ 1
Z

(

(‘U

(‘U

(‘U

‘U, X, '0, 1,'Z2,'W', 'L)'H,'X), --
‘U, X, 0L 1, WH'WY, WL HY XY, | W W\
(‘U X, o "L WY, L WX, - L

‘U, X, '0, 1, 'H,'WL W HL XY, | H

(‘'U, XXX, XX, XXX] -

),

This table would be difficult to understand without the partial order

technische universitat = fakultat far O p. marwedel, 25
dortmund informatik informatik 12, 2008 - -

VHDL processes

Processes model parallelism in hardware’
General syntax:

label: --optional
process

declarations --optional
begin

Statements --optional
end process

a <= b after 10 ns is equivalent to
process
begin
a <= Db after 10 ns
end

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 26 -

Assignments

2 kinds of assignments:

= Variable assignments
Syntax: variable := expression;
= Signal assignments
Syntax:_
signal <= expression;
signal <= expression after delay,
signal <= transport expression after delay;
signal <= reject time inertial expression after delay;

Possibly several assignments to 1 signal within 1 process.

For each signal there is one driver per process.
Driver stores information about the future of signal,
the so-called projected waveform.

technische universitat = fakultat far O p. marwedel, 27
dortmund informatik informatik 12, 2008 - -

Transport delay

= For transport delay assignments, queued events are
never removed again.

= Pulses, no matter how short, will be propagated.
= This corresponds to models for simple wires

4 -

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

_ 28 -

Inertial delay

= |f the keyword “transport” is not used, inertial delay is
assumed,

= The goal of inertial delay is to suppress all signal “spikes”,
which are shorter than the delay, resp. shorter than the
Indicated suppression threshold.

* |nertial delay models the behavior of gates.

h

a7 1 —cC a |
b — b |
OR gate C -

—>
inertial
delay

\4

= Precise rules for when to remove events from the
projected waveform are tricky

technische universitat = fakultat far O p. marwedel, 29
dortmund informatik informatik 12, 2008 - -

Wait-statements

Four possible kinds of wait-statements:
* wait on signal list;
= wait until signal changes;
= Example: wait on a;
* wait until condition;
= wait until condition is met;
= Example: wait until c="1",;
* wait for duration;
= wait for specified amount of time;
= Example: wait for 10 ns;
* wait;
= suspend indefinitely

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 30 -

Sensivity lists

Sensivity lists are a shorthand for a single wait on-statement

at the end of the process body:

process (X, Y)
begin

prod <=Xx andy;
end process,;

IS equivalent to

process

begin
prod<=x andy;
wait on x,y;

end process;

technische universitat = fakultat fir
dortmund informatik

[p. marwedel,
informatik 12, 2008

- 31 -

VHDL semantics: global control

According to the original standards document:

The execution of a model consists of an initialization phase
followed by the repetitive execution of process statements in
the description of that model.

Initialization phase executes each process once.

Start of simulation

R_Eﬁ l Future values for signal drivers

Assign new values to signals Evaluate processes

NS

Activate all processes W

technische universitat = fakultat far O p. marwedel, 32
dortmund informatik informatik 12, 2008 - -

VHDL semantics: initialization

At the beginning of initialization, the current time, T_is 0 ns.

-

m) = The driving value and the effective value of each

explicitly declared signal are computed, and the current
value of the signal is set to the effective value. ...
Each ... process ... Is executed until it suspends.
The time of the next simulation cycle (... in this case ...
the 1st cycle), T is calculated according to the rules of

step f of the simulation cycle, below.

Start of simulation l

Future values for signal drivers

R_E%[[g ‘ Assigh new values to signals Evaluate processes

technische universitat = fakulta - Activate all processes M
n 1o [«

dortmund informau I1aun '1£, £Uvo

VHDL semantics: The simulation cycle (1)

Each simulation cycle starts with setting 7_to 7. T, was

either computed during the initialization or during the last
execution of the simulation cycle. Simulation terminates
when the current time reaches its maximum, TIME'HIGH.
According to the standard, the simulation cycle is as follows:

a) The current time, 7T issetto T . Stop if 7 = TIME'HIGH
and not [Jactive drivers or process resumptions at 7.

