Exercise Sheet 9
(11 Punkte)

Exercise Due at Wednesday, June 29, 2016, 12:00 Uhr

Note: It is allowed to work in a group of up to three persons, if these persons are from the same practice group. Please do not forget to write your name and your Matrikelnummer on the solutions. The solutions can either be placed in the mailbox in front of the secretary’s office of LS 12 (OH/E22) or sent by mail (PDF format) to georg.von-der-brueggen [?] tu-dortmund.de

Exercise Sessions:
Do, 10:15 - 11:45 OH16/U08
Do, 14:15 - 15:45 OH16/U08

9.1 RTOS and RTPL (4 Punkte)

1. What are the advantages to use Real-Time Programming Languages and Real-Time Operating Systems to design real-time systems, respectively?

2. Explain the concepts behind Delay and Delay until in Ada. Check the source code of FreeRTOS. What are the corresponding functions in FreeRTOS?

3. Explain why most commercial Real-Time Operating Systems use only a fixed-length table to store the (pointers of) task control blocks (TCB). How does the scheduler in FreeRTOS work?

4. Explain how you will implement the PCP and Priority Inheritance Protocol (PIP) in a Real-Time Operating System.

Hint: 1+1+1+1

9.2 RTC (3 Punkte)

1. Mr. Smart wants to define the feasibility of his design as follows: “the system is feasible if $\alpha^u(\Delta) \leq \beta^l(\Delta)$ for any $\Delta \geq 0$”, where α and β are arrival curve and service curve, respectively. Is this a reasonable definition?

2. How to derive the arrival curves from a set of given traces of events? How to derive the service curves from a set of traces of services?

3. What are the limitations of using Greedy Processing Components (GPC) in Real-Time Calculus (RTC)? How to perform schedulability analysis for fixed-priority scheduling based on GPCs? For fixed-priority scheduling, what are the similarity and difference of worst-case response time analysis in RTC to and from the time-demand schedulability tests for sporadic real-time tasks with arbitrary deadlines?

Hint: 1+1+1
9.3 Real-Time Calculus (1 Punkt)

Is the arrival curve in the left correct? Is it tight? If yes, why? If not, how to make it tighter?

9.4 TDMA (2 Punkte)

Suppose that we use a TDMA (time division multiple access) protocol on a bus to communicate among different processors. The TDMA cycle is 6 time units. Processor 1 is allocated with 3 time units in a TDMA cycle. Suppose that we are given the following 3 sporadic real-time tasks with implicit deadlines on processor 1. (Here, we ignore the computation part of the tasks.) The communication time for each task is defined as C_i. Assume the communication channel is preemptable.

- Can we feasibly schedule the above task sets under RM within the TDMA?
- Suppose that C_i is the slot length of the TDMA assigned to processor 1 and T_s is the TDMA cycle length. What is the sufficient schedulability condition of a fixed-priority scheduling within a given TDMA assignment?

Hint: $1+1$

9.5 Challenge: Utilization Bound of TDMA + RM (1 Punkt)

The hierarchical scheduling policy uses different strategies in different level for scheduling. For example, Question 11.3 uses TDMA in the top level and fixed-priority scheduling in the bottom level. Suppose that C_i is the slot length of the TDMA assigned to processor 1 and T_s is the TDMA cycle length. The given tasks are ordered with RM ordering, in which $T_{i} \leq T_{i+1}$ for all task T_{i}. Moreover, we assume that $T_s \leq T_1$. Prove/explain that the sufficient schedulability test of task τ_k of TDMA+RM in Question 11.3 is

$$\prod_{i=1}^{k}(U_i + 1) \leq \frac{2}{2 - \frac{C_s}{T_s}}.$$

Hint: Image that we create a virtual task τ_0 with the highest priority, in which $T_0 = T_s$ and $C_0 = T_s - C_i$.

General Hints: