technische universitat k fakultat fur
dortmund informatik

Embedded & Real-time Operating Systems

Jian-Jia Chen
TU Dortmund, Informatik 12
Germany

20154 06 A 16H

Embedded operating systems
- Characteristics: Disk and network handled by tasks -

Effectively no device needs to be supported by all variants of the OS,
except maybe the system timer.

Many ES without disk, a keyboard, a screen or a mouse.

Disk & network handled by tasks instead of integrated
drivers.

Embedded OS Standard OS
application software application software
middleware | middleware middleware | middleware
device driver |device driver “ operating system

kernel device driver |device driver

technische universitat " fakultat fir © JJ Chen Informatik 12, 2015
dortmund . % informatik

Example: WindRiver Platform Industrial Automation

WIND RIVER PLATFORM /A

TORNADO® JOE GNU & DIAB Compilers
TOOLS
SNIFF + PRO IDE WIND® VIEW ANALYZE

EtherNet/IP *

Reference Hardware and Bring-up Tools

* Optional

B Core Runtime

B Multimedia

B Foundation Connectivity
__| Industrial Ethernet & Fieldbug
|| Enterprise Connectivity

|| Hardware & Bring-up Tools

RUNTIME

technische universitat = fakultat fur © JJ Chen Informatik 12, 2015 © Windri 3
dortmund informatik Inariver - -

Embedded operating systems
- Characteristics: Protection is optional-

Protection mechanisms (user mode and privilege mode) not always

necessary: especially for single-purpose ES untested programs
rarely loaded, SW considered reliable.

Privileged 1/O instructions not necessary and 4
tasks can do their own |/O. ~

—»

H

Example: Let switch be the address of some switch
Simply use

e
load register,switch

instead of OS call.

However, protection mechanisms may be needed for safety
and security reasons.

technische universitat " fakultat fir © JJ Chen Informatik 12, 2015 4
dortmund informatik - -

Embedded operating systems
- Characteristics: Interrupts not restricted to OS -

Interrupts can be employed by any process
For standard OS: serious source of unreliability.
Since

embedded programs can be considered to be tested,
since protection is not always necessary and
since efficient control over a variety of devices is required,

it is possible to let interrupts directly start or stop SW
(by storing the start address in the interrupt table).

More efficient than going through OS services.

Reduced composability: if SW is connected to an interrupt,
it may be difficult to add more SW which also needs to be
started by an event.

technische universitat " fakultat fir © JJ Chen Informatik 12, 2015 5
dortmund informatik - -

Embedded operating systems
- Characteristics: Real-time capability-

Many embedded systems are real-time (RT) systems and,
hence, the OSs used in these systems must be real-time
operating systems (RTOSs).

N ¥;

@«.gl

technische universitat " fakultat fir © JJ Chen Informatik 12, 2015 6
dortmund informatik - -

RT operating systems - predictability -

Def.. (A) real-time operating system is an operating system
that supports the construction of real-time systems.

The timing behavior of the OS must be predictable.

V services of the OS: Upper bound on the execution time!
RTOSs must be timing-predictable:

short times during which interrupts are disabled,

(for hard disks:) contiguous files to avoid

unpredictable head movements.
[Takada, 2001]

technische universitat " fakultat fir © JJ Chen Informatik 12, 2015
dortmund informatik

RTOS-Kernels

Distinction between
real-time kernels and modified kernels of standard OSes.

application software application software
middleware | middleware middleware |middleware
device driver |device driver operating system
real-time kernel device driver |device driver

Distinction between
general RTOSs and RTOSs for specific domains,

standard APls (e.g. POSIX RT-Extension of Unix, OSEK)
or proprietary APls.

technische universitat " fakultat fir © JJ Chen Informatik 12, 2015 8
dortmund informatik Source: R. Gupta, UCSD - O~

Functionality of RTOS-Kernels

Includes
processor management,)

memory management, © resource management

and timer management;
task management (resume, wait etc),
inter-task communication and synchronization.

technische universitat " fakultat fir © JJ Chen Informatik 12, 2015
dortmund informatik

Classes of RTOSes:
1. Fast proprietary kernels

For complex systems, these kernels are inadequate,
because they are designed to be fast, rather than to be
predictable in every respect
[R. Gupta, UCI/UCSD]
Examples include
QNX, PDOS, VCOS, VTRX32, VXWORKS, FreeRTOS.

technische universitat " fakultatfur © JJ Chen Informatik 12, 2015 10
dortmund informatik Source: R. Gupta, UCSD - -

Classes of RTOSSs:
2. RT extensions to standard OSs

Attempt to exploit comfortable main stream OS.
RT-kernel running all RT-tasks.
Standard-OS executed as one task.