Assign new values to signals Evaluate processes

NS

Activate all processes sensitive to signal changes

technische universitat = fakultat far O p. marwedel, 34
dortmund informatik informatik 12, 2008 - -

VHDL semantics: The simulation cycle (2)

a) Each active explicit signal in the model is updated.
(Events may occur as a result.)
Previously computed entries in the queue are now
assigned if their time corresponds to the current time T..

New values of signals are not assigned before the next

simulation cycle, at the earliest.
Signal value changes result in events = enable the

execution of processes that are sensitive to that signal.
b) e Start of simulation

Future values for signal drivers

F_Eﬁlg Assign new values to signals Evaluate processes

Activate all processes sensitive to signal changes

technische universitat = fakultat far O p. marwedel, 35
dortmund informatik informatik 12, 2008 - -

VHDL semantics: The simulation cycle (3)

a) U P sensitive to s: if event on s in current cycle: P

resumes.
b) Each ... process that has resumed in the current

simulation cycle is executed until it suspends®.
*Generates future values for signal drivers.

Start of simulation Q

Future values for signal drivers
Assign new values to S|gnals Evaluate processes
Activate all processes senS|t|ve to signal changes

technische universitat = fakultat far [p. marwedel, 36
dortmund informatik informatik 12, 2008 - -

VHDL semantics: The simulation cycle (4)

Start of simulation

uture values for signal drivers

e

Assign new values to signals Evaluate processes

NS

Activate all processes sensitive to signal changes

a) Time T, of the next simulation cycle = earliest of

)

1 TIME'HIGH (end of simulation time).

2. The next time at which a driver becomes active

3. The next time at which a process resumes
(determined by wait for statements).

Next simulation cycle (if any) will be adeltacycleif T, =T._.

technische universitat = fakultat far O p. marwedel, 37
dortmund informatik informatik 12, 2008 - -

o-simulation cycles

Next simulation cycle (if any) will be adeltacycleif T, =T..

Delta cycles are generated for delay-less models.
There is an arbitrary number of & cycles between any 2

physical time instants:

T T+1 T+2 T+3
|‘||||\\||| ERERMNENE FNERRNEN ||||\\|||‘|| .
SN \ ((K
In fact, simulation of delay-less hardware loops
might not terminate (don’t even advance T.).
—1 0o—{ o—{ o—

technische universitat = fakultat far O p. marwedel, 38
dortmund _ informatik informatik 12, 2008 - -

O-simulation cycles
Simulation of an RS-Flipflop

2nd o
000 [~ Y
S - 0011no
%
3rd6% 1std
f\
™ [11000
11| p—q
R 7

Ons Ons+0 Ons+26 Ons+30
1 1 1

0 0
0 0
0 1

technische universitat = fakultat fir
dortmund _ informatik

architecture one
of RS Flipflop is
begin
process: (R,S,Q,nQ)
begin
Q <=RnornQ;
nQ <= S nor Q;
end process;
end one;

0 cycles reflect the fact that no
real gate comes with zero delay.
should delay-less signal
assignments be allowed at all?

[p. marwedel, 39
informatik 12, 2008 - -

O-simulation cycles
and deterministic simulation semantics

Semantics of

a<=b;

b<=a; ?

Separation into 2 simulation phases
results in deterministic semantics
(= StateMate).

