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Part III

Multi-Core Systems
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Building a Shared-Memory Multiprocessor

What the programmer likes to think of…

shared main-memory

CPU core CPU core CPU core CPU core

� Scalability? Moore’s Law?

Moore’s Law, CPU↔memory gap⇒ bandwidth demand↗
Increasing parallelism⇒ bandwidth demand↗

→ Design cannot meet bandwidth demands (without incurring
high bandwidth).
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Centralized Shared-Memory Multiprocessor

Caches help mitigate the bandwidth bottleneck(s).

shared main-memory

shared cache

private
cache

CPU core

private
cache

CPU core

private
cache

CPU core

private
cache

CPU core

A shared bus connects CPU cores and memory.
→ the “shared bus” may or may not be shared physically.
The Intel Core architecture, e.g., implemented this design.
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Centralized Shared-Memory Multiprocessor

The shared bus design with caches makes sense:
+ symmetric design; uniform access time for every memory item

from every processor
+ private data gets cached locally
→ behavior identical to that of a uniprocessor

? shared datawill be replicated to private caches
→ Okay for parallel reads.
→ But what aboutwrites to the replicated data?
→ In fact, we’ll want to use memory as a mechanism to

communicate between processors.

The approach does have limitations, too:
– For large core counts, shared bus may still be a (bandwidth)
bottleneck.
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Caches and Shared Memory

Caching/replicating shared data can cause problems:

CPU CPU

cache cache

shared main memory x = 4x = 42

read x (4)

x = 4

read x (4)

x = 4

x := 42 (42)

x = 42

read x (4) 
x = 4

Challenges:
Needwell-defined semantics for such scenarios.
Must efficiently implement that semantics.
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Cache Coherence

The desired property (semantics) is cache coherence.

Most importantly:5

Writes to the same location are serialized; two writes to the
same location (by any two processors) are seen in the same
order by all processors.

Note:
We did not specifywhich order will be seen by the processors.
→ �Why?

5We also demand that a read by processor Pwill return P’s most recent write,
provided that no other processor has written to the same location meanwhile.
Also, every write must be visible by other processors after “some time.”
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Cache Coherence Protocol

Multiprocessor (or multicore) systems maintain coherence through
a cache coherence protocol.

Idea:
Knowwhich cache/memory holds the current value of the item.
Other replicas might be stale.

Two alternatives:
1 Snooping-Based Coherence
→ All processors communicate to agree on item states.

2 Directory-Based Coherence
→ A centralized directory holds information about

state/whereabouts of data items.
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Snooping-Based Cache Coherence

Rationale:
All processors have access to a shared bus.
Can “snoop” on the bus to track other processors’ activities.

Use to track the sharing state of each cached item:

(sharing)
state

tag data

Meta data for each cache block:
(sharing) state
block identification (tag)

� IgnoringMultiprocessors for a moment, which “state”
informationmight make sense to keep?

valid/invalid—Does the cache line hold data at all?
clean/modified—Modified and not yet written back?
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Strategy 1: Write Update Protocol

Idea:
On every write, propagate the write to every copy.
→ Use bus to broadcast writes.6

� Pros/Cons of this strategy?

Caches become essentiallywrite-through.
→ Requires considerable (bus) bandwidth.
→ Nullifies much of our original motivation.
Can avoid some broadcast writes by tracking sharing state.
→ Watch other processors’ requests by snooping on bus.
→ Only broadcast when item is actually shared.
Actual systems don’t use write update.

6The protocol is thus also called write broadcast protocol.
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Strategy 2: Write Invalidate Protocol

Idea:
Before writing an item, invalidate all other copies.

Activity Bus Cache A Cache B Memory

x = 4
A reads x cache miss for x x = 4 x = 4
B reads x cache miss for x x = 4 x = 4 x = 4
A reads x – (cache hit) x = 4 x = 4 x = 4
Bwrites x invalidate x ///////x = 4 x = 42 x = 47

A reads x cache miss for x x = 42 x = 42 x = 42

→ Caches will re-fetch invalidated items automatically.
Since the bus is shared, other caches may answer “cache miss”
messages (⇝ necessary for write-back caches).

