Computer Architecture

Jens Teubner, TU Dortmund
jens.teubner@cs.tu-dortmund.de

Summer 2020

© Jens Teubner - Computer Architecture - Summer 2020 1

Part Il

Multi-Core Systems

© Jens Teubner - Computer Architecture - Summer 2020

83

Building a Shared-Memory Multiprocessor

What the programmer likes to think of...

| CPU core | | CPU core | | CPU core | | CPU core |
I I I I

[
shared main-memory

& Scalability? Moore’s Law?

© Jens Teubner - Computer Architecture - Summer 2020 84

Centralized Shared-Memory Multiprocessor

Caches help mitigate the bandwidth bottleneck(s).

| CPU core | | CPU core | | CPU core | | CPU core |
[[[[

private private private private
cache cache cache cache

| shared cache |
I
shared main-memory

= A shared bus connects CPU cores and memory.
— the “shared bus” may or may not be shared physically.
m The Intel Core architecture, e.g., implemented this design.

© Jens Teubner - Computer Architecture - Summer 2020

85

Centralized Shared-Memory Multiprocessor

The shared bus design with caches makes sense:

+ symmetric design; uniform access time for every memory item
from every processor

+ private data gets cached locally
— behavior identical to that of a uniprocessor
? shared data will be replicated to private caches

— Okay for parallel reads.

—» But what about writes to the replicated data?

— In fact, we’ll want to use memory as a mechanism to
communicate between processors.

The approach does have limitations, too:

— For large core counts, shared bus may still be a (bandwidth)
bottleneck.

© Jens Teubner - Computer Architecture - Summer 2020 86

Caches and Shared Memory

Caching/replicating shared data can cause problems:

read x (4)

CPU CPU read x (4)
X = 42 (42) 1 # read x (4) 4
cacpe cache
XX— X = 4
shared main memoryxx—42
Challenges:

= Need well-defined semantics for such scenarios.
m Must efficiently implement that semantics.

© Jens Teubner - Computer Architecture - Summer 2020

Cache Coherence

The desired property (semantics) is cache coherence.
Most importantly:®

Writes to the same location are serialized; two writes to the

same location (by any two processors) are seen in the same
order by all processors.

Note:

= We did not specify which order will be seen by the processors.
— XV Why?

5We also demand that a read by processor P will return P’s most recent write,
provided that no other processor has written to the same location meanwhile.

Also, every write must be visible by other processors after “some time.”
© Jens Teubner - Computer Architecture - Summer 2020

88

Cache Coherence Protocol

Multiprocessor (or multicore) systems maintain coherence through
a cache coherence protocol.

Idea:
= Know which cache/memory holds the current value of the item.

m Otherreplicas might be stale.

Two alternatives:
Snooping-Based Coherence
— All processors communicate to agree on item states.
Directory-Based Coherence

— A centralized directory holds information about
state/whereabouts of data items.

© Jens Teubner - Computer Architecture - Summer 2020 89

Snooping-Based Cache Coherence

Rationale:
m All processors have access to a shared bus.
m Can “snoop” on the bus to track other processors’ activities.

Use to track the sharing state of each cached item:

Meta data for each cache block:

u (sharing) state
u block identification (tag)

(s harin g) tag data
state

X Ignoring Multiprocessors for amoment, which “state”
information might make sense to keep?

© Jens Teubner - Computer Architecture - Summer 2020 90

Strategy 1: Write Update Protocol

Idea:
= On every write, propagate the write to every copy.
— Use bus to broadcast writes.®

& Pros/Cons of this strategy?

®The protocol is thus also called write broadcast protocol.
© Jens Teubner - Computer Architecture - Summer 2020 91

Strategy 2: Write Invalidate Protocol

Idea:
m Before writing an item, invalidate all other copies.

Activity Bus CacheA CacheB Memory
X=4
Areadsx cachemissforx x=4 X=4
Breadsx cachemissforx x=4 X=4 X=4
Areadsx - (cache hit) X=4 X=4 X=4
B writes x invalidate x M/ /b X =42 x =47

Areadsx cachemissforx x =42 X =42 X =42

— Caches will re-fetch invalidated items automatically.

