
Multiprocessor Scheduling III:
Semi-Partitioned Scheduling

Prof. Dr. Jian-Jia Chen

LS 12, TU Dortmund

06, July, 2015

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 37

Weakness of Partitioned Scheduling

• Restricting a task on a processor reduces the schedulability

• Restricting a task on a processor makes the problem NP-hard

• Example: Suppose that there are M processors and M + 1
tasks with the same period T and the (worst-case) execution
times of all these M + 1 tasks are T

2 + ε with ε > 0
• With partitioned scheduling, it is not schedulable
• The least upper bound (LUB) for partitioned scheduling is no

more than 50% of the EDF or RM.

• Within this part, we will focus only for identical processors
and periodic tasks with implicit deadlines.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 2 / 37

Benefits by Allowing Task Migration

• The schedulability can be improved.

• The NP-completeness for EDF does no hold any more if the
migration has no overhead.

• The NP-completeness for schedulability test of RM still holds
since 1 processor is already NP-complete.

• For the above example, we will have 100% LUB if all the tasks
have the same period with Di = Ti , and Ci ≤ Ti for task τi .

D

split tasks

unsplit tasks

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 3 / 37

Limits of Task Migration

• Migration indeed requires overhead
• Migration should be performed only when it is necessary.
• The number of migrations should be reduced as much as

possible.
• This property is the killing argument for fine-grained task

migration schedulers, e.g., p-fair scheduling.

• Migration has to be done carefully so that a job of a task
should not be executed simultaneously on more than one
processor.
• The execution of a migrating task should be divided into blocks

on different processors such that the blocks do not overlap.
• This property forces the scheduler to make smarter decisions

for task migrations

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 4 / 37

Articles for This Module

• Björn Andersson, Konstantinos Bletsas: Sporadic
Multiprocessor Scheduling with Few Preemptions. ECRTS
2008: 243-252

Dynamic Priority

• Nan Guan, Martin Stigge, Wang Yi, Ge Yu: Fixed-Priority
Multiprocessor Scheduling with Liu and Layland’s Utilization
Bound. IEEE Real-Time and Embedded Technology and
Applications Symposium 2010: 165-174

Static Priority

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 5 / 37

Further Readings

• Nan Guan, Martin Stigge, Yu Ge, and Wang Yi. Parametric Utilization
Bounds for Fixed-Priority Multiprocessor Scheduling. In the proc. of the
26th IEEE International Parallel & Distributed Processing Symposium.
2012.

• Yi Zhang, Nan Guan, Yanbin Xiao, Wang Yi. Implementation and
Empirical Comparison of Partitioning-based Multi-core Scheduling. In the
proc. of the 6th IEEE International Symposium on Industrial Embedded
Systems (SIES11), 2011.

• A. Bastoni, B. Brandenburg, and J. Anderson, ” Is Semi-Partitioned
Scheduling Practical?”, Proceedings of the 23rd Euromicro Conference on
Real-Time Systems, 2011.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 6 / 37

Outline

Introduction

Semi-Partitioned EDF Scheduling

Semi-Partitioned Static-Priority Scheduling

Appendix
Proof of LPT
Details for HT-LPF

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 7 / 37

Approaches

• Use resource reservation for task migration.
• Suppose that Tmin is the minimum period among all the tasks.
• By a user-designed parameter κ, we divide time into slots with

length S = Tmin

κ .
• We can use the first-fit approach by splitting a task into 2

subtasks, in which one is executed on processor m and the
other is executed on processor m + 1.

• Execution of a split task is only possible in the reserved time
window in the time slot.

• Applying first-fit algorithm, by taking SEP as the upper bound
of utilization on a processor.
• If a task does not fit, split this task into two subtasks and

allocate a new processor, one is assigned on the processor
under consideration, and the other is assigned on the newly
allocated processor.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 8 / 37

Reservation for EDF

For each time slot, we will reserve two parts.

m t

m + 1 t

S = Tmin
κ

xi

yi

If a task τi is split, the task
can be served only within
these two pre-defined time
slots with length xi and yi .

m t

S = Tmin
κ

xiyj

A processor can host two split
tasks, τi and τj . One is served
at the beginning of the time
slot, and another is served at
the end.

