
Computer Architecture

Jens Teubner, TU Dortmund
jens.teubner@cs.tu-dortmund.de

Summer 2020

© Jens Teubner · Computer Architecture · Summer 2020 1

Part II

Graphics Processing Units (GPUs)

© Jens Teubner · Computer Architecture · Summer 2020 34

Processor Technology

While general-purpose CPUs increasingly feature “multi-media”
functionality,

CPUs

SIMD

parallelism

rich
instructions

streaming

GPUs

programmable
shaders

I/Ogeneral-purpose
instructions

memory
model

graphics processors become increasingly general-purpose.

© Jens Teubner · Computer Architecture · Summer 2020 35

Graphics Processors

Graphics processors come from a world where…
many problems are embarrassingly parallel,
for each data point, there are few and fairly simple operations,
caches, coherency, etc. are less of an issue.

Graphics processors evolved from dedicated hardware to accelerate
typical graphics pipelines.

© Jens Teubner · Computer Architecture · Summer 2020 36

Graphics Pipeline

App Front-End
Transform&
Lighting

Geometry&
Primitive
Assembly

Rasterization

Fragment
Coloring&
Texture

Raster&
OperationsFrame Buffer

API vertices

Fragments

connectivity information

Scissor
Alpha
Stencil
Depth

 Test

© Jens Teubner · Computer Architecture · Summer 2020 37

Toward Programmable GPUs

The programmability of GPUs has improved dramatically.

hard-coded fix-function pipeline

customization through parameters

programmable shaders

vertex shader
geometry shader
fragment shader (fragment: pixel)

“general-purpose” GPUs (GPGPUs)

Today: C-like languages (e.g., CUDA, OpenCL)

© Jens Teubner · Computer Architecture · Summer 2020 38

General-Purpose GPUs (GPGPUs)

Original GPU design based on graphics pipeline not flexible enough.
→ geometry shaders idle for pixel-heavy workloads and vice versa
→ unifiedmodelwith general-purpose cores

Thus: Design inspired by CPUs, but different

Cache

Control
ALU ALU

ALU ALU

CPU GPU

Rationale: Optimize for throughput, not for latency.

© Jens Teubner · Computer Architecture · Summer 2020 39

CPUs vs. GPUs

CPU: task parallelism
relatively heavyweight threads
10s of threads on 10s of cores

each thread managed
explicitly
threads run different code

GPU: data parallelism
lightweight threads
10,000s of threads on 100s of
cores
threads scheduled in
batches
all threads run same code
→ SPMD, single program,

multiple data

© Jens Teubner · Computer Architecture · Summer 2020 40

Threads on a GPU

To handle 10,000s of threads efficiently, keep things simple.
Don’t try to reduce latency, but hide it.
→ Large thread pool rather than caches

(This idea is similar to SMT in commodity CPUs.)

Assume data parallelism and restrict synchronization.
→ Threads and small groups of threads use local memories.
→ Synchronization only within those groups (more later).

Hardware thread scheduling (simple, in-order).
→ Schedule threads in batches (⇝ “warps”).

© Jens Teubner · Computer Architecture · Summer 2020 41

OpenCL Computation Model

Host Device (GPU)

Kernel 1

Kernel 2

copy data
launch

sync
launch

sync

w
or
k

w
ai
t

w
or
k

w
ai
t

copy data

Host system and co-processor
(GPU is only one possible
co-processor.)
Host triggers

data copying
host↔ co-processor,
invocations of compute
kernels.

Host interface: command queue.

© Jens Teubner · Computer Architecture · Summer 2020 42

Processing Model: (Massive) Data Parallelism

A traditional loop

for (i = 0; i < nitems; i++)
do_something (i);

becomes a data parallel kernel invocation in OpenCL (⇝ map):

status = clEnqueueNDRangeKernel (
commandQueue,
do_something_kernel, …, &nitems, …);

__kernel void do_something_kernel (…) {
int i = get_global_id (0);
…;

}

© Jens Teubner · Computer Architecture · Summer 2020 43

Kernel Invocation

Idea: Invoke kernel for each point in a problem domain
e.g., 1024× 1024 image, one kernel invocation per pixel;
→ 1,048,576 kernel invocations (“work items”).
Don’t worry (too much) about task→ core assignment or
number of threads created; runtime does it for you.
Problem domain can be 1-, 2-, or 3-dimensional.