= Since the bus is shared, other caches may answer “cache miss”
messages (~ necessary for write-back caches).

’With write-through caches, memory will be updated immediately.
© Jens Teubner - Computer Architecture - Summer 2020 92

Write Invalidate—Realization

Realization:
m To invalidate, broadcast address on bus.
m All processors continuously snoop on bus:
m invalidate message for address held in own cache
— Invalidate own copy
= miss message for address held in own cache

— Reply with own copy (for write-back caches)
— Memory will see this and abort its own read

X What if two processors try to write at the same time?

© Jens Teubner - Computer Architecture - Summer 2020 93

Write Invalidate—Tracking Sharing States

Through snooping, can monitor all bus activities by all processors.
— Track sharing state.

Idea:
m Sending an invalidate will make local copy the only one valid.
— Mark local cache line as modified (~ exclusive).
m If alocal cache line is already modified, writes need not be
announced on the bus (no invalidate message).
= Upon read request by other processor:

— If local cache line has state modified,
answer the request by sending local version.
— Change local cache state to shared.

© Jens Teubner - Computer Architecture - Summer 2020 94

Write Invalidate—State Machine

Local caches track sharing states using a state machine.

O .
O %) uniprocessor
© < — track “dirty”

CPU read miss; write back data

modified put read miss on bus

ud | rtyu

read miss; write back data

CPU write miss; put write miss on bus

© Jens Teubner - Computer Architecture - Summer 2020 95

Write Invalidate—State Machine

Local caches track sharing states using a state machine.

\0& 0/0(/ multiprocessor I
-~ also send invalidate

modified
“d i rty”

CPU write miss; put write miss on bus

© Jens Teubner - Computer Architecture - Summer 2020 95

Write Invalidate—State Machine

Local caches track sharing states using a state machine.

o Co, multiprocessor (cont.) ’
-~ react to bus events

bus events
CPU events

modified
“d i rty”

CPU write miss; put write miss on bus

© Jens Teubner - Computer Architecture - Summer 2020 95

Write Invalidate—Notes

Notes:
m Because of the three states modified, shared, and invalid, the
protocol on the previous slide is also called MSI protocol.
m The Write Invalidate protocol ensures that any valid cache block
is either
m in the shared state in one or more caches or

= in the modified state in exactly one cache.
(Any transition to the modified state invalidates all other copies
of the block; whenever another cache fetches a copy of the
block, the modified state is left.)

m The MSI protocol also ensures that every shared item has also
been written back to memory. <

© Jens Teubner - Computer Architecture - Summer 2020 96

MSI Protocol—Extensions

Actual systems often use extensions to the MS/ protocol, e.g.,

MESI (“E” for exclusive)

m Distinguish between exclusive (but clean) and modified (which
implies that the copy is exclusive).

m Optimizes the (common) case when an item is first read (~
exclusive) then modified (~» modified).

MESIF (“F” for forward)

m In M(E)SI, if shared items are served by caches (not only by
memory), all caches might answer miss requests.

m MESIF extends the protocol, so at most one shared copy of an
item is marked as forward. Only this cache will respond to
misses on the bus.

m Inteli7 employs the MESIF protocol.

© Jens Teubner - Computer Architecture - Summer 2020 97

MSI Protocol—Extensions

MOESI (“O” for owned)

m owned marks an item that might be outdated in memory; the
owner cache is “responsible” for the item.

m The owner must respond to data requests (since main memory
might be outdated).

m MOESI allows moving around dirty data between caches.
m The AMD Opteron uses the MOESI protocol.

= MOESI avoids the need to write every shared cache block back
to memory (~ <).

© Jens Teubner - Computer Architecture - Summer 2020 98

Limitations of a Shared Bus

Limitations of a shared bus:
m Large core counts — high bandwidth.
= Shared buses cannot satisfy bandwidth demands of modern
multiprocessor systems.
Therefore:
m Distribute memory
m Communicate through interconnection network

Consequence:
m Non-uniform memory access (NUMA) characteristics

© Jens Teubner - Computer Architecture - Summer 2020 99

Bandwidth Demand

E.g., Intel Xeon E7-8880 v3:
m 2.3GHz clock rate
m 18 cores per chip (36 threads)
m Up to 8 processors per system

Back-of-the-envelope calculation:

= 1 byte per cycle per core — 331 GB/s

m Data-intensive applications might demand much more!
Shared memory bus?

