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Weakness of Partitioned Scheduling

• Restricting a task on a processor reduces the schedulability

• Restricting a task on a processor makes the problem NP-hard

• Example: Suppose that there are M processors and M + 1
tasks with the same period T and the (worst-case) execution
times of all these M + 1 tasks are T

2 + ε with ε > 0
• With partitioned scheduling, it is not schedulable
• The least upper bound (LUB) for partitioned scheduling is no

more than 50% of the EDF or RM.

• Within this part, we will focus only for identical processors
and periodic tasks with implicit deadlines.
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Benefits by Allowing Task Migration

• The schedulability can be improved.

• The NP-completeness for EDF does no hold any more if the
migration has no overhead.

• The NP-completeness for schedulability test of RM still holds
since 1 processor is already NP-complete.

• For the above example, we will have 100% LUB if all the tasks
have the same period with Di = Ti , and Ci ≤ Ti for task τi .

D

split tasks

unsplit tasks
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Limits of Task Migration

• Migration indeed requires overhead
• Migration should be performed only when it is necessary.
• The number of migrations should be reduced as much as

possible.
• This property is the killing argument for fine-grained task

migration schedulers, e.g., p-fair scheduling.

• Migration has to be done carefully so that a job of a task
should not be executed simultaneously on more than one
processor.
• The execution of a migrating task should be divided into blocks

on different processors such that the blocks do not overlap.
• This property forces the scheduler to make smarter decisions

for task migrations
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Approaches

• Use resource reservation for task migration.
• Suppose that Tmin is the minimum period among all the tasks.
• By a user-designed parameter κ, we divide time into slots with

length S = Tmin

κ .
• We can use the first-fit approach by splitting a task into 2

subtasks, in which one is executed on processor m and the
other is executed on processor m + 1.

• Execution of a split task is only possible in the reserved time
window in the time slot.

• Applying first-fit algorithm, by taking SEP as the upper bound
of utilization on a processor.
• If a task does not fit, split this task into two subtasks and

allocate a new processor, one is assigned on the processor
under consideration, and the other is assigned on the newly
allocated processor.
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Reservation for EDF

For each time slot, we will reserve two parts.

m t

m + 1 t

S = Tmin
κ

xi

yi

If a task τi is split, the task
can be served only within
these two pre-defined time
slots with length xi and yi .

m t

S = Tmin
κ

xiyj

A processor can host two split
tasks, τi and τj . One is served
at the beginning of the time
slot, and another is served at
the end.

The schedule is EDF, but if a split task instance is in the ready
queue, it is executed in the reserved time region.
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Inflation for Reservation

To meet the utilization request of a split task τi by splitting low split(τi )
portion on processor m and high split(τi ) portion on processor m + 1, we
should guarantee that

xi + yi
S

≥ low split(τi ) + high split(τi ) =
Ci

Ti
= Ui .

• Assigning only xi + yi = S · Ui does not work, since we might just
miss the available reserved time slot.

• Let’s inflate xi and yi by a constant portion f , in which
xi = S · (f + low split(τi )) and yi = S · (f + high split(τi )).

• To ensure the schedulability, we need

κ(xi + yi )

(κ+ 1)S − (xi + yi )
≥ Ci

Ti
.

• The above inequality comes from the worst case that we miss the
reserved time slot, and have to finish before the reserved time slot.
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How Much to Inflate?

κ(xi + yi )

(κ+ 1)S − (xi + yi )
≥ Ci

Ti

⇒ Tmin(2f + Ui )

Tmin + Tmin
κ −

Tmin
κ (2f + Ui )

≥ Ui

⇒ 2f + Ui

1 + 1
κ −

1
κ(2f + Ui )

≥ Ui

⇒f ≥
Ui − U2

i

2κ+ 2Ui
.

Figure: f versus κ

Therefore, by simple calculus, given Ui , the minimum f happens
when f = 2

√
κ(κ+ 1)− κ.
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Algorithm

We can assign all the tasks τi with Ui > SEP on a dedicated
processor. So, we only consider tasks with Ui ≤ SEP.