7With write-through caches, memory will be updated immediately.
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Write Invalidate—Realization

Realization:
To invalidate, broadcast address on bus.
All processors continuously snoop on bus:

invalidatemessage for address held in own cache
→ Invalidate own copy
missmessage for address held in own cache
→ Reply with own copy (for write-back caches)
→ Memory will see this and abort its own read

�What if two processors try to write at the same time?

Bus arbitration determines observed write ordering.
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Write Invalidate—Tracking Sharing States

Through snooping, can monitor all bus activities by all processors.
→ Track sharing state.

Idea:
Sending an invalidatewill make local copy the only one valid.
→ Mark local cache line asmodified (≈ exclusive).
If a local cache line is alreadymodified, writes need not be
announced on the bus (no invalidatemessage).
Upon read request by other processor:
→ If local cache line has statemodified,

answer the request by sending local version.
→ Change local cache state to shared.
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Write Invalidate—State Machine

Local caches track sharing states using a statemachine.

invalid

modified shared
“clean”“dirty”

invalidate

write miss
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uniprocessor
→ track “dirty”
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→ also send invalidate
multiprocessor (cont.)
→ react to bus events
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Write Invalidate—Notes

Notes:
Because of the three statesmodified, shared, and invalid, the
protocol on the previous slide is also calledMSI protocol.
TheWrite Invalidate protocol ensures that any valid cache block
is either

in the shared state in one or more caches or
in themodified state in exactly one cache.
(Any transition to themodified state invalidates all other copies
of the block; whenever another cache fetches a copy of the
block, themodified state is left.)

TheMSI protocol also ensures that every shared item has also
been written back to memory. ◁
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MSI Protocol—Extensions

Actual systems often use extensions to theMSI protocol, e.g.,

MESI (“E” for exclusive)
Distinguish between exclusive (but clean) andmodified (which
implies that the copy is exclusive).
Optimizes the (common) case when an item is first read (⇝
exclusive) then modified (⇝modified).

MESIF (“F” for forward)
InM(E)SI, if shared items are served by caches (not only by
memory), all caches might answer miss requests.
MESIF extends the protocol, so at most one shared copy of an
item is marked as forward. Only this cache will respond to
misses on the bus.
Intel i7 employs theMESIF protocol.
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MSI Protocol—Extensions

MOESI (“O” for owned)
ownedmarks an item that might be outdated in memory; the
owner cache is “responsible” for the item.
The ownermust respond to data requests (since main memory
might be outdated).
MOESI allows moving around dirty data between caches.
The AMD Opteron uses theMOESI protocol.
MOESI avoids the need to write every shared cache block back
to memory (⇝ ◁).
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Limitations of a Shared Bus

Limitations of a shared bus:
Large core counts→ high bandwidth.
Shared buses cannot satisfy bandwidth demands of modern
multiprocessor systems.

Therefore:
Distributememory
Communicate through interconnection network

Consequence:
Non-uniformmemory access (NUMA) characteristics
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Bandwidth Demand

E.g., Intel Xeon E7-8880 v3:
2.3GHz clock rate
18 cores per chip (36 threads)
Up to 8 processors per system

Back-of-the-envelope calculation:
1 byte per cycle per core→ 331GB/s
Data-intensive applications might demand much more!

Sharedmemory bus?
Modern bus standards can deliver at most a few ten GB/s.
Switching very high bandwidths is a challenge.
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Example: 8-Way Intel Nehalem-EX

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

I/O

I/O

I/O

I/O

Interconnect: “Intel Quick Path Interconnect (QPI)”8

Memory may be local, one hop away, or two hops away.
→ Non-uniform memory access (NUMA)

8The AMD counterpart is “HyperTransport”.
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Distributed Memory and Snooping

Idea:
Extend “snooping” to distributed memory.
Broadcast coherence traffic, send data point-to-point.

� Problem solved?

1 Coherence traffic grows with core count.
→ Since it must be broadcast, bandwidth will remain a

problem.
2 Acknowledgementmessages simulate a shared bus.
→ Must wait for acknowledgement from all caches.
→ Further increases coherence traffic.