= Modern bus standards can deliver at most a few ten GB/s.
m Switching very high bandwidths is a challenge.

© Jens Teubner - Computer Architecture - Summer 2020 100

Example: 8-Way Intel Nehalem-EX

| MEM | |MEM| |MEM| | MEM |
Vo _;[_C_:_Isl_J_}_:{CPU}—{CPU}:_{_C_I_D_L_J_]: Vo
X
o {CPU}—{CPU}—{CPU}—{CPU} 1o
|MEM| |MEM| |MEM| |MEM|

® Interconnect: “Intel Quick Path Interconnect (QPI)”8
= Memory may be local, one hop away, or two hops away.
— Non-uniform memory access (NUMA)

8The AMD counterpart is “HyperTransport”.

© Jens Teubner - Computer Architecture - Summer 2020 101

Distributed Memory and Snooping

Idea:
m Extend “snooping” to distributed memory.
= Broadcast coherence traffic, send data point-to-point.

X Problem solved?

© Jens Teubner - Computer Architecture - Summer 2020 102

Snooping-Based Cache Coherency: Scalability

V]
8% | @ 2% = =
ol g . [ﬂ.mi
2
6% [= 0%
12 4 8 16
@ 5%
T Processor count
@ 4%]
S 3% f
2% H .
il Ocean Example:
0% 20% B o
"2 48 e 18% m Scientific Applications
16% -
Processor count
14% /\
g ion | m " Hennessy &
Barnes = %
o 19 8 1% Patterson, Sect. I.5
2 1% S 8%
2 6%
S 0% 4% |-
1.2 4 8 16 2% |-
Processor count 0%
12 4 8 16

Processor count

| B Coherence miss rate [Capacity miss rate |

— AMD Opteron is a system that still uses the approach.

© Jens Teubner - Computer Architecture - Summer 2020 103

Directory-Based Cache Coherence

To avoid all-broadcast coherence protocol:

m Use a directory to keep track of which item is replicated where.

m Direct coherence messages only to those nodes that actually
need them.

Directory:

m Either keep a global directory (~~ scalability?).
= Or define a home node for each memory address.
— Home node holds directory for that item.

— Typically: distribute directory along with memory.
Protocol now involves
m directory/-ies (at item home node(s)),
m individual caches (local to processors).
Parties communicate point-to-point (no broadcasts).

© Jens Teubner - Computer Architecture - Summer 2020 104

Directory-Based Cache Coherence

Messages sent by individual nodes:

Message

Message type Source Destination contents Function of this message

Read miss Local cache Home directory P, A Node P has a read miss at address A;
request data and make P a read sharer.

‘Write miss Local cache Home directory P, A Node P has a write miss at address A;
request data and make P the exclusive owner.

Invalidate Local cache Home directory A Request to send invalidates to all remote caches
that are caching the block at address A.

Invalidate Home directory Remote cache A Invalidate a shared copy of data at address A.

Fetch Home directory Remote cache A Fetch the block at address A and send it to its
home directory; change the state of A in the
remote cache to shared.

Fetch/invalidate Home directory Remote cache A Fetch the block at address A and send it to its
home directory; invalidate the block in the
cache.

Data value reply Homedirectory Local cache D Return a data value from the home memory.

Data write-back Remote cache Home directory A, D ‘Write-back a data value for address A.

/" Hennessy & Patterson, Computer Architecture, 5th edition, page 381.

© Jens Teubner - Computer Architecture - Summer 2020

105

Directory-Based Coherence—State Machine

Individual caches use a state machine similar to the one on slide 95.

messages from
home directory

CPU events

write miss; send write miss msg

© Jens Teubner - Computer Architecture - Summer 2020 106

Directory-Based Coherence—State Machine

The directory has its own state machine.

messages from
home directory

CPU events

read miss; fetch; data
value reply; Sharers U = {P}

write miss; invalidate;
Sharers U = {P}; data value reply

© Jens Teubner - Computer Architecture - Summer 2020 107

Cache Coherence Cost

Experiment:

m Several threads randomly increment elements of an integer
array; Zipfian probability distribution, no synchronization®.

100+ same chip

801 =
(O]

601 5
o

1 ()

40 :
201 ®
,ﬂl
0

same chip

=

®

N
=
©
e}

nano-seconds/iteration

o

=

9

5 FIH
°l ™

2 1 2 3
s, 8 cores/CPU.

2 4 5 8 threads
2

CN

Intel Nehalem EX; 1.87 GHz; 2 CP

°In general, this will yield incorrect counter values.
© Jens Teubner - Computer Architecture - Summer 2020 108

Cache Coherence Cost

Two types of coherence misses:

true sharing miss
— Data shared among processors.
—» Often-used mechanism to communicate between threads.
— These misses are unavoidable.

false sharing miss

— Processors use different data items, but the items reside in the
same cache line.

— Items get invalidated/migrated, even though no data is actually
shared.

% How can false sharing misses be avoided?

© Jens Teubner - Computer Architecture - Summer 2020 109

Synchronization—Producer/Consumer

Shared data is a convenient mechanism to communicate between
threads.

X Producer/consumer protocol based on (only) shared memory?

© Jens Teubner - Computer Architecture - Summer 2020

110

Shared Memory Consistency

Programs like the producer/consumer scenario make assumptions
about the observed order of memory operations.

Another example:

Thread T,: Thread T5,:
/* prepare data */ /* wait for T, */
1 data < 0x4711; 1 while done = 0 do
/*tell T, we're | /*do nothing */
done 7/ /* use data */
2 done « 1; 2 print (data);

— Cache coherence will not ensure correct behavior here!
X Why?

© Jens Teubner - Computer Architecture - Summer 2020 111

Shared Memory Consistency

Need consistency model to reason about program behavior.

Most straightforward model: sequential consistency

A multiprocessor system is sequentially consistent if the
result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and
the operations of each individual processor appear in this
sequence in the order specified by its program.

© Jens Teubner - Computer Architecture - Summer 2020

112

Sequential Consistency

Example:

m Assume two programs:
Program A: (A1,A2,A3)
Program B: <B1,Bz,B3>

m Sequential consistency allows program behavior as if any of the

sequences
u (Aq,A2,B1,A3,B2,B3)
u (A1,B1,B3,Az,A3,B3)
u (B1,B2,A1,A2,A3,B3)
...

were executed.

However, program runs equivalent to
| (A1,Bz,A2,B1,A3,Bg> or
u (B1,B2,A3,A2,B3,A1)

are not allowed.

© Jens Teubner - Computer Architecture - Summer 2020 113

Sequential Consistency

Where’s the problem?
= Sequential consistency: Result as if all memory accesses by
each processors were kept in order.
= But:

m Write buffers make write operations asynchronous.

= Individual memory operations might experience different
delays in the interconnect network.

= Dynamic scheduling and speculation also alter the order of
execution.

Solution? &
m Enforce in-order execution for memory operations?

— E.g., wait for acknowledgements from all caches for
invalidate messages.

© Jens Teubner - Computer Architecture - Summer 2020 A

Relaxed Consistency Models

Relaxations of sequential consistency sacrifice consistency
guarantees to achieve better performance.
Idea: Relax the strict handling of

u W — R (write followed by a read) program order,

m etc.

Ask programmers/compilers to explicitly mark situations where
consistency must be maintained.
E.g.,

m Relax W — R (“total store ordering” or “processor consistency”):

= Many programs will depend on the order among writes.
These will run just fine.

m Can still hide write latency.

= © example on slide 111?

© Jens Teubner - Computer Architecture - Summer 2020 115

Relaxed Consistency Models

u Relax W — Rand W — W (“partial store order”)

= Writes to different locations may appear in different order.
m Allows combined writes.

m “weak ordering”

= No order guarantees.
m Goes well with dynamic scheduling.
m Programs must ask for ordering explicitly.

