Multiprocessor Scheduling IV: (A Note on)

Parallelizations

Jian-Jia Chen

TU Dortmund

06, July, 2015

technische universitat S fakultat fiir | computer
dortrmund informatik O 12 Sonc 2 Jian-Jia Chen (TU Dortmund) 1/13

Parallelizations with DAG

technische universitat S fakultat fiir

dortmand informatic L0 12 Soheet Jian-Jia Chen (TU Dortmund) 2/13

Outline

Parallelizations with DAG

technische universitat S fakultat fiir

I computer
dortmund informatik O 12 Siorc 2 Jian-Jia Chen (TU Dortmund) 2/13

Needs for Parallelizations

e To fully utilize the multiprocessor systems, a task should be
able to be executed on more than one processor

e We have up to now only consider sequential executions of a
task

o If we allow parallelizations, how should the model be looked
like?

fh | technische universitat S fakultat far I computer

J dortmund informatik science 12 Jian-Jia Chen (TU Dortmund) 3/13

Represented by Directed Acyclic Graphs (DAG)

e Each task 7; is a sporadic task:

e period T;
e relative deadline D;

e Each task is characterized by a directed acyclic graph (DAG)

o Each task has multiple subtasks (represented by vertices here)

e The number in each node is the worst-case execution time

e The precedence constraints (the directed edged) represent the
dependency of the subtasks

e The acyclic property ensures that there is no cycle in the graph

S fakultat far computer
informatik I science 12 Jian-Jia Chen (TU Dortmund) 4 /13

Essentials Based on DAG structures

Based on the DAG structure of a task 7;
o C;: the overall worst-case execution time (20 in this example)

e W;: the critical-path (one of the longest paths) worst-case

execution time (12 in this example)

o U;: the utilization, defined as &

e universitat S fakultat fiir computer i i
informatik 12 &ehee Jian-Jia Chen (TU Dortmund)

5/13

Scheduling Theory about This

o If the system has only one task, represented by a DAG,
Graham studied this problem in 1966 under this notation
P|prec|Cmax

e The algorithm is called list scheduling

o |f one of the M processors is idle, schedule one of the ready
subtasks to the idle processor.

e The algorithm is widely used for many applications.

e The order of the subtasks can be tuned
e Graham showed that list scheduling has an approximation

factor 2 — % with respect to minimizing the makespan.

S fakultat fiir I computer

informatik science 12 Jian-Jia Chen (TU Dortmund) 6/13

An Informal Proof of List Scheduling

® Let / be the subtask that finishes the last. Let £ — 1 be the last-finished
predecessor of ¢

® We construct a series of subtasks preceding each other, starting at 1
(which has no predecessor)

® Let's now call this path . Clearly the length of I is < W.
® Let the starting time of the i-th subtask in I1 be ¢t;.
® |n list scheduling, the finishing time of i-th subtask in I is then f; = t; + ¢;
o ¢ is the (worst-case) execution time of the i-th subtask in I1.
® |mportant observation: between f; and ti;+1, all the M processors must be
busy for executing other subtasks
o otherwise, the (i + 1)-th subtask in N should have been
executed earlier than t;.

® Therefore, we know that the finishing time is at most 2 — % times the
optimal makespan (denoted by Cpnax"")

cC—-v 1
Y+ = < (2-)G
nische universitat S fakultat far computer

dortmund informatik 12 &oree Jian-Jia Chen (TU Dortmund) 7/13

Implicit-Deadline Tasks with Global RM Scheduling

Forall 0 <t < Ty

k—1

Wi(t) = ;([-,t-l-‘ -1)G +2G,.

This implies that we just greedily take a head job immediately.
Clearly, lower-priority jobs have no effect for the unschedulability or
schedulability.