RT-task 1| RT-task 2

non-RT task 1| non-RT task 2

device driver

device driver Standard-0OS

real-time kernel

+ Crash of standard-OS does not affect RT-tasks;
- RT-tasks cannot use Standard-OS services;
less comfortable than expected

technische universitat
dortmund

" fakultatfur © JJ Chen Informatik 12, 2015
informatik Source: R. Gupta, UCSD

-1 -

RT extensions to standard OSs

A common approach is to extend Unix
Linux: RT-Linux, RTLinuxPro, RTAI, etc.
Posix: RT-POSIX

Also done for Windows based on virtualization, e.g. RTOSWin, RT-
Xen

technische universitat " fakultat fir © JJ Chen Informatik 12, 2015
dortmund informatik

- 12 -

Example: RT-Linux

: RT-tasks
@ cannot use standard OS calls.
// Commercially available from
y p

fsmlabs (www.fsmlabs.com)
scheduler

Linux-Kernel @
driver

N _
interrupts ‘ I

-

A

[RT‘L'”UX RT-Scheduler }

interru pts

A 4 \ 4

interrupts

Hardware

technische universitat " fakultat fir © JJ Chen Informatik 12, 2015
dortmund informatik

- 13-

Example (2):
RTAI - Real Time Application Interface

LXRT | [
Task Task Task | § % g
A A A Y =7
A f RT
FIFO
) ;
Linux Kernel RT RT y
(Scheduler / Services) Task Task % 8
i] $ 8
: W &
Linux RT Kernel X
Drivers (Scheduler / Services)

RT Drivers

Interrupts

Hardware

hJ technische universitat " fakultat fur © JJ Chen Informatik 12, 2015
dortmund informatik

https://www.rtai.org/ - 14 -

Classes of RTOSs:
3. Research trying to avoid limitations

Research systems trying to avoid limitations.
Include MARS, Spring, MARUTI, Arts, Hartos, DARK, and

Melody

Research issues [Takada, 2001]:
low overhead memory protection,
temporal protection of computing resources
RTOSes for on-chip multiprocessors

quality of service (QoS) control.

technische universitat " fakultatfur © JJ Chen Informatik 12, 2015 15
dortmund informatik Source: R. Gupta, UCSD - -

Task, Thread, Job

Thread (Job): A basic unit of work handled by the
scheduler

Task: Threads implement the jobs of a task. Usually the
same thread is re-used for each job of a task

Thread Context: The values of registers and other volatile
data that define the state and environment of the thread

technische universitat " fakultatfur © JJ Chen Informatik 12, 2015 16
dortmund , informatik - -

Task, Thread, Job (Continued)

TCB: The thread control block (TCB) is the data structure
created when the kernel creates a thread

The TCB stores the context of the thread when it is
not executing

Thread ID Task Parameters
Starting Address Task Type
> Phase
Scheduling Info Period

Synchronization Info

Relative Deadline

Time Usage Info

Number of Instances

Timer Information

Event List

Other Information

technische universitat * fakultat fur
dortmund 1 W informatik

© JJ Chen Informatik 12, 2015

- 17 -

Periodic Tasks and Threads

Periodic thread: Reinitialized by the kernel and put to sleep
(i.e., suspends) when the thread completes. Released by
the kernel at the beginning of the next period (i.e.,
becomes ready)

The task parameters (e.g., phase and period) are stored
In a separate manner

Most commercial (RT or non-RT) OSs do not support periodic threads

Instead, the thread itself sleeps (i.e., suspends itself
via some system call) until the start of the next period
after it finishes executing

technische universitat " fakultatfur © JJ Chen Informatik 12, 2015 18
dortmund , informatik - -

Example: Control System

Pseudo-code for this system | Contro System |
while (true) : 1% [o | %
start := get the system tick; | sompuron i
perform analog-to-digital L S _“’_:
conversion to get y; |
compute control output u; wwsor e (Thewuem |« actusor
being controlled)

output v and do
digital-to-analog conversion;

end := get the system tick;

timeToSleep : =
T — (end — start);

sleep timeToSleep;

end while

hJ technische universitat * fakultat fur © JJ Chen Informatik 12, 2015
dortmund informatik

- 19-

Example: Periodic Control System

Pseudo-code for this system

set timer to interrupt periodically

Uk

.| Control-law

with period T;

SCNsOr -

~| computation

perform analog-to-digital
conversion to get y;

compute control output u;

output v and do
digital-to-analog conversion;

plant
(The system
being controlled)

|
!
|
|
|
|
VA :
|
|
|
|
I

hJ technische universitat * fakultat fur © JJ Chen Informatik 12, 2015
dortmund informatik

- 20 -