Can pass global parameters to all work item executions.
Kernel must figure out work item by calling get_global_id ().

© Jens Teubner · Computer Architecture · Summer 2020 44

Compute Kernels

OpenCL defines a C99-like language for compute kernels.
Compiled at runtime to particular core type.
Additional set of built-in functions:

Context (e.g., get_global_id ()); synchronization.
Fast implementations for special math routines.

__kernel void square (__global float *in,
__global float *out)

{
int i = get_global_id (0);
out[i] = in[i] * in[i];

}

⇝ OpenMP: omp_get_thread_num (), etc.

© Jens Teubner · Computer Architecture · Summer 2020 45

OpenCL↔ OpenMP

Observe how OpenCL’s processing model resembles the OpenMP
join/forkmodel.

CPU:
Single thread4

Controls execution⇝master thread

GPU:
Many parallel threads that all execute the same code.
Work Sharing:
→ Each data item processed by exactly one GPU thread.
→ Conceptually: One thread per item.

However:
Asynchronous calls: CPU and GPU may execute in parallel.

4Of course, multi-threading could be used for the host code, too.
© Jens Teubner · Computer Architecture · Summer 2020 46

Work Items and Work Groups

Work items may be grouped intowork groups.

Work groups↭ scheduling batches.

Synchronization between work items onlywithin work groups.
There is a device-dependent limit on the number of work items
per work group (can be determined via clGetDeviceInfo ()).

Specify items per group when queuing the kernel invocation.
All work groups must have same size (within one invocation).

E.g., Problem space: 800× 600 items (2-dimensional problem).
→ Could choose 40× 6, 2× 300, 80× 5, … work groups.

© Jens Teubner · Computer Architecture · Summer 2020 47

CUDA Thread Hierarchy

Grid

Block(0,0)

Block(0,1)

Block(1,0)

Block(1,1)

Block(2,0)

Block(2,1)

Block(2,1)

Thread(0,0)

0
Thread(1,0)

1
Thread(2,0)

2
Thread(3,0)

3

Thread(0,1)

4
Thread(1,1)

5
Thread(2,1)

6
Thread(3,1)

7

Thread(0,2)

8
Thread(1,2)

9
Thread(2,2)

10
Thread(3,2)

11

Thread ID

dim3 grid(3,2);
dim3 block(4,3);
myKernel<<<grid,block>>>(arg1, arg2);

Block Index: 1- or 2-dimensional
Thread Index: 1-, 2-, or 3-dimensional (x, y, z)
Thread ID = x+ yDx + zDxDy (block dimension: Dx,Dy,Dz)

© Jens Teubner · Computer Architecture · Summer 2020 48

Example: NVIDIA GPUs

NIVIDA GTX 280

source: www.hardwaresecrets.com

10 Thread Processing Clusters
10× 3 Streaming
Multiprocessors
10× 3× 8 Scalar Processor
Cores
→ More like ALUs (↗ slide 39)
Each Multiprocessor:

16k 32-bit registers
16 kB shared memory
up to 1024 threads
(may be limited by registers
and/or memory)

© Jens Teubner · Computer Architecture · Summer 2020 49

Inside a Streaming Multiprocessor

shared
memory

DP

SFU SFU

SPSP

SPSP

SPSP

SPSP

SPSP

SPSP

SPSP

SPSP

C-Cache
MT Issue
I-Cache

8 Scalar Processors (Thread Processors)
single-precision floating point
32-bit and 64-bit integer

2 Special Function Units
sin, cos, log, exp

Double Precision unit
16 kB Shared Memory

Each Streaming Multiprocessor: up to 1,024
threads.
GTX 280: 30 Streaming Multiprocessors
→ 30,720 concurrent threads (!)

© Jens Teubner · Computer Architecture · Summer 2020 50

Inside a Streaming Multiprocessor: nVidia Fermi

8

Third Generation Streaming

Multiprocessor

The third generation SM introduces several

architectural innovations that make it not only the

most powerful SM yet built, but also the most

programmable and efficient.