1: m← 1,Um ← 0;
2: for i = 1 to N, where N = |T| do
3: if Ci

Ti
+ Um ≤ SEP then

4: assign task τi on processor m;
5: Um ← Um + Ci

Ti
;

6: else
7: assign task τi on processor m with low split(τi ) set to

SEP − Um and on processor m + 1 with high split(τi ) set to
Ci

Ti
− (SEP − Um);

8: m← m + 1 and Um ← Ci

Ti
− (SEP − Um);

• When executing, the reservation to serve τi is to set xi to
S(f + low split(τi )) and yi to S(f + high split(τi )).

• SEP is set as a constant.
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Two Split Tasks on a Processor

For split tasks to be schedulable, the following sufficient conditions
have to be satisfied

• low split(τi ) + f + high split(τi ) + f ≤ 1 for any split task τi .

• low split(τj) + f + high split(τi ) + f ≤ 1 when τi and τj are
assigned on the same processor.

Therefore, the “magic value” SEP

SEP ≤ 1− 2f ≤ 1− 2( 2
√
κ(κ+ 1)− κ).

However, we still have to guarantee the schedulability of the
non-split tasks. It can be shown that the sufficient condition is

SEP ≤ 1− 4f ≤ 1− 4( 2
√
κ(κ+ 1)− κ).

The proof is omitted here.
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Magic Values: f

Figure: f versus κ
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Magic Values: SEP

Figure: SEP versus κ
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Property

Theorem

By taking SEP as 1−4( 2
√
κ(κ+ 1)−κ) and f = 2

√
κ(κ+ 1)−κ, the

above algorithm guarantees to derive feasible schedule if
∑

τi∈T
Ci
Ti
≤

M ′ · SEP and Ci
Ti
≤ 1 for all tasks τi .

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 16 / 37



Outline

Introduction

Semi-Partitioned EDF Scheduling

Semi-Partitioned Static-Priority Scheduling

Appendix
Proof of LPT
Details for HT-LPF

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 17 / 37



Basic Idea

1 Use Liu and Layland’s bound for rate-monotonic scheduling
• A task set of N implicit-deadline tasks is schedulable (under

RM) on one processor if the total utilization is no more than

Ulub(RM,N) = N(2
1
N − 1) ≥ 0.693.

2 We can start to consider the tasks with the non-increasing
order of periods

3 We pick the processor with the minimum task utilization so
far when considering task τi

4 If a task cannot fit into the picked processor, we will have to
split it into multiple (two or even more) parts.

5 Since we consider periods in an non-increasing order, when τi
is split, it has higher priority than other tasks that have been
considered.

6 Therefore, if τi is split and assigned to a processor m and the
utilization on processor m after assigning τi is at most

Ulub(RM,N) = N(2
1
N − 1), then τi is so far schedulable.
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Terminology
• Non-split task: a task that is executed only on one processor.

• Split task: a task τi that is executed on ki processors, where ki ≥ 2.
• There are ki subtasks, denoted by τ 1

i , τ
2
i , . . . , τ

ki
i , in which

none of them will run at the same time.
• The ki subtasks have to be synchronized.
• Subtask τ ji is with computation time requirement C j

i , relative

deadline ∆j
i , and period Ti .

• Subtask τ kii is called the tail subtask of task τi .

• Subtask τ 1
i , τ

2
i , . . . , τ

ki−1
i are called body subtasks of task τi .
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Algorithm: Largest Period First (LPF)

Input: T,M;
1: re-index (sort) tasks such that Ti ≥ Tj for i > j ;
2: initialize utilization Um on processor m as 0;
3: initialize ki of task τi as 1 and R1

i as 0;
4: for i = N to 1, where N = |T| do
5: find m∗ with the minimum utilization, i.e., Um∗ = minm Um;
6: return “assignment fails” if Um∗ ≥ Ulub(RM,N);

7: if Um∗ +
C
ki
i
Ti
≤ Ulub(RM,N) then

8: assign subtask τ kii onto processor m∗, where Um∗ ← Um∗ +
C
ki
i
Ti

;
9: else

10: split task τi further with C ki+1
i ← C ki

i − (Ulub(RM,N)− Um∗)Ti and

C ki
i ← (Ulub(RM,N)− Um∗)Ti ;

11: assign subtask τ kii onto processor m∗, where Um∗ ← Ulub(RM,N);

12: Rki+1
i ← Ci −

∑ki
j=1 C

j
i ;

13: ki ← ki + 1 and goto step 5;
14: execute with rate-monotonic scheduling, in which subtask τ ji is with offset

R j
i ;
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An Example for LPF

Let’s ignore R j
i first. Ulub(RM, 8) ≈ 0.724.