3 No implicit serialization through shared bus.
→ Protocol becomes more complicated; risk of deadlocks.
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Snooping-Based Cache Coherency: ScalabilityI.5 Performance of Scientific Applications on Shared-Memory Multiprocessors ■ I-23

Figure I.8 Data miss rates can vary in nonobvious ways as the processor count is
increased from 1 to 16. The miss rates include both coherence and capacity miss
rates. The compulsory misses in these benchmarks are all very small and are included
in the capacity misses. Most of the misses in these applications are generated by
accesses to data that are potentially shared, although in the applications with larger
miss rates (FFT and Ocean), it is the capacity misses rather than the coherence misses
that comprise the majority of the miss rate. Data are potentially shared if they are
allocated in a portion of the address space used for shared data. In all except Ocean,
the potentially shared data are heavily shared, while in Ocean only the boundaries of
the subgrids are actually shared, although the entire grid is treated as a potentially
shared data object. Of course, since the boundaries change as we increase the pro-
cessor count (for a fixed-size problem), different amounts of the grid become shared.
The anomalous increase in capacity miss rate for Ocean in moving from 1 to 2 proces-
sors arises because of conflict misses in accessing the subgrids. In all cases except
Ocean, the fraction of the cache misses caused by coherence transactions rises when
a fixed-size problem is run on an increasing number of processors. In Ocean, the
coherence misses initially fall as we add processors due to a large number of misses
that are write ownership misses to data that are potentially, but not actually, shared.
As the subgrids begin to fit in the aggregate cache (around 16 processors), this effect
lessens. The single-processor numbers include write upgrade misses, which occur in
this protocol even if the data are not actually shared, since they are in the shared
state. For all these runs, the cache size is 64 KB, two-way set associative, with 32-byte
blocks. Notice that the scale on the y-axis for each benchmark is different, so that the
behavior of the individual benchmarks can be seen clearly. 
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Example:
Scientific Applications
↗ Hennessy &
Patterson, Sect. I.5

→ AMD Opteron is a system that still uses the approach.

© Jens Teubner · Computer Architecture · Summer 2020 103



Directory-Based Cache Coherence

To avoid all-broadcast coherence protocol:
Use a directory to keep track of which item is replicated where.
Direct coherence messages only to those nodes that actually
need them.

Directory:
Either keep a global directory (⇝ scalability?).
Or define a home node for each memory address.
→ Home node holds directory for that item.
→ Typically: distribute directory along with memory.

Protocol now involves
directory/-ies (at item home node(s)),
individual caches (local to processors).

Parties communicate point-to-point (no broadcasts).
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Directory-Based Cache Coherence

Messages sent by individual nodes:

5.4 Distributed Shared-Memory and Directory-Based Coherence ■ 381

each memory block. When the block is shared, each bit of the vector indicates
whether the corresponding processor chip (which is likely a multicore) has a
copy of that block. We can also use the bit vector to keep track of the owner of
the block when the block is in the exclusive state. For efficiency reasons, we also
track the state of each cache block at the individual caches. 

The states and transitions for the state machine at each cache are identical to
what we used for the snooping cache, although the actions on a transition are
slightly different. The processes of invalidating and locating an exclusive copy of
a data item are different, since they both involve communication between the
requesting node and the directory and between the directory and one or more
remote nodes. In a snooping protocol, these two steps are combined through the
use of a broadcast to all the nodes. 

Before we see the protocol state diagrams, it is useful to examine a catalog
of the message types that may be sent between the processors and the directories
for the purpose of handling misses and maintaining coherence. Figure 5.21 shows
the types of messages sent among nodes. The local node is the node where a
request originates. The home node is the node where the memory location and the

Message type Source Destination
Message 
contents Function of this message

Read miss Local cache Home directory P, A Node P has a read miss at address A; 
request data and make P a read sharer.

Write miss Local cache Home directory P, A Node P has a write miss at address A; 
request data and make P the exclusive owner.

Invalidate Local cache Home directory A Request to send invalidates to all remote caches 
that are caching the block at address A.

Invalidate Home directory Remote cache A Invalidate a shared copy of data at address A.

Fetch Home directory Remote cache A Fetch the block at address A and send it to its 
home directory; change the state of A in the 
remote cache to shared.

Fetch/invalidate Home directory Remote cache A Fetch the block at address A and send it to its 
home directory; invalidate the block in the 
cache.

Data value reply Home directory Local cache D Return a data value from the home memory. 

Data write-back Remote cache Home directory A, D Write-back a data value for address A. 