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 40 -

&//

OA
VHDL: Evaluation \//é\

= Behavioral hierarchy (procedures and functions),

= Structural hierarchy: through structural architectures,

but no nested processes,
= No specification of non-functional properties,
= No object-orientation,
= Static number of processes,
= Complicated simulation semantics,
= Too low level for initial specification,

= Good as an intermediate “Esperanto” or "assembly”
language for hardware generation.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 41 -

Summary

VHDL.:
= Entities and (behavioral/structural) architectures
= Multiple-valued logic
* General CSA approach
* Application to IEEE 1164
* Modeling hardware parallelism by processes
* Wait statements and sensivity lists
= VHDL semantics: the simulation cycle
19 cycles, deterministic simulation
= Evaluation

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 42 -

Verilog

HW description language competing with VHDL
Standardized:

* |EEE 1364-1995 (Verilog version 1.0)

= |EEE 1364-2001 (Verilog version 2.0)

= Features similar to VHDL.:

= Designs described as connected entities

= Bitvectors and time units are supported

* Features that are different:

= Built-in support for 4-value logic and for logic with 8

strength levels encoded in two bytes per signal.

= More features for transistor-level descriptions

= Less flexible than VHDL.

= More popular in the US (VHDL common in Europe)

technische universitat = fakultat far O p. marwedel, 43
dortmund informatik informatik 12, 2008 - -

SystemVerilog

Corresponds to Verilog versions 3.0 and 3.1. Includes:
= Additional language elements for modeling behavior
= C data types such as int
= Type definition facilities
= Definition of interfaces of HW components as entities
= Mechanism for calling C/C++-functions from Verilog
= Limited mechanism for calling Verilog functions from C.
* Enhanced features for describing the testbench
= Dynamic process creation.
* |nterprocess communication and synchronization
= Automatic memory allocation and deallocation.
* Interface for formal verification.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 44 -

Using C for ES Design: Motivation

* Many standards (e.g. the GSM and MPEG-standards) are
published as C programs

Standards have to be translated if special hardware
description languages have to be used

* The functionality of many systems is provided by a mix of
hardware and software components

= Simulations require an interface between hardware
and software simulators unless the same language is
used for the description of hardware and software

= Attempts to describe software and hardware in the same
language. Easier said than implemented.
Various C dialects used for hardware description.

technische universitat = fakultat far O p. marwedel, 45
dortmund informatik informatik 12, 2008 - -

Drawbacks of a C/C++ Design Flow

= C/C++ is not created to design hardware !

= C/C++ does not support
* Hardware style communication - Signals, protocols
* Notion of time - Ciocks, time sequenced operations
° Concurrency - Hardware is concurrent, operates in ||

* Reactivity - Hardware is reactive, responds to stimuli,
interacts with its environment (requires handling of exceptions)

* Hardware data types - Bit type, bit-vector type, multi-
valued logic types, signed and unsigned integer types, fixed-

point types _
" Missing links to hardware during debugging :@-@?
£

technische universitat = fakultat far O p. marwedel, 46
dortmund informatik informatik 12, 2008 - -

SystemC: Required features

Requirements, solutions for modeling HW in a SW language:
= C++ class library including required functions.

= Concurrency: via processes, controlled by sensivity lists*
and calls to wait primitives.

= Time: Floating point numbers in SystemC 1.0.
Integer values in SystemC 2.0;
Includes units such as ps, ns, ys etc”.

= Support of bit-datatypes: bitvectors of different lengths;
2- and 4-valued logic; built-in resolution™)

= Communication: plug-and-play (pnp) channel model,
allowing easy replacement of intellectual property (IP)

= Deterministic behavior not guaranteed.

* Good to know VHDL ©

technische universitat = fakultat far O p. marwedel, 47
dortmund informatik informatik 12, 2008 - -

SystemC language architecture

Channels for MoCs Methodology-specific Channels
Kahn process networks, SDF, etc Master/Slave library
Elementary Channels
Signal, Timer, Mutex, Semaphore, FIFO, etc

Core Language Data types

Module

Ports

Events Arbitrary precision integers
Interfaces Fixed-point numbers
Channels 4-valued logic types, logic-vectors

Event-driven simulation kernel C++ user defined types

C++ Language Standard

technische universitat = fakultat far O p. marwedel, 48
dortmund informatik informatik 12, 2008 - -

Summary

= VHDL)
= Verilog ~ Discrete event models

= SystemC _

&

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 49 -