The schedule is EDF, but if a split task instance is in the ready
queue, it is executed in the reserved time region.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 9 / 37

Inflation for Reservation

To meet the utilization request of a split task τi by splitting low split(τi)
portion on processor m and high split(τi) portion on processor m + 1, we
should guarantee that

xi + yi
S

≥ low split(τi) + high split(τi) =
Ci

Ti
= Ui .

• Assigning only xi + yi = S · Ui does not work, since we might just
miss the available reserved time slot.

• Let’s inflate xi and yi by a constant portion f , in which
xi = S · (f + low split(τi)) and yi = S · (f + high split(τi)).

• To ensure the schedulability, we need

κ(xi + yi)

(κ+ 1)S − (xi + yi)
≥ Ci

Ti
.

• The above inequality comes from the worst case that we miss the
reserved time slot, and have to finish before the reserved time slot.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 10 / 37

How Much to Inflate?

κ(xi + yi)

(κ+ 1)S − (xi + yi)
≥ Ci

Ti

⇒ Tmin(2f + Ui)

Tmin + Tmin
κ −

Tmin
κ (2f + Ui)

≥ Ui

⇒ 2f + Ui

1 + 1
κ −

1
κ(2f + Ui)

≥ Ui

⇒f ≥
Ui − U2

i

2κ+ 2Ui
.

Figure: f versus κ

Therefore, by simple calculus, given Ui , the minimum f happens
when f = 2

√
κ(κ+ 1)− κ.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 11 / 37

Algorithm

We can assign all the tasks τi with Ui > SEP on a dedicated
processor. So, we only consider tasks with Ui ≤ SEP.

1: m← 1,Um ← 0;
2: for i = 1 to N, where N = |T| do
3: if Ci

Ti
+ Um ≤ SEP then

4: assign task τi on processor m;
5: Um ← Um + Ci

Ti
;

6: else
7: assign task τi on processor m with low split(τi) set to

SEP − Um and on processor m + 1 with high split(τi) set to
Ci

Ti
− (SEP − Um);

8: m← m + 1 and Um ← Ci

Ti
− (SEP − Um);

• When executing, the reservation to serve τi is to set xi to
S(f + low split(τi)) and yi to S(f + high split(τi)).

• SEP is set as a constant.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 12 / 37

Two Split Tasks on a Processor

For split tasks to be schedulable, the following sufficient conditions
have to be satisfied

• low split(τi) + f + high split(τi) + f ≤ 1 for any split task τi .

• low split(τj) + f + high split(τi) + f ≤ 1 when τi and τj are
assigned on the same processor.

Therefore, the “magic value” SEP

SEP ≤ 1− 2f ≤ 1− 2(2
√
κ(κ+ 1)− κ).

However, we still have to guarantee the schedulability of the
non-split tasks. It can be shown that the sufficient condition is

SEP ≤ 1− 4f ≤ 1− 4(2
√
κ(κ+ 1)− κ).

The proof is omitted here.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 13 / 37

Magic Values: f

Figure: f versus κ

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 14 / 37

Magic Values: SEP

Figure: SEP versus κ

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 15 / 37

Property

Theorem

By taking SEP as 1−4(2
√
κ(κ+ 1)−κ) and f = 2

√
κ(κ+ 1)−κ, the

above algorithm guarantees to derive feasible schedule if
∑

τi∈T
Ci
Ti
≤

M ′ · SEP and Ci
Ti
≤ 1 for all tasks τi .

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 16 / 37

Outline

Introduction

Semi-Partitioned EDF Scheduling

Semi-Partitioned Static-Priority Scheduling

Appendix
Proof of LPT
Details for HT-LPF

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 17 / 37

Basic Idea

1 Use Liu and Layland’s bound for rate-monotonic scheduling
• A task set of N implicit-deadline tasks is schedulable (under

RM) on one processor if the total utilization is no more than

Ulub(RM,N) = N(2
1
N − 1) ≥ 0.693.

2 We can start to consider the tasks with the non-increasing
order of periods

3 We pick the processor with the minimum task utilization so
far when considering task τi

4 If a task cannot fit into the picked processor, we will have to
split it into multiple (two or even more) parts.

5 Since we consider periods in an non-increasing order, when τi
is split, it has higher priority than other tasks that have been
considered.