Figure 5.21 The possible messages sent among nodes to maintain coherence, along with the source and desti-
nation node, the contents (where P = requesting node number, A = requested address, and D = data contents),
and the function of the message. The first three messages are requests sent by the local node to the home. The
fourth through sixth messages are messages sent to a remote node by the home when the home needs the data to
satisfy a read or write miss request. Data value replies are used to send a value from the home node back to the
requesting node. Data value write-backs occur for two reasons: when a block is replaced in a cache and must be writ-
ten back to its home memory, and also in reply to fetch or fetch/invalidate messages from the home. Writing back
the data value whenever the block becomes shared simplifies the number of states in the protocol, since any dirty
block must be exclusive and any shared block is always available in the home memory. 

↗ Hennessy & Patterson, Computer Architecture, 5th edition, page 381.
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Directory-Based Coherence—State Machine

Individual caches use a state machine similar to the one on slide 95.
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Directory-Based Coherence—State Machine

The directory has its own state machine.
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Cache Coherence Cost

Experiment:
Several threads randomly increment elements of an integer
array; Zipfian probability distribution, no synchronization9.
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Intel Nehalem EX; 1.87GHz; 2 CPUs, 8 cores/CPU.

9In general, this will yield incorrect counter values.
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Cache Coherence Cost

Two types of coherencemisses:

true sharingmiss
→ Data shared among processors.
→ Often-used mechanism to communicate between threads.
→ These misses are unavoidable.

false sharingmiss
→ Processors use different data items, but the items reside in the

same cache line.
→ Items get invalidated/migrated, even though no data is actually

shared.

�How can false sharingmisses be avoided?
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Synchronization—Producer/Consumer

Shared data is a convenient mechanism to communicate between
threads.

� Producer/consumer protocol based on (only) sharedmemory?

Producer protocol:
1 Wait until flag is clear.
2 Prepare data/message/etc.
3 Set flag.

Consumer protocol:
1 Wait until flag is set.
2 Read data/message/etc.
3 Clear flag.

→ Trick: One thread only sets, the other only clears the flag.
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Shared Memory Consistency

Programs like the producer/consumer scenario make assumptions
about the observed order of memory operations.

Another example:

Thread T1:
/* prepare data */

1 data← 0x4711;
/* tell T2 we’re
done */

2 done← 1;

Thread T2:
/* wait for T1 */

1 while done = 0 do
/* do nothing */

/* use data */
2 print (data);

→ Cache coherence will not ensure correct behavior here!
�Why?

→ Coherence only reasons about same location
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Shared Memory Consistency

Need consistencymodel to reason about program behavior.

Most straightforward model: sequential consistency

Amultiprocessor system is sequentially consistent if the
result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and
the operations of each individual processor appear in this
sequence in the order specified by its program.
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Sequential Consistency

Example:
Assume two programs:
1. Program A: ⟨A1,A2,A3⟩
2. Program B: ⟨B1,B2,B3⟩

Sequential consistency allows program behavior as if any of the
sequences
⟨A1,A2,B1,A3,B2,B3⟩
⟨A1,B1,B2,A2,A3,B3⟩
⟨B1,B2,A1,A2,A3,B3⟩
…

were executed.

However, program runs equivalent to
⟨A1,B2,A2,B1,A3,B3⟩ or
⟨B1,B2,A3,A2,B3,A1⟩

are not allowed.
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Sequential Consistency

Where’s the problem?
Sequential consistency: Result as if all memory accesses by
each processors were kept in order.
But:

Write buffersmake write operations asynchronous.
Individual memory operations might experience different
delays in the interconnect network.
Dynamic scheduling and speculation also alter the order of
execution.

Solution? �
Enforce in-order execution for memory operations?
→ E.g., wait for acknowledgements from all caches for

invalidatemessages.
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Relaxed Consistency Models

Relaxations of sequential consistency sacrifice consistency
guarantees to achieve better performance.

Idea: Relax the strict handling of
W→ R (write followed by a read) program order,
etc.

Ask programmers/compilers to explicitlymark situations where
consistency must be maintained.

E.g.,
RelaxW→ R (“total store ordering” or “processor consistency”):

Many programs will depend on the order among writes.
These will run just fine.
Can still hide write latency.
� example on slide 111?
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Relaxed Consistency Models

RelaxW→ R andW→ W (“partial store order”)
Writes to different locations may appear in different order.
Allows combined writes.