512 High Performance CUDA cores

Each SM features 32 CUDA

processors—a fourfold

increase over prior SM

designs. Each CUDA

processor has a fully

pipelined integer arithmetic

logic unit (ALU) and floating

point unit (FPU). Prior GPUs used IEEE 754-1985

floating point arithmetic. The Fermi architecture

implements the new IEEE 754-2008 floating-point

standard, providing the fused multiply-add (FMA)

instruction for both single and double precision

arithmetic. FMA improves over a multiply-add

(MAD) instruction by doing the multiplication and

addition with a single final rounding step, with no

loss of precision in the addition. FMA is more

accurate than performing the operations

separately. GT200 implemented double precision FMA.

In GT200, the integer ALU was limited to 24-bit precision for multiply operations; as a result,

multi-instruction emulation sequences were required for integer arithmetic. In Fermi, the newly

designed integer ALU supports full 32-bit precision for all instructions, consistent with standard

programming language requirements. The integer ALU is also optimized to efficiently support

64-bit and extended precision operations. Various instructions are supported, including

Boolean, shift, move, compare, convert, bit-field extract, bit-reverse insert, and population

count.

16 Load/Store Units

Each SM has 16 load/store units, allowing source and destination addresses to be calculated

for sixteen threads per clock. Supporting units load and store the data at each address to

cache or DRAM.

Dispatch Unit

Warp Scheduler

Instruction Cache

Dispatch Unit

Warp Scheduler

Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

SFU

SFU

SFU

SFU

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

Interconnect Network

64 KB Shared Memory / L1 Cache

Uniform Cache

Core

Register File (32,768 x 32-bit)

CUDA Core

Operand Collector

Dispatch Port

Result Queue

FP Unit INT Unit

Fermi Streaming Multiprocessor (SM)
Source: nVidia Fermi White Paper

32 “cores” (thread processors) per
streaming multiprocessor (SM)
but fewer SMs per GPU: 16
(vs. 30 in GT200 architecture)
512 “cores” total
“cores” now
double-precision-capable

© Jens Teubner · Computer Architecture · Summer 2020 51

Scheduling in Batches

In SM threads are scheduled
in units of 32, calledwarps.
Warp: Set of 32 parallel
threads that start together at
the same program address.

warp (dt. Kett- oder Längsfaden)

For memory access warps
are split into half-warps
consisting of 16 threads
Warps are scheduled with
zero-overhead
Scoreboard is used to track
which warps are ready to
execute
GTX 280: 32 warps per
multiprocessor (1024
threads)
newer cards: 48 warps per
multiprocessor (1536
threads)

© Jens Teubner · Computer Architecture · Summer 2020 52

SPMD/SIMT Processing
ti
m
e

SIMT instruction scheduler

SP SP SP SP SP SP SP SP

...

warp 0 instruction @addr 15

warp 1 instruction @addr 8

warp 2 instruction @addr 4

warp 0 instruction @addr 16

warp 1 instruction @addr 9

SIMT: Single Instruction,
Multiple Threads
All threads execute the same
instruction.
Threads are split into warps
by increasing thread IDs
(warp 0 contains thread 0).
At each time step scheduler
selects warp ready to execute
(i.e., all its data are available)
nVidia Fermi: dual issue;
issue two warps at oncea

ano dual issue for double-precision instr.

© Jens Teubner · Computer Architecture · Summer 2020 53

GPU Scheduling: Fine-Grained Multithreading

GPUs implement fine-grainedmultithreading (↗ “Multithreading”
chapter)

instr. stream 1

instr. stream 2

instr. stream 3

instr. stream 4

time

functional
units

But:
Scheduling decisions here affect entire warps.
GPUs havemore functional units (“scalar processors”).
Functional units cannot be scheduled arbitrarily
The above illustration is somewhat misleading in that regard.

© Jens Teubner · Computer Architecture · Summer 2020 54

Warps and Latency Hiding

Some runtime characteristics:
Issuing a warp instruction takes 4 cycles (8 scalar processors).
Register write-read latency: 24 cycles.
Global (off-chip) memory access: ≈400 cycles.

Threads are executed in-order.
→ Hide latencies by executing other warps when one is paused.
→ Need enough warps to fully hide latency.

E.g.,
Need 24/4 = 6 warps to hide register dependency latency.
Need 400/4 = 100 instructions to hide memory access latency.
If every 8th instruction is a memory access, 100/8 ≈ 13 warps
would be enough.