6 Therefore, if τi is split and assigned to a processor m and the
utilization on processor m after assigning τi is at most

Ulub(RM,N) = N(2
1
N − 1), then τi is so far schedulable.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 18 / 37

Terminology
• Non-split task: a task that is executed only on one processor.

• Split task: a task τi that is executed on ki processors, where ki ≥ 2.
• There are ki subtasks, denoted by τ 1

i , τ
2
i , . . . , τ

ki
i , in which

none of them will run at the same time.
• The ki subtasks have to be synchronized.
• Subtask τ ji is with computation time requirement C j

i , relative

deadline ∆j
i , and period Ti .

• Subtask τ kii is called the tail subtask of task τi .

• Subtask τ 1
i , τ

2
i , . . . , τ

ki−1
i are called body subtasks of task τi .

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 19 / 37

Algorithm: Largest Period First (LPF)

Input: T,M;
1: re-index (sort) tasks such that Ti ≥ Tj for i > j ;
2: initialize utilization Um on processor m as 0;
3: initialize ki of task τi as 1 and R1

i as 0;
4: for i = N to 1, where N = |T| do
5: find m∗ with the minimum utilization, i.e., Um∗ = minm Um;
6: return “assignment fails” if Um∗ ≥ Ulub(RM,N);

7: if Um∗ +
C
ki
i
Ti
≤ Ulub(RM,N) then

8: assign subtask τ kii onto processor m∗, where Um∗ ← Um∗ +
C
ki
i
Ti

;
9: else

10: split task τi further with C ki+1
i ← C ki

i − (Ulub(RM,N)− Um∗)Ti and

C ki
i ← (Ulub(RM,N)− Um∗)Ti ;

11: assign subtask τ kii onto processor m∗, where Um∗ ← Ulub(RM,N);

12: Rki+1
i ← Ci −

∑ki
j=1 C

j
i ;

13: ki ← ki + 1 and goto step 5;
14: execute with rate-monotonic scheduling, in which subtask τ ji is with offset

R j
i ;

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 20 / 37

An Example for LPF

Let’s ignore R j
i first. Ulub(RM, 8) ≈ 0.724.

τ8

0.452

τ7

0.4

τ6

0.37

τ5

0.3

τ4

0.2

τ3

0.2

τ2

0.15

τ1

0.1

(0, 0, 0) (.452, 0, 0) (.452, .4, 0) (.452, .4, .37)(.452, .4, .67)(.452, .6, .67)(.652, .6, .67)(.678, .724, .67)

P1

τ8

τ3

U = 0.724

P2

τ7

τ4

τ2

U = 0.724

P3

τ6

τ5

U = 0.724

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 21 / 37

An Example for LPF

Let’s ignore R j
i first. Ulub(RM, 8) ≈ 0.724.

τ8

0.452

τ7

0.4

τ6

0.37

τ5

0.3

τ4

0.2

τ3

0.2

τ2

0.15

τ1

0.1

(0, 0, 0)

(.452, 0, 0) (.452, .4, 0) (.452, .4, .37)(.452, .4, .67)(.452, .6, .67)(.652, .6, .67)(.678, .724, .67)

P1

τ8

τ3

U = 0.724

P2

τ7

τ4

τ2

U = 0.724

P3

τ6

τ5

U = 0.724

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 21 / 37

An Example for LPF

Let’s ignore R j
i first. Ulub(RM, 8) ≈ 0.724.

τ8

0.452

τ7

0.4

τ6

0.37

τ5

0.3

τ4

0.2

τ3

0.2

τ2

0.15

τ1

0.1

(0, 0, 0)

(.452, 0, 0)

(.452, .4, 0) (.452, .4, .37)(.452, .4, .67)(.452, .6, .67)(.652, .6, .67)(.678, .724, .67)

P1

τ8

τ3

U = 0.724

P2

τ7

τ4

τ2

U = 0.724

P3

τ6

τ5

U = 0.724

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 21 / 37

An Example for LPF

Let’s ignore R j
i first. Ulub(RM, 8) ≈ 0.724.