τ8
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0.4

τ6
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τ6
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U = 0.724
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Body Subtasks

Let m(τ ji ) be the processor that subtask τ ji is assigned onto;

Theorem

If j < ki , i.e., τ ji is a body subtask, τ ji is with the highest priority on

processor m(τ ji ).

Proof

• This simply comes from the algorithm, which considers tasks
from the lowest-priority to the highest priority

• When a body subtask is assigned, there is no more (sub)task
τ `k with k < i going to be assigned on processor m(τ ji )
anymore.
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How does Scheduling Work?

Let’s put R j
i back.
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Schedulability on Good Partitions

Suppose that Tm is the set of (sub)tasks that are assigned on
processor m.

Theorem

If there are only body subtasks or non-split tasks in Tm, then

• the non-split tasks can meet their deadlines and

• the body subtask τ ji is with response time C j
i with deferred

release R j
i .

It should be clear now.
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Trouble Maker: Tail Subtasks

• A tail subtask does not have the highest priority...

• It should also be now clear that the offset of a tail subtask τkii
is equal to

∑ki−1
j=1 C j

i .

• Therefore, to meet the requirement with non-overlapping
execution of task τi , we have to finish τkii within

Ti −
∑ki−1

j=1 C j
i = Ti − (Ci − C ki

i ).

Details are in the Appendix. Omitted in the lecture.
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Light and Heavy Tasks

• If task τi is with utilization lower than or equal to
Ulub(RM,N)

1+Ulub(RM,N) , τi is a light task.

• If task τi is with utilization higher than Ulub(RM,N)
1+Ulub(RM,N) , τi is a

heavy task.

Therefore, if τi is a light task,

Ti

Ti − (Ci − C ki
i )
− 1 ≤

Ci
Ti

1− Ci
Ti

≤ Ulub(RM,N).

Theorem

[Guan et al. 2010] If all the (split) tasks are light tasks, e.g., Ui ≤
Ulub(RM,N)

1+Ulub(RM,N)∀τi ∈ T (or for every split task τi ), LPF guarantees the

feasibility of the derived schedule when

∑
τi∈T

Ui

M ≤ Ulub(RM,N) and
Ui ≤ 1 for all the tasks τi on M homogeneous processors.
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Assign Heavy Tasks First (HT-LPF)

Key idea: Pre-assign a HEAVY task such that it is not split.

1: pre-assign heavy tasks under some conditions;
2: assign light tasks on processors without pre-assigned tasks as

much as possible;
3: assign remaining light tasks to the processors with heavy tasks

with a “specific order”;
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Property of HT-LPF (Proofs are omitted)

Theorem

HT-LPF guarantees the feasibility of the derived schedule when∑
τi∈T

Ui

M ≤ Ulub(RM,N) and Ui ≤ 1 for all the tasks τi on M
homogeneous processors.
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Proof for Tail Subtasks

• For simplicity, we use ∆i to denote Ti − (Ci − C ki
i );

• Suppose that Yi is the utilization of the tasks that are
assigned on the processor m(τkii ) for executing τkii and with

higher priority than τkii .

• We would first like to show that τkii can finish within ∆i if

YiTi + C ki
i

∆i
≤ Ulub(RM,N).
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Proof for Tail Subtasks

• Again, since rate-monotonic is applied, we only have to consider tasks
with periods shorter than task τi .