© Jens Teubner · Computer Architecture · Summer 2020 55

Resource Limits

Ideally: 32 warps per multiprocessor (1024 threads)

But: Various resource limits

limited number of 32-bit registers per multiprocessor
E.g.: 11 registers per thread, 256 threads/items per work group.
CUDA compute capability 1.1: 8,192 registers per
multiprocessor.
→max. 2 work groups per multiprocessor (3× 256× 11 > 8192)

48 kB sharedmemory per multiprocessor (compute cap. 2.0)
E.g.: 12 kB per work group
→max. 4 work groups per multiprocessor

8work groups per multiprocessor; max. 512 work items per
work group

Additional constraints: branch divergence,memory coalescing.

Occupancy calculation (and choice of work group size) is complicated!
© Jens Teubner · Computer Architecture · Summer 2020 56

Work Groups (NVIDIA: “Blocks”)

Work Groups (on NVIDIA GTX 280):
Work group can contain up to 512 threads
A work group is scheduled to exactly one SM

Central round-robin distribution
Remember: Synchronization and collaboration through
shared memory only within work group

Each SM can execute up to 8 work groups
Actual number depends on register and shared memory
usage
Combined shared memory usage of all work groups≤ 16 kB

� Characteristics ofoneparticular piece of hardware, not
part of the OpenCL specification!

© Jens Teubner · Computer Architecture · Summer 2020 57

Executing a Warp Instruction

Within a warp, all threads execute same instructions.
→ What if the code contains branches?

if (i < 42)
then_branch ();

else
else_branch ();

If one thread enters the branch, all threads have to execute it.
→ Effect of branch execution discarded if necessary.
⇝ Predicated execution
This effect is called branch divergence.
Worst case: all 32 threads take a different code path.
→ Threads are effectively executed sequentially.

© Jens Teubner · Computer Architecture · Summer 2020 58

OpenCL Memory Model

global memory

compute unit 1

local memory

private
memory

private
memory

work
item 1

work
item 2

compute unit 2

local memory

private
memory

private
memory

work
item 1

work
item 2

compute device

host memory

host

© Jens Teubner · Computer Architecture · Summer 2020 59

OpenCL↔ Cuda

NVIDIA/Cuda uses a slightly different terminology:

OpenCL Cuda
private memory registers on-chip
local memory shared memory on-chip
global memory global memory off-chip

On-chip memory is significantly faster than off-chip memory.

© Jens Teubner · Computer Architecture · Summer 2020 60

Memory Access Cost (Global Memory; NVIDIA)

Like in CPU-based systems, GPUs access global memory in chunks
(32-bit, 64-bit, or 128-bit segments).
→ Most efficient if accesses by threads in a half-warp coalesce.

E.g., NVIDIA cards with compute capability 1.0 and 1.1:
Coalesced access→ 1 memory transaction
.

memory
half-warp

Misaligned→ 16 memory transactions (2 if comp. capability≥
1.2)
.

memory
half-warp

© Jens Teubner · Computer Architecture · Summer 2020 61

Coalescing Example

Example to demonstrate coalescing effect:

__kernel void
copy (__global unsigned int *din,

__global unsigned int *dout,
const unsigned int offset)

{
int i = get_global_id (0);
dout[i] = din[i + offset];

}

� Strided access causes similar problems!

© Jens Teubner · Computer Architecture · Summer 2020 62

Shared Memory (NVIDIA)

Sharedmemory (OpenCL: “local memory”):
fast on-chip memory (few cycles latency)
throughput: 38–44GB/s per
multiprocessor(!)

partitioned into 16 banks
→ 16 threads (1 half-warp) can access

shared memory simultaneously if and
only if they all access a different bank.

→ Otherwise a banking conflictwill occur.

Conflicting accesses are serialized
→ (potentially significant) performance

impact

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Bank 15

...