τ8

0.452

τ7

0.4

τ6

0.37

τ5

0.3

τ4

0.2

τ3

0.2

τ2

0.15

τ1

0.1

(0, 0, 0) (.452, 0, 0)

(.452, .4, 0)

(.452, .4, .37)(.452, .4, .67)(.452, .6, .67)(.652, .6, .67)(.678, .724, .67)

P1

τ8

τ3

U = 0.724

P2

τ7

τ4

τ2

U = 0.724

P3

τ6

τ5

U = 0.724

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 21 / 37

An Example for LPF

Let’s ignore R j
i first. Ulub(RM, 8) ≈ 0.724.

τ8

0.452

τ7

0.4

τ6

0.37

τ5

0.3

τ4

0.2

τ3

0.2

τ2

0.15

τ1

0.1

(0, 0, 0) (.452, 0, 0) (.452, .4, 0)

(.452, .4, .37)

(.452, .4, .67)(.452, .6, .67)(.652, .6, .67)(.678, .724, .67)

P1

τ8

τ3

U = 0.724

P2

τ7

τ4

τ2

U = 0.724

P3

τ6

τ5

U = 0.724

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 21 / 37

An Example for LPF

Let’s ignore R j
i first. Ulub(RM, 8) ≈ 0.724.

τ8

0.452

τ7

0.4

τ6

0.37

τ5

0.3

τ4

0.2

τ3

0.2

τ2

0.15

τ1

0.1

(0, 0, 0) (.452, 0, 0) (.452, .4, 0) (.452, .4, .37)

(.452, .4, .67)

(.452, .6, .67)(.652, .6, .67)(.678, .724, .67)

P1

τ8

τ3

U = 0.724

P2

τ7

τ4

τ2

U = 0.724

P3

τ6

τ5

U = 0.724

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 21 / 37

An Example for LPF

Let’s ignore R j
i first. Ulub(RM, 8) ≈ 0.724.

τ8

0.452

τ7

0.4

τ6

0.37

τ5

0.3

τ4

0.2

τ3

0.2

τ2

0.15

τ1

0.1

(0, 0, 0) (.452, 0, 0) (.452, .4, 0) (.452, .4, .37)(.452, .4, .67)

(.452, .6, .67)

(.652, .6, .67)(.678, .724, .67)

P1

τ8

τ3

U = 0.724

P2

τ7

τ4

τ2

U = 0.724

P3

τ6

τ5

U = 0.724

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 21 / 37

An Example for LPF

Let’s ignore R j
i first. Ulub(RM, 8) ≈ 0.724.

τ8

0.452

τ7

0.4

τ6

0.37

τ5

0.3

τ4

0.2

τ3

0.2

τ2

0.15

τ1

0.1

(0, 0, 0) (.452, 0, 0) (.452, .4, 0) (.452, .4, .37)(.452, .4, .67)(.452, .6, .67)

(.652, .6, .67)

(.678, .724, .67)

P1

τ8

τ3

U = 0.724

P2

τ7

τ4

τ2

U = 0.724

P3

τ6

τ5

U = 0.724

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 21 / 37

An Example for LPF

Let’s ignore R j
i first. Ulub(RM, 8) ≈ 0.724.

τ8

0.452

τ7

0.4

τ6

0.37

τ5

0.3

τ4

0.2

τ3

0.2

τ2

0.15

τ1

0.1

(0, 0, 0) (.452, 0, 0) (.452, .4, 0) (.452, .4, .37)(.452, .4, .67)(.452, .6, .67)(.652, .6, .67)

(.678, .724, .67)

P1

τ8

τ3

U = 0.724

P2

τ7

τ4

τ2

U = 0.724

P3

τ6

τ5

U = 0.724

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 21 / 37

An Example for LPF

Let’s ignore R j
i first. Ulub(RM, 8) ≈ 0.724.

τ8

0.452

τ7

0.4

τ6

0.37

τ5

0.3

τ4

0.2

τ3

0.2

τ2

0.15

τ1

0.1

(0, 0, 0) (.452, 0, 0) (.452, .4, 0) (.452, .4, .37)(.452, .4, .67)(.452, .6, .67)(.652, .6, .67)(.678, .724, .67)

P1

τ8

τ3

U = 0.724
P2

τ7

τ4

τ2

U = 0.724
P3

τ6

τ5

U = 0.724

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 21 / 37

Body Subtasks

Let m(τ ji) be the processor that subtask τ ji is assigned onto;

Theorem

If j < ki , i.e., τ ji is a body subtask, τ ji is with the highest priority on

processor m(τ ji).