A system T of implicit-deadline periodic, independent, preemptable
DAG tasks is schedulable by Global-RM on M processors if

C—V W, (t
K ko ()

4 dtwith 0 <t < T, d vV
T ET wi <t< Ig an fk AF M M

<t

holds.

he universitat

S fakultat fiir 2 computer
informatik I science 12

Jian-Jia Chen (TU Dortmund) 8/13

Recall: Capacity Augmentation Bound

Given a task set 7 with total utilization of Us~, a scheduling
algorithm A with capacity augmentation bound b can always
schedule this task set on M processors of speed b as long as T
satisfies the following conditions:

Utilization does not exceed total cores, Z U <m (1)
€T
" N 4
For each task 7; € T, the critical path utilization - <1 (2

e universitat S fakultat fiir computer
informatik 12 &ehee Jian-Jia Chen (TU Dortmund)

9/13

Recall: Capacity Augmentation Bound

Given a task set 7 with total utilization of Us~, a scheduling
algorithm A with capacity augmentation bound b can always
schedule this task set on M processors of speed b as long as T
satisfies the following conditions:

Utilization does not exceed total cores, Z U <m (1)
€T

\Up
For each task 7; € T, the critical path utilization ?' <1 (2

This means that the algorithm guarantees the schedulability if the
following conditions are satisfied:

Utilization does not exceed total cores, Z U; <
TiET

1
For each task 7; € T, the critical path utilization — < 5 (4)

S fakultat fiir I computer

informatik science 12 Jian-Jia Chen (TU Dortmund) 9/13

Capacity Augmentation Bound of Global RM

The task set is schedulable under Global RM if

Vk, <2+“;:+CkM_T;Uk> Nt (Ui/M +1) < 3. (5)
= (2+“;:) e, (U;/M+1) <3. (6)
= (2 - 2) ((k_ll)b +1)k <. (7)
= <2 + Z) elt/b <3 (8)

Again, we use the worst cases by setting all the tasks with the
same utilization as we did in the analysis for uniprocessor systems.
This concludes that b > 3.6215 enforces the above inequality.

S fakultat fiir I computer

informatik science 12 Jian-Jia Chen (TU Dortmund) 10 / 13

A Short Summary about Global DAG Scheduling

Speedup factors

implicit deadlines ‘ constrained deadlines ‘ arbitrary deadlines
Global EDF 2 — 1 (Bonifaci et al. ECRTS 2013)
Global DM 3 — 2 (Bonifaci et al. ECRTS 2013)

Capacity augmentation factors

implicit deadlines | constrained deadlines arbitrary deadlines
Global EDF 2+2\/§ ~ 2.6181 | unknown unknown
(Li, Chen et al.
2014)
Global DM | 3.6215 (Chen et | unknown unknown
al. 2015)
S fakultat fiir computer
informatik IE science 12 Jian-Jia Chen (TU Dortmund) 11 /13

How about Partitioned Scheduling?

e Each subtask should be

assigned on one processor

e Different subtasks can be

assigned on different processors
e For each subtask of task ;
specify its offset to start

with
specify its relative

deadline after the offset
perform timing control

2 offset @; ,=25/3 offset @, 3=4o/3
s s
F—(2 s //
K A ~
LENGN 1
2 —
o— O --®
|
- f. 5= 2*(5/3)-1 e
o(2) 2 fi3=2'(6/3)1
et < G2=° d 4=5/3
, f 3=
fi 1 =5"(5/3)-1 ;

Saifullah et al.: With a proper assignment of relative deadlines and
offsets, speedup factor 5 can be achieved by using partitioned EDF.

Abusayeed Saifullah et al. “Multi-core Real-Time Scheduling for Generalized Parallel Task Models”. RTSS 2011

informatik

S fakultat fur IE computer
science 12

Jian-Jia Chen

(TU Dortmund)

12 /13

Can We Improve It?

e A simple partitioned strategy can work as well

o If a task 7; is with & 7 21, we use list scheduling by dedicating
some processors to thls task 7;. Such a task is a heavy task.

e If a task 7; is with & T < 1, we do not consider to run this task
on more than one processor. Such a task is a light task.

e Let's use List Scheduling to schedule the heavy tasks.

o Let's use LUFT (largest utilization first for bin packing) to pack
these light tasks on the remaining processors based on partitioned
EDF.

® Mign:: the number of processors used for the light tasks
® Mheavy: the number of processors used for the heavy tasks

o |f there is no heavy task, this is identical to partition the given
periodic tasks without any intra-task parallelization

e If there is a heavy task, it is easy to argue Mjight + Mpeayy < 2 ZT,- U;
under the assumption \U? < 0.5 for every task 7;

sche universitit S fakultat far computer

dortmand informatik I science 12 Jian-Jia Chen (TU Dortmund) 13 /13

	Parallelizations with DAG

