

Exercises to Cyber-physical System Fundamentals Summer term 2012

(10 Points)

Deadline is Monday, June 25, 2012, 12:00

8.1 D/A conversion (5 Points)

Consider the following D/A converter:

Figure 1: DAC

Given $U_{ref} = 5V$, $R = 1k\Omega$:

- Compute the effective resistance value of R1, given that the digital values shall be mapped onto a voltage range of 0V 10V?
- The precision of the D/A conversion is highly dependend on the precision (tolerance) of the resistors employed. Given a sufficiently large deviation from the desired value, the monotonicity does not hold, so that a current resulting from a digital value *b* is lower than the value resultung from the next lower digital value b - 1.
 - Between which binary values b and b-1 will such an error in resistance have the greatest impact?
 - Calculate the resulting currents for these values, respectively.
 - How large (in Ω) may the maximum deviation (upwards) become, so that no error in monotonicity occurs?

Hint: For further explanations see the appendix of "Embedded System Design"

8.2 Shared resources (5 Points)

Given the following task set for a single CPU with a_i denoting the activation times and c_i the execution durations, respectively. In addition, $\Delta_p(S_r)$ denotes in which cycle relatively to a_i a task requests access to a shared resource S_r . Inversely, $\Delta_V(S_r)$ denotes after how many execution cycles the resource is released.

	a_i	c _i	$\Delta_P(S_1)$	$\Delta_V(S_1)$	$\Delta_P(S_2)$	$\Delta_V(S_2)$
T_1	{3,10}	4	1	4	-	-
T_2	{0,17}	3	-	-	1	2
<i>T</i> ₃	{12}	6	-	-	4	6
T_4	{7}	7	2	5	-	-

The static priorities are assigned such that $T_1 > T_2 > T_3 > T_4$, with unrestricted preemption otherwise.

- 1. Consider a resource access management *without priority inheritance*. Draw a diagram that depicts the task executions. Mark the intervals in which priority inversion occurs and point out which tasks are being blocked by others, respectively.
- 2. In contrast to such an unrestricted blocking behavior, how would the schedule look like, given the *priority inheritance protocol* is applied. Give a **concise** explaination of the changes in execution.

General notes:

Dates and additional information can be found on the lecture website (via EWS). The assignments will be published **Tuesdays** on a weekly basis and have to be solved until the next **Monday** unless stated otherwise. Drop your sheets into the mailbox in OH16 right across the secretariat (E22) or send an e-email to your tutor. In the latter case, the submissions must be of either **PDF** or **PS** format. To pass the labs, a minimum of 50% of the total points must be achieved.