Proof

• This simply comes from the algorithm, which considers tasks
from the lowest-priority to the highest priority

• When a body subtask is assigned, there is no more (sub)task
τ `k with k < i going to be assigned on processor m(τ ji)
anymore.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 22 / 37

How does Scheduling Work?

Let’s put R j
i back.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 23 / 37

Schedulability on Good Partitions

Suppose that Tm is the set of (sub)tasks that are assigned on
processor m.

Theorem

If there are only body subtasks or non-split tasks in Tm, then

• the non-split tasks can meet their deadlines and

• the body subtask τ ji is with response time C j
i with deferred

release R j
i .

It should be clear now.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 24 / 37

Trouble Maker: Tail Subtasks

• A tail subtask does not have the highest priority...

• It should also be now clear that the offset of a tail subtask τkii
is equal to

∑ki−1
j=1 C j

i .

• Therefore, to meet the requirement with non-overlapping
execution of task τi , we have to finish τkii within

Ti −
∑ki−1

j=1 C j
i = Ti − (Ci − C ki

i).

Details are in the Appendix. Omitted in the lecture.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 25 / 37

Trouble Maker: Tail Subtasks

• A tail subtask does not have the highest priority...

• It should also be now clear that the offset of a tail subtask τkii
is equal to

∑ki−1
j=1 C j

i .

• Therefore, to meet the requirement with non-overlapping
execution of task τi , we have to finish τkii within

Ti −
∑ki−1

j=1 C j
i = Ti − (Ci − C ki

i).

Details are in the Appendix. Omitted in the lecture.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 25 / 37

Light and Heavy Tasks

• If task τi is with utilization lower than or equal to
Ulub(RM,N)

1+Ulub(RM,N) , τi is a light task.

• If task τi is with utilization higher than Ulub(RM,N)
1+Ulub(RM,N) , τi is a

heavy task.

Therefore, if τi is a light task,

Ti

Ti − (Ci − C ki
i)
− 1 ≤

Ci
Ti

1− Ci
Ti

≤ Ulub(RM,N).

Theorem

[Guan et al. 2010] If all the (split) tasks are light tasks, e.g., Ui ≤
Ulub(RM,N)

1+Ulub(RM,N)∀τi ∈ T (or for every split task τi), LPF guarantees the

feasibility of the derived schedule when

∑
τi∈T

Ui

M ≤ Ulub(RM,N) and
Ui ≤ 1 for all the tasks τi on M homogeneous processors.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 26 / 37

Assign Heavy Tasks First (HT-LPF)

Key idea: Pre-assign a HEAVY task such that it is not split.

1: pre-assign heavy tasks under some conditions;
2: assign light tasks on processors without pre-assigned tasks as

much as possible;
3: assign remaining light tasks to the processors with heavy tasks

with a “specific order”;

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 27 / 37

Property of HT-LPF (Proofs are omitted)

Theorem

HT-LPF guarantees the feasibility of the derived schedule when∑
τi∈T

Ui

M ≤ Ulub(RM,N) and Ui ≤ 1 for all the tasks τi on M
homogeneous processors.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 28 / 37

Outline

Introduction

Semi-Partitioned EDF Scheduling

Semi-Partitioned Static-Priority Scheduling

Appendix
Proof of LPT
Details for HT-LPF

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 29 / 37

Proof for Tail Subtasks

• For simplicity, we use ∆i to denote Ti − (Ci − C ki
i);

• Suppose that Yi is the utilization of the tasks that are
assigned on the processor m(τkii) for executing τkii and with

higher priority than τkii .

• We would first like to show that τkii can finish within ∆i if

YiTi + C ki
i

∆i
≤ Ulub(RM,N).

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 30 / 37

Proof for Tail Subtasks

• Again, since rate-monotonic is applied, we only have to consider tasks
with periods shorter than task τi .

• For notational brevity, let’s assume τ kii is on processor m;

• Let’s distinguish two types of tasks on m (by the relationship with ∆i):

T1
m = {τ` | τ` ∈ Tm, j < i ,Tj ≥ ∆i}

T2
m = {τ` | τ` ∈ Tm, j < i ,Tj < ∆i}

• By definition, (note that we do not distinguish between split or non-split
tasks by defining cj as the execution time of task τj or subtask τ `j in Tm):

Ulub(RM,N) ≥ YiTi + C ki
i

∆i
=

(
∑
τj∈T1

m

cj
Tj

+
∑
τj∈T2

m

cj
Tj

)Ti + C ki
i

∆i

=
∑
τj∈T1

m

cj
Tj

Ti

∆i
+

∑
τj∈T2

m

cj
Tj

Ti

∆i
+

C ki
i

∆i
≥

∑
τj∈T1

m

cj
∆i

+
∑
τj∈T2

m

cj
Tj

+
C ki
i

∆i
.

• A more difficult task set (by changing Tj to ∆i for τj ∈ T1
m) finishes τ kii

within ∆i , so is the original task set.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 31 / 37

Issues of the Tail Subtask

• If we are sure that
YiTi+C

ki
i

∆i
≤ Ulub(RM,N), we will be fine.

• However, the above inequality only holds for some cases when the
utilization of τi is small enough.

• So, the next question is: What is the maximum Ui of a split task τi ,

that enforces
YiTi+C

ki
i

∆i
≤ Ulub(RM,N)?

• Let Xi be the total utilization of the tasks on processor m with
lower-priority than τ kii .

• By definition, we know that

Xi +
C ki
i

Ti
+ Yi ≤ Ulub(RM,N)

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 32 / 37

Issues of the Tail Subtask
As τi has ki subtasks, there are ki − 1 body subtasks assigned on other ki − 1
processors. Therefore,

Ulub(RM,N)− Yi ≥ Xi +
C ki
i

Ti
≥1 Ulub(RM,N)−

∑ki−1
j=1 C j

i

(ki − 1)Ti
+

C ki
i

Ti

= Ulub(RM,N)− Ci − C ki
i

(ki − 1)Ti
+

C ki
i

Ti
≥2 Ulub(RM,N)− (

Ci

Ti
− 2

C ki
i

Ti
).

≥1 is because there are ki − 1 processors with utilization lower than or equal to
Xi before assigning τ kii . ≥2 is because ki ≥ 2. Hence,

Yi ≤ (
Ci

Ti
− 2

C ki
i

Ti
).

Since τ kii can finish within ∆i if
YiTi+C

ki
i

∆i
≤ Ulub(RM,N), we have that if

YiTi + C ki
i

∆i
≤ Ci − C ki

i

Ti − (Ci − C ki
i)

=
Ti

Ti − (Ci − C ki
i)
− 1 ≤ Ulub(RM,N),

τ kii can finish within ∆i .

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 33 / 37

Outline

Introduction

Semi-Partitioned EDF Scheduling

Semi-Partitioned Static-Priority Scheduling

Appendix
Proof of LPT
Details for HT-LPF

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 34 / 37

Assign Heavy Tasks First (HT-LPF)

Key idea: Pre-assign a HEAVY task such that it is not split.

1: m← 1;
2: for i = 1 to N, where N = |T| do
3: if τi is not a heavy task then
4: continue;
5: if

∑N
j=i+1

Cj

Tj
≤ (M −m)Ulub(RM,N) then

6: pre-assign task τi on processor m;
7: m← m + 1;
8: let Tpre be the set of tasks that are pre-assigned on m− 1 processors

after the above loop, and M† ← m − 1;
9: run algorithm LPF for deciding T \ Tpre on processor M† + 1 to M;

10: while there exists task τi in T \ Tpre that cannot be assigned on any
processor without pre-assigned tasks do

11: repeatedly assign or split task τi as much as possible on the
largest-index processor with utilization less than Ulub(RM,N)
among the first M† processors;