“weak ordering”
No order guarantees.
Goes well with dynamic scheduling.
Programs must ask for ordering explicitly.
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Synchronization in Relaxed Consistency Models

With relaxed consistency, applications may have to provide explicit
synchronization instructions.

E.g.,
fence operations

Wait until all outstanding memory operations have been
completed.
E.g., LFENCE, SFENCE, MFENCE on Intel x86

“locked” instructions
Intel allows some instructions to be prefixed with LOCK.
This allows for complex instructions to appear atomic.
Locked instructions are not re-ordered.
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Synchronization—Mutual Exclusion

� Two threads want to use a critical region. Synchronization
based on (only) sharedmemory?
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Need for Atomic Operations

Problem:
A lock implementation for n threads that only uses shared
memory must write toO(n) distinct memory locations.
With unclear memory consistency, even that might not be
sufficient.

Therefore:
Hardware support for atomic read/modify operations.

E.g.,
test-and-set (v,a): Set variable v to a and return the value
that v had before the assignment.
fetch-and-increment (v): Return the value of v and atomially
increment it.
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Atomic Operations and Instruction Set

Instruction set for atomic operations:
Either explicit “test and set,” “fetch and increment,” etc.
instructions.
→ E.g., XADD (Exchange and Add) on Intel x86.
Or pairs of instructions that operate together
→ “load linked”/“load locked” and “store conditional”

E.g., MIPS atomic exchange (↗ Hennessy & Patterson)

try: MOV R3, R4 ; mov exchange value
LL R2, O(R1) ; load linked
SC R3, O(R1) ; store conditional
BEQZ R3, try ; branch if store fails
MOV R4, R2 ; put load value in R4
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Implementing Atomic Operations

Another example: fetch and increment

try: LL R2, O(R1) ; load linked
DADDUI R3, R2, #1 ; increment
SC R3, O(R1) ; store conditional
BEQZ R3, try ; branch if store fails

Implementation:
On LL, remember address in link register.
Clear link register whenever

an interrupt occurs or
an invalidate is received for the address in the link register.

On SC, compare address to link register.
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Using Atomic Operations—Spinlock

� Implementation of a spinlock?

See the (excellent) article of Tom Anderson (“The Performance of
Spin Lock Alternatives for Shared-Memory Multiprocessors.” IEEE
Trans. on Parallel and Distributed Systems, vol. 1(1), 1990).
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Locking Strategies

There are two strategies to implement locking:

Spinning (“busy waiting”; can be done in user space)
Waiting thread repeatedly polls lock until it becomes free.
Cost: two cachemiss penalties (if implemented well)
→ ≈150nsec
Thread burns CPU cycles while spinning.

Blocking (operating system service)
De-schedulewaiting thread until lock becomes free.
Cost: two context switches (one to sleep, one to wake up)
→ ≈12–20µsec
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Thread Synchronization

Blocking:

thread 1

thread 2

thread working lock held

de-schedule wake-up

time

Spinning:

thread 1

thread 2

thread working lock held

thread spinning short delay

time
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Experiments: Locking Performance

Sun Niagara II (64 hardware contexts):

level off but remain steady as load continues to increase. Instead,
as load increases, blocking synchronization overwhelms the OS
scheduler, causing poor performance after 32 threads. Spinning
fares better at first, but as load crosses 100% its performance also
drops off drastically due to priority inversions. 

Nearly all of the challenges which arise with either spinning or
blocking are due to scheduling concerns. Spinning gives optimal
performance under light load (when no scheduling is needed), but
performs poorly under high load because preempted lock holders
trigger priority inversions. Similarly, blocking synchronization
performs badly because it potentially causes a context switch with
every lock handoff. Frequent context switching leads to scheduling
bottlenecks and adds significant overhead to the critical path. Fine-
grained synchronization aggravates the problem because it favors
frequent, short critical sections — much shorter than a context
switch — over longer and more coarse-grained ones. 

 We argue that the solution to the spinning-blocking trade-off
lies not with a more effective hybrid scheme, but in decoupling
load control from contention management. Effective contention
management uses spinning for fast lock hand-offs and does not
block in response to contention. Effective load control then pre-
vents spinning threads from causing overload while keeping load
low enough that lock holders are not preempted. We propose a
mechanism which  achieves both goals by notifying a random sub-
set of spinning threads to block in response to overload, waking
them when load drops or after a timeout of roughly one scheduler
time slice. Spinning threads are attractive targets because they can-
not make forward progress by definition, so removing them does
not hurt performance in the short term. Further, removing some
spinning threads from a loaded system ensures that lock holders
responsible for the wait are able to run, while leaving enough other
spinning threads to preserve fast lock handoffs. Finally, OS time
slicing operates normally in the absence of contention, though load
control remains active to disrupt any convoys which might arise. 

In summary, this paper makes three main contributions: 

1. We show that scheduler activity on the critical path of lock
handoffs underlies performance problems with the current
state-of-the-art in both spinning and blocking primitives.

2. We propose to decouple contention management from schedul-
ing, which moves the OS scheduler completely off the critical
path and allows applications to exploit the best properties of
spinning and blocking instead of merely trading them off. 

3. We design and implement a load control mechanism which
achieves the proposed decoupling without modifications to the
OS kernel or scheduler. For a variety of benchmarks, we
achieve peak performance for lightly loaded machines, while
retaining 85% of that peak even with 200% load (two runnable
threads per hardware context).

The rest of the paper is organized as follows. The next section
expands on the evolution of synchronization algorithms, and
related issues such as scheduling and preemption resistance.
Section 3 introduces our proposed load control mechanism and
discusses implementation issues. Sections 4-6 present and evaluate
the load control implementation. Section 7 compares load control
with alternative approaches, followed by conclusions in Section 8.

2. Managing Load and Contention

This section examines different approaches related to conflict reso-
lution for locking primitives (see Section 7 for a discussion of
alternatives to locking). We focus on locking because it is a gen-
eral-purpose and widely-utilized approach to synchronization.
Conflict resolution is necessary because threads which encounter
contention must wait for the lock to be released. As mentioned,
there are two fundamental contention management approaches —
spinning and blocking — as well as variants which extend and
combine the two to mitigate their various weaknesses. Figure 2
illustrates the space of challenges encountered in implementing
locking primitives and how solutions for these evolved; each
underlined text block is a challenge and connecting arrows are
existing solutions which attempt to overcome the challenge. 

Under blocking schemes (grouped toward the right of Figure
2), threads are descheduled in response to contention. Blocking has
the primary benefit of freeing the CPU until the waiting thread can
make progress again. As an added advantage, the scheduler can
cooperate with blocking synchronization, for example by desched-
uling threads which wait for a preempted lock. Blocking is an
expensive operation, however, because it requires two context
switches (with corresponding OS scheduling decisions), adding
10-15µs to the critical path of the system. A longer critical path
increases the likelihood that other threads will encounter conten-
tion and block, forming a vicious cycle of extremely slow lock
handoffs known as a convoy [5]. Because convoys are so damag-
ing to scalability, purely blocking contention management is only
used in uniprocessor systems where spinning leads to deadlock. 

Figure 1.  Weaknesses in state-of-the-art synchronization primi-
tives which use blocking and spinning.
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Figure 2.  Problem space for contention management policies
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Spinning Under High Load

Under high load, spinning can cause problems:

thread 1

thread 2

time

More threads than hardware contexts.
Operating system preempts running task .

Working and spinning threads all appear busy to the OS.
Working thread likely had longest time share already
→ gets de-scheduled by OS.

Long delay before working thread gets re-scheduled.
By the time working thread gets re-scheduled (and can now
make progress), waiting thread likely gets de-scheduled, too.
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Spinning

In contrast to blocking, spinning or “busy waiting” schemes
(grouped on the left side of Figure 2) leave waiting threads on
CPU as they poll a memory location for changes that indicate a
lock handoff. Pure spinning is highly responsive (1-2 cache miss
delays per handoff) and avoids context switching or system calls
on the critical path. However, it also wastes CPU time other
threads might have been able to use. In addition, naive spinlock
implementations create heavy traffic in the memory system and
thus interfere with computation. Finally, the OS scheduler cannot
distinguish between threads which spin and those which make for-
ward progress, leading to situations where a lock holder gets pre-
empted, only to have the new thread waste its time slice spinning.

To show how severe the problem of preempted lock holders can
be, we run a database telecommunication benchmark (TM-1) on a
64-context machine (see Section 4 for details), using a state-of-the-
art spinlock. We instrument the code to differentiate between spin-
ning due to true contention and spinning due to priority inversion.
Figure 3 shows the resulting breakdown of work. We vary the
number of threads along the x-axis, and measure CPU time spent
doing useful work, spinning due to contention, and spinning due to
priority inversion. For fewer than 64 active threads, machine utili-
zation is less than 100% and contention is low. However, as soon
as utilization passes 100% priority inversions quickly dominate,
wasting up to 85% of CPU time. It is important to note that true
contention is not the concern: at peak performance, less than 10%
of CPU time is wasted spinning on contended locks, and that frac-
tion drops rapidly when the OS scheduler preempts lock holders.

2.1 Preemption-resistant Spinlocks
Queue-based spinlocks [22][24] and to a lesser extent, ticket
locks [29], provide excellent scalability because waiting threads
form a FIFO queue and each lock handoff targets a specific thread
(“MCS” in Figure 2). Queue-based locks also give each thread its
own memory location to spin on, eliminating unnecessary coher-
ence traffic. Further, the orderly handoff is an elegant solution for
the “thundering herd” problem, where all waiting threads race for
the lock at each release and cause both contention and memory
traffic. However, the same FIFO ordering makes such algorithms
especially vulnerable to preemptions because every thread in the
queue is effectively a lock holder: A thread preempted from the
queue will almost certainly become the lock holder before it wakes
again, and other threads cannot bypass it even if it was preempted
before acquiring the lock. As a result, load must remain strictly
below 100% in order to avoid convoys.

Time-published MCS locks [15] (“TP-MCS” in Figure 2) allow
lock holders to remove preempted threads from the lock queue
instead of passing the lock to them. By only handing the lock to
running threads, time-published locks eliminate the main weakness
of queue-based spinlocks while retaining their superior scalability.
However, even with TP-MCS locks, a few extra threads in a 32-
processor system add 50-100% to the execution time of some
SPLASH-2 benchmarks [15]. This behavior arises because time-
published locks only protect the queue, leaving lock holders vul-
nerable to preemption (the results in Figure 3 are based on TP-
MCS). Preempted lock holders impact all locks which do not
cooperate with the OS scheduler, and are the focus of this work.

2.2 Backoff and Spin-then-block Hybrids
Many approaches exist to ameliorate some of the weaknesses of
spinning and blocking. Backoff-based spinning provides another
solution to the “thundering herd” problem by limiting the number
of waiting threads which can respond simultaneously. Test-and-
test-and-set with exponential backoff [1] and spin-then-yield
variants [14][27], fall into this category, with the latter removing
threads from the CPU completely. Backoff schemes suffer from a
fundamental weakness, however, in that they impose competing
objectives: Long backoffs are best for reducing wasted resources,
but shorter backoffs give the fastest response to lock handoffs. The
best tuning for backoff-based schemes does not necessarily per-
form well (see next subsection), and tuning for the general case is
challenging because the hardware, OS, application, and the num-
ber of active threads all influence the optimal balance [6].

Hybrid spin-then-block schemes [6][27] improve on backoff by
allowing the lock holder to explicitly wake waiting threads. The
capability to both sleep and wake threads allows threads to block
without timeouts, without the risk of leaving a contended lock idle.
Where spin-then-yield schemes are essentially spinlocks which use
the scheduler as a form of backoff, hybrid spin-then-block schemes
use spinning to reduce context switching imposed by a blocking
primitive. However, as with backoff, hybrid schemes can cause
undesirable side effects on load (see below). Heavyweight OS
mutex implementations usually employ spin-then-block strategies,
including the Solaris adaptive mutex [23] and the Linux futex [12].

The Solaris adaptive mutex is an advanced spin-then-block
design that minimizes the need for context switching under low
and moderate contention, and which switches to blocking under
high contention. However, as presented in Figure 1, its behavior
still leaves much room for improvement. To identify the reason
behind the lock’s poor performance we modify the TM-1 bench-

Figure 3.  Spinning: priority inversion
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Figure 4.  Blocking: scheduler overload 
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