© Jens Teubner · Computer Architecture · Summer 2020 63

Bank Conflicts to Shared Memory

stride width: 1 word
Thread 0 Bank 0
Thread 1 Bank 1
Thread 2 Bank 2
Thread 3 Bank 3
Thread 4 Bank 4
Thread 5 Bank 5
Thread 6 Bank 6
Thread 7 Bank 7
Thread 8 Bank 8
Thread 9 Bank 9
Thread 10 Bank 10
Thread 11 Bank 11
Thread 12 Bank 12
Thread 13 Bank 13
Thread 14 Bank 14
Thread 15 Bank 15

→ no bank conflicts

Thread 0 Bank 0
Thread 1 Bank 1
Thread 2 Bank 2
Thread 3 Bank 3
Thread 4 Bank 4
Thread 5 Bank 5
Thread 6 Bank 6
Thread 7 Bank 7
Thread 8 Bank 8
Thread 9 Bank 9
Thread 10 Bank 10
Thread 11 Bank 11
Thread 12 Bank 12
Thread 13 Bank 13
Thread 14 Bank 14
Thread 15 Bank 15

→ no bank conflicts

© Jens Teubner · Computer Architecture · Summer 2020 64

Bank Conflicts to Shared Memory (cont.)

stride width: 2 words
Thread 0 Bank 0
Thread 1 Bank 1
Thread 2 Bank 2
Thread 3 Bank 3
Thread 4 Bank 4
Thread 5 Bank 5
Thread 6 Bank 6
Thread 7 Bank 7
Thread 8 Bank 8
Thread 9 Bank 9
Thread 10 Bank 10
Thread 11 Bank 11
Thread 12 Bank 12
Thread 13 Bank 13
Thread 14 Bank 14
Thread 15 Bank 15

→ 2-way bank conflicts

stride width: 4 words
Thread 0 Bank 0
Thread 1 Bank 1
Thread 2 Bank 2
Thread 3 Bank 3
Thread 4 Bank 4
Thread 5 Bank 5
Thread 6 Bank 6
Thread 7 Bank 7
Thread 8 Bank 8
Thread 9 Bank 9
Thread 10 Bank 10
Thread 11 Bank 11
Thread 12 Bank 12
Thread 13 Bank 13
Thread 14 Bank 14
Thread 15 Bank 15

→ 4-way bank conflicts

© Jens Teubner · Computer Architecture · Summer 2020 65

Exception: Broadcast Reads

Broadcast reads do not lead to a
bank conflict.

All threads must read the
sameword.

Thread 0 Bank 0
Thread 1 Bank 1
Thread 2 Bank 2
Thread 3 Bank 3
Thread 4 Bank 4
Thread 5 Bank 5
Thread 6 Bank 6
Thread 7 Bank 7
Thread 8 Bank 8
Thread 9 Bank 9
Thread 10 Bank 10
Thread 11 Bank 11
Thread 12 Bank 12
Thread 13 Bank 13
Thread 14 Bank 14
Thread 15 Bank 15

© Jens Teubner · Computer Architecture · Summer 2020 66

Thread Synchronization

Threads may use built-in functions to synchronizewithinwork
groups.

barrier (flags) Block until all threads in the group have
reached the barrier. Also enforces memory ordering.
mem_fence (flags) Enforce memory ordering: all memory
operations are committed before thread continues.

for (unsigned int i = 0; i < n; i++)
{

do_something ();
barrier (CLK_LOCAL_MEM_FENCE);

}

� If barrier occurs in a branch, same branch must be taken by all
threads in the group (danger: deadlocks or unpredictable
results).

© Jens Teubner · Computer Architecture · Summer 2020 67

Synchronization Across Work Groups

To synchronize acrosswork groups,
use in-order command queue and queue multiple kernel
invocations from the host side
→ Can also queuemarkers and barriers to the command

queue.
or

use OpenCL event mechanism.
→ Can also synchronize host↔device and kernel executions

inmultiple command queues.

To wait on host side until all queued commands have been
completed, use clFinish (command queue).

© Jens Teubner · Computer Architecture · Summer 2020 68

Parallel Data Reduction

Example: Parallel Reduction (x1 + x2 + · · ·+ xn)
→ Based on Mark Harris’ sample code in the NVIDIA CUDA SDK.
→ We’ll use CUDA syntax in the following.

