technische universitat fakultat fur I 2 computer

dortmund informatik science 12
christian.hakert [®] tu-dortmund.de Exercises for
marcel.ebbrecht [©] tu-dortmund.de Computer Architecture

Summer Semester 2020

Exercise Sheet 2

Discussion starts from Monday, May 4, 2020

2.1 Theory

A sequential program P can be divided into 5 parts A to E, which must be executed in this order due to their depen-
dencies. Table 1 lists the amount of run-time each part contributes to the run-time of the program. Parts A, C and E

cannot be parallelized. Part B can be transformed in max. 4 sub-parts that can be executed in parallel. For the parallel
execution of part D, no restrictions exist.

a) How many cores are required to achieve a speed-up > 4? Which law do you need to follow to answer this
question?

b) Assume the problem solved in part D to have the double size as in a). However, the overall run-time of the

program should not change. Apply Gustavson’s law to calculate the resulting speed-up with respect to the
overall run-time of the parallelized program from a).

Part | A | B | C|D]|E
percentage of run-time | 2% | 20% | 5% | 70% | 3%

Tabelle 1: Percentage of run-time each part contributes to the overall run-time of the program.

2.2 OpenMP - First Steps
Consider the following C program:

int main()

{

#pragma omp parallel

{

printf ("Hallo Welt\n");

}

return 0;

}

a. Compile and execute the program (use “-fopenmp”). How many times “Hallo Welt” is printed out?

b. Modify the code so that the program prints out the ID of the current thread as well as the total number of threads.
The output should be as follows:

Hallo Welt: I am thread number x of y threads

technische universitat fakultat fur I 2 computer
dortmund informatik science 12

Here, x is the ID of the thread and y the total number of threads. Is it possible to control the number of tasks in
the program?

2.3 Loop Parallelism
In the repository, the sequential program 0202.c is located.

a. Add the code required to parallelize the for-loop with OpenMP. Measure the run-time of the sequential and the
parallel program.

b. Parallelize the loop using only “#pragma omp parallel” (not “#pragma omp parallel for” or "#pragma omp for*).

General Information: Further information can be found under hhttps://1sl2-www.cs.tu-dortmund.de/daes/de/lehre/
lehrveranstaltungen/summersemester-2020/rechnerarchitektur-deutsch.html. Submitting solutions to the exercise sheets
is not required.

2/2

hhttps://ls12-www.cs.tu-dortmund.de/daes/de/lehre/lehrveranstaltungen/summersemester-2020/rechnerarchitektur-deutsch.html
hhttps://ls12-www.cs.tu-dortmund.de/daes/de/lehre/lehrveranstaltungen/summersemester-2020/rechnerarchitektur-deutsch.html

	Theory
	OpenMP – First Steps
	Loop Parallelism

