
Multiprocessor Scheduling IV: (A Note on)
Parallelizations

Jian-Jia Chen

TU Dortmund

06, July, 2015

Jian-Jia Chen (TU Dortmund) 1 / 13

Parallelizations with DAG

Jian-Jia Chen (TU Dortmund) 2 / 13

Outline

Parallelizations with DAG

Jian-Jia Chen (TU Dortmund) 2 / 13

Needs for Parallelizations

• To fully utilize the multiprocessor systems, a task should be
able to be executed on more than one processor

• We have up to now only consider sequential executions of a
task

• If we allow parallelizations, how should the model be looked
like?

Jian-Jia Chen (TU Dortmund) 3 / 13

Represented by Directed Acyclic Graphs (DAG)

• Each task τi is a sporadic task:

• period Ti

• relative deadline Di

• Each task is characterized by a directed acyclic graph (DAG)

• Each task has multiple subtasks (represented by vertices here)
• The number in each node is the worst-case execution time
• The precedence constraints (the directed edged) represent the

dependency of the subtasks
• The acyclic property ensures that there is no cycle in the graph

2

4

5

3

2

1

3

Jian-Jia Chen (TU Dortmund) 4 / 13

Essentials Based on DAG structures

Based on the DAG structure of a task τi

• Ci : the overall worst-case execution time (20 in this example)

• Ψi : the critical-path (one of the longest paths) worst-case
execution time (12 in this example)

• Ui : the utilization, defined as Ci
Ti

2

4

5

3

2

1

3

Jian-Jia Chen (TU Dortmund) 5 / 13

Scheduling Theory about This

• If the system has only one task, represented by a DAG,
Graham studied this problem in 1966 under this notation
P|prec |Cmax

• The algorithm is called list scheduling

• If one of the M processors is idle, schedule one of the ready
subtasks to the idle processor.

• The algorithm is widely used for many applications.

• The order of the subtasks can be tuned
• Graham showed that list scheduling has an approximation

factor 2− 1
M with respect to minimizing the makespan.

Jian-Jia Chen (TU Dortmund) 6 / 13

An Informal Proof of List Scheduling

• Let ` be the subtask that finishes the last. Let `− 1 be the last-finished
predecessor of `

• We construct a series of subtasks preceding each other, starting at 1
(which has no predecessor)

• Let’s now call this path Π. Clearly the length of Π is ≤ Ψ.

• Let the starting time of the i-th subtask in Π be ti .

• In list scheduling, the finishing time of i-th subtask in Π is then fi = ti + ci

• ci is the (worst-case) execution time of the i-th subtask in Π.

• Important observation: between fi and ti+1, all the M processors must be
busy for executing other subtasks

• otherwise, the (i + 1)-th subtask in Π should have been
executed earlier than ti+1.

• Therefore, we know that the finishing time is at most 2 − 1
M

times the
optimal makespan (denoted by Cmax

opt)

Ψ +
C − Ψ

M
≤ (2 − 1

M
)C opt

max .

Jian-Jia Chen (TU Dortmund) 7 / 13

Implicit-Deadline Tasks with Global RM Scheduling

For all 0 < t ≤ Tk

Wk(t) =
k−1∑
i=1

(

⌈
t

Ti

⌉
− 1)Ci + 2Ci .

This implies that we just greedily take a head job immediately.
Clearly, lower-priority jobs have no effect for the unschedulability or
schedulability.

Theorem

A system T of implicit-deadline periodic, independent, preemptable
DAG tasks is schedulable by Global-RM on M processors if

∀τk ∈ T ∃t with 0 < t ≤ Tk and Ψk +
Ck −Ψk

M
+

Wk(t)

M
≤ t

holds.

Jian-Jia Chen (TU Dortmund) 8 / 13

Recall: Capacity Augmentation Bound

Given a task set T with total utilization of U∑, a scheduling
algorithm A with capacity augmentation bound b can always
schedule this task set on M processors of speed b as long as T
satisfies the following conditions:

Utilization does not exceed total cores,
∑
τi∈T

Ui ≤ M (1)

For each task τi ∈ T , the critical path utilization
Ψi

Ti
≤ 1 (2)

This means that the algorithm guarantees the schedulability if the
following conditions are satisfied:

Utilization does not exceed total cores,
∑
τi∈T

Ui ≤
M

b
(3)

For each task τi ∈ T , the critical path utilization
Ψi

Ti
≤ 1

b
(4)

Jian-Jia Chen (TU Dortmund) 9 / 13

Recall: Capacity Augmentation Bound

Given a task set T with total utilization of U∑, a scheduling
algorithm A with capacity augmentation bound b can always
schedule this task set on M processors of speed b as long as T
satisfies the following conditions:

Utilization does not exceed total cores,
∑
τi∈T

Ui ≤ M (1)

For each task τi ∈ T , the critical path utilization
Ψi

Ti
≤ 1 (2)

This means that the algorithm guarantees the schedulability if the
following conditions are satisfied:

Utilization does not exceed total cores,
∑
τi∈T

Ui ≤
M

b
(3)

For each task τi ∈ T , the critical path utilization
Ψi

Ti
≤ 1

b
(4)

Jian-Jia Chen (TU Dortmund) 9 / 13

Capacity Augmentation Bound of Global RM

The task set is schedulable under Global RM if

∀k ,
(

2 +
Ψk

Tk
+

Ck −Ψk

MTk

)
Πk−1
i=1 (Ui/M + 1) ≤ 3. (5)

⇒
(

2 +
Ψk

Tk

)
Πk
i=1(Ui/M + 1) ≤ 3. (6)

⇒
(

2 +
1

b

)
(

1

(k − 1)b
+ 1)k−1 ≤ 3. (7)

⇒
(

2 +
1

b

)
e1/b ≤ 3. (8)

Again, we use the worst cases by setting all the tasks with the
same utilization as we did in the analysis for uniprocessor systems.
This concludes that b ≥ 3.6215 enforces the above inequality.

Jian-Jia Chen (TU Dortmund) 10 / 13

A Short Summary about Global DAG Scheduling

Speedup factors

implicit deadlines constrained deadlines arbitrary deadlines

Global EDF 2− 1
M (Bonifaci et al. ECRTS 2013)

Global DM 3− 1
M (Bonifaci et al. ECRTS 2013)

Capacity augmentation factors

implicit deadlines constrained deadlines arbitrary deadlines

Global EDF 2+
√

5
2 ≈ 2.6181

(Li, Chen et al.
2014)

unknown unknown

Global DM 3.6215 (Chen et
al. 2015)

unknown unknown

Jian-Jia Chen (TU Dortmund) 11 / 13

How about Partitioned Scheduling?

• Each subtask should be
assigned on one processor

• Different subtasks can be
assigned on different processors

• For each subtask of task τi
• specify its offset to start

with
• specify its relative

deadline after the offset
• perform timing control

Saifullah et al.: With a proper assignment of relative deadlines and
offsets, speedup factor 5 can be achieved by using partitioned EDF.

Abusayeed Saifullah et al. “Multi-core Real-Time Scheduling for Generalized Parallel Task Models”. RTSS 2011

Jian-Jia Chen (TU Dortmund) 12 / 13

Can We Improve It?

• A simple partitioned strategy can work as well

• If a task τi is with Ci

Ti
≥ 1, we use list scheduling by dedicating

some processors to this task τi . Such a task is a heavy task.
• If a task τi is with Ci

Ti
< 1, we do not consider to run this task

on more than one processor. Such a task is a light task.

• Let’s use List Scheduling to schedule the heavy tasks.

• Let’s use LUF+ (largest utilization first for bin packing) to pack
these light tasks on the remaining processors based on partitioned
EDF.

• Mlight : the number of processors used for the light tasks

• Mheavy : the number of processors used for the heavy tasks

• If there is no heavy task, this is identical to partition the given
periodic tasks without any intra-task parallelization

• If there is a heavy task, it is easy to argue Mlight +Mheavy ≤ 2
∑

τi
Ui

under the assumption Ψi

Ti
≤ 0.5 for every task τi

Jian-Jia Chen (TU Dortmund) 13 / 13

	Parallelizations with DAG