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 35 / 37

Example of HT-LPF

τ8

0.3

τ7

0.6

τ6

0.3

τ5

0.45

τ4

0.6

τ3

0.24

τ2

0.2

τ1

0.2

light

P1

τ4

τ1

P2

τ5

τ2

P3

τ7

τ3

P4

τ8

τ6

τ3

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 36 / 37

Example of HT-LPF

τ8

0.3

τ7

0.6

τ6

0.3

τ5

0.45

τ4

0.6

τ3

0.24

τ2

0.2

τ1

0.2

light

P1

τ4

τ1

P2

τ5

τ2

P3

τ7

τ3

P4

τ8

τ6

τ3

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 36 / 37

Example of HT-LPF

τ8

0.3

τ7

0.6

τ6

0.3

τ5

0.45

τ4

0.6

τ3

0.24

τ2

0.2

τ1

0.2

light

light

P1

τ4

τ1

P2

τ5

τ2

P3

τ7

τ3

P4

τ8

τ6

τ3

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 36 / 37

Example of HT-LPF

τ8

0.3

τ7

0.6

τ6

0.3

τ5

0.45

τ4

0.6

τ3

0.24

τ2

0.2

τ1

0.2

light

light

P1

τ4

τ1

P2

τ5

τ2

P3

τ7

τ3

P4

τ8

τ6

τ3

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 36 / 37

Example of HT-LPF

τ8

0.3

τ7

0.6

τ6

0.3

τ5

0.45

τ4

0.6

τ3

0.24

τ2

0.2

τ1

0.2

light

heavy and pre-assign

P1

τ4

τ1

P2

τ5

τ2

P3

τ7

τ3

P4

τ8

τ6

τ3

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 36 / 37

Example of HT-LPF

τ8

0.3

τ7

0.6

τ6

0.3

τ5

0.45

τ4

0.6

τ3

0.24

τ2

0.2

τ1

0.2

light

heavy and pre-assign

P1

τ4

τ1

P2

τ5

τ2

P3

τ7

τ3

P4

τ8

τ6

τ3

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 36 / 37

Example of HT-LPF

τ8

0.3

τ7

0.6

τ6

0.3

τ5

0.45

τ4

0.6

τ3

0.24

τ2

0.2

τ1

0.2

light

light

P1

τ4

τ1

P2

τ5

τ2

P3

τ7

τ3

P4

τ8

τ6

τ3

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 36 / 37

Example of HT-LPF

τ8

0.3

τ7

0.6

τ6

0.3

τ5

0.45

τ4

0.6

τ3

0.24

τ2

0.2

τ1

0.2

light

heavy and pre-assign

P1

τ4

τ1

P2

τ5

τ2

P3

τ7

τ3

P4

τ8

τ6

τ3

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 36 / 37

Example of HT-LPF

τ8

0.3

τ7

0.6

τ6

0.3

τ5

0.45

τ4

0.6

τ3

0.24

τ2

0.2

τ1

0.2

light

light

P1

τ4

τ1

P2

τ5

τ2

P3

τ7

τ3

P4

τ8

τ6

τ3

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 36 / 37

Example of HT-LPF

τ8

0.3

τ7

0.6

τ6

0.3

τ5

0.45

τ4

0.6

τ3

0.24

τ2

0.2

τ1

0.2

light

P1

τ4

τ1

P2

τ5

τ2

P3

τ7

τ3

P4

τ8

τ6

τ3

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 36 / 37

Example of HT-LPF

τ8

0.3

τ7

0.6

τ6

0.3

τ5

0.45

τ4

0.6

τ3

0.24

τ2

0.2

τ1

0.2

light

P1

τ4

τ1

P2

τ5

τ2

P3

τ7

τ3

P4

τ8

τ6

τ3

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 36 / 37

Example of HT-LPF

τ8

0.3

τ7

0.6

τ6

0.3

τ5

0.45

τ4

0.6

τ3

0.24

τ2

0.2

τ1

0.2

light

P1

τ4

τ1

P2

τ5

τ2

P3

τ7

τ3

P4

τ8

τ6

τ3

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 36 / 37

Priority of Heavy Tasks

Let τi be a heavy task, and there are η pre-assigned tasks with
higher priority than τi . Then we know

• If τi is a pre-assigned task, it satisfies∑
j>i

Ci

Ti
≤ (M − η + 1)× Ulub(RM,N).

• If τi is not a pre-assigned task, it satisfies∑
j>i

Ci

Ti
> (M − η + 1)× Ulub(RM,N).

Theorem

A pre-assigned task has the lowest-priority on its host processor.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 37 / 37

	Introduction
	Semi-Partitioned EDF Scheduling
	Semi-Partitioned Static-Priority Scheduling
	Appendix
	Proof of LPT
	Details for HT-LPF

