technische universitat fakultat fur I 2 computer

dortmund informatik science 12
christian.hakert [®] tu-dortmund.de Exercises for
marcel.ebbrecht [©] tu-dortmund.de Computer Architecture

Summer Semester 2020

Exercise Sheet 4

Discussion starts from Monday, May 25, 2020

4.1 Classes of Multiprocessor Systems

Fill the classification of multiprocessor systems according to Flynn into the given table and describe one important
characteristic of each class.

instruction streams
1 >1

data streams

Class:
Characteristic:

Class:
Characteristic:

Class:
Characteristic:

Class:
Characteristic:




technische universitat fakultat fur I 2 computer
dortmund informatik science 12

4.2 Cache Coherence

(a) Give a brief definition of cache coherence.

(b) Name the two basic strategies provided by cache coherence protocols to maintain coherence in a
system. You are not expected to explain these strategies.

(c) Cache coherence for write-back caches can be achieved by means of the MSI protocol introduced in
the lecture. Hereafter, a state diagram of a cache block is depicted under the MSI protocol. Add the
missing labels for states as well as for state transitions. The input/output alphabet of the state machine
is given in the following table.

inputs outputs

CPU read miss | Read Miss

CPU read hit Write Miss

CPU write miss | Data Write Back
CPU write hit
Invalidate

Fetch
Fetch/Invalidate

CPU write miss
write miss

CPU read miss
read miss

data write back / read miss
Fetch
data write back

CPU write / read hit CPU read hit

CPU write miss

/ write read miss
miss

2/3



technische universitat fakultat fur I 2 computer
dortmund informatik science 12

4.3 Parallelization of Conway’s Game of Life with OpenMP

Abbildung 1: Game of Life Example - Gun Slider Pattern [www.wikipedia.org]

The grid consists of v X h elements, as shown in Figure 1. Each cell can be either alive (value 1, black
field) or dead (value 0, white field). Starting from an initial configuration, the grid is iteratively updated. After
the update, the current iteration is finished and the update process is repeated until a certain threshold is
reached. For the update process, certain rules are given:

e A dead cell with exactly three living neighbors is reborn in the next iteration.

e Living cells with less than two living neighbors die by solitude in the next iteration .

e A living cell with two or three living neighbors stays alive in the next iteration.

e Living cells with more than three living neighbors die by overpopulation in the next iteration.

Analyze the source code of the Game of Life provided in the SVN repository (“04_2.c” or “04_2.cpp”).
Optional assignment: Implement your own version of the Game of Life at home using C or C++.

a. Ensure that each parallelized program is semantically correct and leads to the same result as a se-
quential version.

b. Execute the examples RA and BIG in the file “muster.txt” located in the SVN repository for different
numbers of parallel threads.

General Information: Further information can be found under hhttps://1sl2-www.cs.tu-dortmund.de/daes/de/lehre/
lehrveranstaltungen/summersemester-2020/rechnerarchitektur-deutsch.html. Submitting solutions to the exercise sheets
is not required.

3/3


hhttps://ls12-www.cs.tu-dortmund.de/daes/de/lehre/lehrveranstaltungen/summersemester-2020/rechnerarchitektur-deutsch.html
hhttps://ls12-www.cs.tu-dortmund.de/daes/de/lehre/lehrveranstaltungen/summersemester-2020/rechnerarchitektur-deutsch.html

	Classes of Multiprocessor Systems 
	Cache Coherence 
	Parallelization of Conway's Game of Life with OpenMP 