• For notational brevity, let’s assume τ kii is on processor m;

• Let’s distinguish two types of tasks on m (by the relationship with ∆i ):

T1
m = {τ` | τ` ∈ Tm, j < i ,Tj ≥ ∆i}

T2
m = {τ` | τ` ∈ Tm, j < i ,Tj < ∆i}

• By definition, (note that we do not distinguish between split or non-split
tasks by defining cj as the execution time of task τj or subtask τ `j in Tm):

Ulub(RM,N) ≥ YiTi + C ki
i

∆i
=

(
∑
τj∈T1

m

cj
Tj

+
∑
τj∈T2

m

cj
Tj

)Ti + C ki
i

∆i

=
∑
τj∈T1

m

cj
Tj

Ti

∆i
+

∑
τj∈T2

m

cj
Tj

Ti

∆i
+

C ki
i

∆i
≥

∑
τj∈T1

m

cj
∆i

+
∑
τj∈T2

m

cj
Tj

+
C ki
i

∆i
.

• A more difficult task set (by changing Tj to ∆i for τj ∈ T1
m) finishes τ kii

within ∆i , so is the original task set.
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Issues of the Tail Subtask

• If we are sure that
YiTi+C

ki
i

∆i
≤ Ulub(RM,N), we will be fine.

• However, the above inequality only holds for some cases when the
utilization of τi is small enough.

• So, the next question is: What is the maximum Ui of a split task τi ,

that enforces
YiTi+C

ki
i

∆i
≤ Ulub(RM,N)?

• Let Xi be the total utilization of the tasks on processor m with
lower-priority than τ kii .

• By definition, we know that

Xi +
C ki
i

Ti
+ Yi ≤ Ulub(RM,N)
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Issues of the Tail Subtask
As τi has ki subtasks, there are ki − 1 body subtasks assigned on other ki − 1
processors. Therefore,

Ulub(RM,N)− Yi ≥ Xi +
C ki
i

Ti
≥1 Ulub(RM,N)−

∑ki−1
j=1 C j

i

(ki − 1)Ti
+

C ki
i

Ti

= Ulub(RM,N)− Ci − C ki
i

(ki − 1)Ti
+

C ki
i

Ti
≥2 Ulub(RM,N)− (

Ci

Ti
− 2

C ki
i

Ti
).

≥1 is because there are ki − 1 processors with utilization lower than or equal to
Xi before assigning τ kii . ≥2 is because ki ≥ 2. Hence,

Yi ≤ (
Ci

Ti
− 2

C ki
i

Ti
).

Since τ kii can finish within ∆i if
YiTi+C

ki
i

∆i
≤ Ulub(RM,N), we have that if

YiTi + C ki
i

∆i
≤ Ci − C ki

i

Ti − (Ci − C ki
i )

=
Ti

Ti − (Ci − C ki
i )
− 1 ≤ Ulub(RM,N),

τ kii can finish within ∆i .
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Assign Heavy Tasks First (HT-LPF)

Key idea: Pre-assign a HEAVY task such that it is not split.

1: m← 1;
2: for i = 1 to N, where N = |T| do
3: if τi is not a heavy task then
4: continue;
5: if

∑N
j=i+1

Cj

Tj
≤ (M −m)Ulub(RM,N) then

6: pre-assign task τi on processor m;
7: m← m + 1;
8: let Tpre be the set of tasks that are pre-assigned on m− 1 processors

after the above loop, and M† ← m − 1;
9: run algorithm LPF for deciding T \ Tpre on processor M† + 1 to M;

10: while there exists task τi in T \ Tpre that cannot be assigned on any
processor without pre-assigned tasks do

11: repeatedly assign or split task τi as much as possible on the
largest-index processor with utilization less than Ulub(RM,N)
among the first M† processors;
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Example of HT-LPF
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Priority of Heavy Tasks

Let τi be a heavy task, and there are η pre-assigned tasks with
higher priority than τi . Then we know

• If τi is a pre-assigned task, it satisfies∑
j>i

Ci

Ti
≤ (M − η + 1)× Ulub(RM,N).

• If τi is not a pre-assigned task, it satisfies∑
j>i

Ci

Ti
> (M − η + 1)× Ulub(RM,N).

Theorem

A pre-assigned task has the lowest-priority on its host processor.
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