4 5 1 6 4 0 1 2

9 7 4 3

16 7

23

Goal: compute sum of array
elements in parallel
Tree-based approach with
concurrent operations

Level 1: 4 sums in
parallel
Level 2: 2 sums in
parallel
Level 3: 1 sum

© Jens Teubner · Computer Architecture · Summer 2020 69

Synchronization

Large array→many work groups to keep multiprocessors busy
How to aggregate sum between threads? → synchronization
required
There is no global synchronization

There is, through atomic instruction but this would result in
a bottleneck.
And how to synchronize between levels?
Threads synchronize within group

Howmany work groups with howmany threads?
Do “global” synchronization implicitly by invoking multiple
kernels, e.g., one per level.

© Jens Teubner · Computer Architecture · Summer 2020 70

Kernel Decomposition

level 1: 8 blocks

level 2: 1 block

Use multiple kernel invocations to synchronize computation
Kernel code is the same for all invocations
Simplified illustration: use at least 32 threads per block

© Jens Teubner · Computer Architecture · Summer 2020 71

Reduction Kernel— Implementation #1

__global__ void reduce(int *input, int *output) {
extern __shared__ int sdata[];
unsigned int tid = threadIdx.x; /* thread ID */

/* index into data array for this thread */
unsigned int idx = blockIdx.x*blockDim.x + threadIdx.x;

/* load data from global memory into shared memory */
sdata[tid] = input[idx];
__syncthreads(); /* wait for everybody else in the block */

/* do the block-internal recursion */
for (unsigned int s=1; s<blockDim.x; s *= 2) {

int i = 2*s*tid;
if (i < blockDim.x) sdata[i] += sdata[i+s];
__syncthreads(); /* wait for everybody else in the block */

}
/* thread 0 writes result of sum into global memory */
if (tid == 0) output[blockIdx.x] = sdata[0];

}

© Jens Teubner · Computer Architecture · Summer 2020 72

Implementation #1

For illustration dimBlock.x=16:

values (shared memory) 5 2 9 0 7 2 3 5 2 6 1 8 4 2 0 3

Thread IDsstep 1 (s=1) 0 1 2 3 4 5 6 7

values 7 2 9 0 9 2 8 5 8 6 9 8 6 2 3 3

Thread IDsstep 2 (s=2) 0 1 2 3

values 16 2 9 0 17 2 8 5 17 6 9 8 9 2 3 3

Thread IDsstep 3 (s=4) 0 1

values 33 2 9 0 17 2 8 5 26 6 9 8 9 2 3 3

Thread IDsstep 4 (s=8) 0

values 59 2 9 0 17 2 8 5 26 6 9 8 9 2 3 3

⇒ Strides 2, 4, and 8 result in 2-, 4- and 8-way bank conflicts.
© Jens Teubner · Computer Architecture · Summer 2020 73

Sequential Addressing— Implementation #2

Get rid of strided access

for (unsigned int s=1; s<blockDim.x; s *= 2) {
int i = 2*s*tid;
if (i < blockDim.x) {

sdata[i] += sdata[i+s];
} __syncthreads(); /* wait for everybody else in the block */

}

by replacing it as:

for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid < s) {

sdata[tid] += sdata[tid+s];
}
__syncthreads(); /* wait for everybody else in the block */

}

Note: __syncthreads() is outside of “if”. Why?

Reduces kernel time (GPU) from 6832.03µs down to 3691.97µs
→ Speedup: 1.85× (for 8MiB elements & 256 threads/group)

© Jens Teubner · Computer Architecture · Summer 2020 74

Implementation #2

For illustration dimBlock.x=16:

values (shared memory) 5 2 9 0 7 2 3 5 2 6 1 8 4 2 0 3

Thread IDsstep 1 (s=8) 0 1 2 3 4 5 6 7

values 7 8 10 8 11 4 3 8 2 6 1 8 4 2 0 3

Thread IDsstep 2 (s=4) 0 1 2 3

values 18 12 13 16 11 4 3 8 2 6 1 8 4 2 0 3

Thread IDsstep 3 (s=2) 0 1

values 31 28 13 16 11 4 3 8 2 6 1 8 4 2 0 3

Thread IDsstep 4 (s=8) 0

values 59 28 13 16 11 4 3 8 2 6 1 8 4 2 0 3

⇒ Sequential addressing is conflict free.
© Jens Teubner · Computer Architecture · Summer 2020 75

Increasing the Number of Active Threads

50% of the threads do not even survive the first iteration!

for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid < s) {

sdata[tid] += sdata[tid+s];
}
__syncthreads(); /* wait for everybody else in the block */

}

Half the number of work groups
Load two elements and add them right away

© Jens Teubner · Computer Architecture · Summer 2020 76

Load and Add— Implementation #3

Half the number of work groups and replace single load
unsigned int tid = threadIdx.x; /* thread ID */
/* index into data array for this thread */
unsigned int idx = blockIdx.x*blockDim.x + threadIdx.x;

/* load data from global memory into shared memory */
sdata[tid] = input[idx];
__syncthreads();

with two loads and an add:
unsigned int tid = threadIdx.x; /* thread ID */
/* index into data array for this thread */
unsigned int idx = blockIdx.x*(blockDim.x*2) + threadIdx.x;

/* load data from global memory into shared memory */
sdata[tid] = input[idx] + input[idx+blockDim.x];
__syncthreads();

Reduces kernel time (GPU) from 3691.97µs down to 1984.45µs
Speedup: 1.86× (for 8MiB elements & 256 threads/group)

© Jens Teubner · Computer Architecture · Summer 2020 77

Load and Add— Implementation #3

Half the number of work groups and replace single load
unsigned int tid = threadIdx.x; /* thread ID */
/* index into data array for this thread */
unsigned int idx = blockIdx.x*blockDim.x + threadIdx.x;

/* load data from global memory into shared memory */
sdata[tid] = input[idx];
__syncthreads();

with two loads and an add:
unsigned int tid = threadIdx.x; /* thread ID */
/* index into data array for this thread */
unsigned int idx = blockIdx.x*(blockDim.x*2) + threadIdx.x;

/* load data from global memory into shared memory */
sdata[tid] = input[idx] + input[idx+blockDim.x];
__syncthreads();

Reduces kernel time (GPU) from 3691.97µs down to 1984.45µs
Speedup: 1.86× (for 8MiB elements & 256 threads/group)

© Jens Teubner · Computer Architecture · Summer 2020 78

Loop Unrolling

As s is reduced by half in every step, the number of active
threads decreases

Active = threads that do work
When s≤ 32 there is only one warp left
Instructions within a warp behave like SIMD instructions

(only if warps are not serialized, i.e., no bank conflicts and
no branching)

For s≤ 32
No __syncthreads() needed
if (tid < s)→ if (tid < 32)

Unroll last 6 iterations

© Jens Teubner · Computer Architecture · Summer 2020 79

Unrolling Last Warp— Implementation #4

for (unsigned int s=blockDim.x/2; s>32; s>>=1) {
if (tid < s) {

sdata[tid] += sdata[tid+s];
}
__syncthreads(); /* wait for everybody else in the block */

}
if (tid<32) {
sdata[tid] += sdata[tid+32];
sdata[tid] += sdata[tid+16];
sdata[tid] += sdata[tid+ 8];
sdata[tid] += sdata[tid+ 4];
sdata[tid] += sdata[tid+ 2];
sdata[tid] += sdata[tid+ 1];

}

Reduces kernel time (GPU) from 1984.45µs down to 1276.8µs
Speedup: 1.55× (for 8MiB elements & 256 threads/group)

© Jens Teubner · Computer Architecture · Summer 2020 80

Additional Optimizations

Overall Speedup through implementations #1→ #4: 5.35×
Implementation #1: 6832.02µs
Implementation #4: 1276.80µs

Complete unrolling for work group sizes of power of 2
Each thread loads and sums multiple elements into shared
memory

For details see documentation for NVIDIA CUDA SDK sample
code, reduction example.

© Jens Teubner · Computer Architecture · Summer 2020 81

GPUs

To summarize,
GPUs provide high degrees of parallelism that can be
programmed using a high-level language.
Idea: latency→ throughput

But:
GPUs are not simply “multi-core processors.”
Unleashing their performance requires efforts and care for
details.

Also note that
GPUs provide lots of Giga-FLOPS.
→ Useful (only) if your code actually needs FLOPS.

© Jens Teubner · Computer Architecture · Summer 2020 82

	Graphics Processing Units (GPUs)
	Technology Trends: CPUs and GPUs
	Earlier Graphics Processors