© Jens Teubner - Computer Architecture - Summer 2020 116

Synchronization in Relaxed Consistency Models

With relaxed consistency, applications may have to provide explicit
synchronization instructions.

E.g.,
= fence operations
= Wait until all outstanding memory operations have been
completed.
m E.g., LFENCE, SFENCE, MFENCE on Intel x86
= “locked” instructions

= Intel allows some instructions to be prefixed with LOCK.

This allows for complex instructions to appear atomic.
m Locked instructions are not re-ordered.

© Jens Teubner - Computer Architecture - Summer 2020 117

Synchronization—Mutual Exclusion

& Two threads want to use a critical region. Synchronization
based on (only) shared memory?

© Jens Teubner - Computer Architecture - Summer 2020

Need for Atomic Operations

Problem:

= Alock implementation for n threads that only uses shared
memory must write to O(n) distinct memory locations.

m With unclear memory consistency, even that might not be
sufficient.

Therefore:
= Hardware support for atomic read/modify operations.

E.g.,

m test-and-set (v, a): Set variable v to a and return the value
that v had before the assignment.

m fetch-and-increment (v): Return the value of v and atomially
increment it.

© Jens Teubner - Computer Architecture - Summer 2020 119

Atomic Operations and Instruction Set

Instruction set for atomic operations:
m Either explicit “test and set,” “fetch and increment,” etc.
instructions.
— E.g., XADD (Exchange and Add) on Intel x86.
m Or pairs of instructions that operate together
— “load linked”/“load locked” and “store conditional”

E.g., MIPS atomic exchange (. Hennessy & Patterson)

try: MOV R3,R4 ; mov exchange value
LL R2,0(R1) ;load linked
SC R3,0(R1) ;store conditional
BEQZ R3, try ; branch if store fails
MOV R4, R2 ; put load value in R4

© Jens Teubner - Computer Architecture - Summer 2020 120

Implementing Atomic Operations

Another example: fetch and increment

try: LL R2, 0(R1) ; load linked
DADDUI R3,R2, #1 ; increment
SC R3, 0(R1) ; store conditional
BEQZ R3, try ; branch if store fails

Implementation:
m OnLL, remember address in link register.
m Clear link register whenever

m aninterrupt occurs or
m aninvalidate is received for the address in the link register.

m On SC, compare address to link register.

© Jens Teubner - Computer Architecture - Summer 2020 121

Using Atomic Operations—Spinlock

X Implementation of a spinlock?

See the (excellent) article of Tom Anderson (“The Performance of
Spin Lock Alternatives for Shared-Memory Multiprocessors.” IEEE
Trans. on Parallel and Distributed Systems, vol. 1(1), 1990).

© Jens Teubner - Computer Architecture - Summer 2020

122

Locking Strategies

There are two strategies to implement locking:

Spinning (“busy waiting”; can be done in user space)

= Waiting thread repeatedly polls lock until it becomes free.
m Cost: two cache miss penalties (if implemented well)
— =~ 150nsec

m Thread burns CPU cycles while spinning.

Blocking (operating system service)

m De-schedule waiting thread until lock becomes free.
m Cost: two context switches (one to sleep, one to wake up)
— ~12-20 usec

© Jens Teubner - Computer Architecture - Summer 2020 123

Thread Synchronization

Blocking:
thread working lock held
thread1 | ™ — time
thread 2 | o i
de-schedule wake-up
Spinning:
thread working lock held
thread1 | ™ — time
thread 2 | SIS
—f—

thread spinning ‘gphort delay

© Jens Teubner - Computer Architecture - Summer 2020 A

Experiments: Locking Performance

Sun Niagara Il (64 hardware contexts):

c .
Throughput (ktps) 29
c o

- O N
=0 | g2
""""""""""""" O3

120 1 Ideal g;%
=<

o .

3

90 - 33
037

= <

60 - ! Blocking °3
1 o <

: S 2

30 - - 25
. Spinning S5

100% load ! " E

O T ! T T T 1 (D g’o
o ®

0 32 64 9% 128 160 192 3 s

Threads ” =

© Jens Teubner - Computer Architecture - Summer 2020 125

Spinning Under High Load

Under high load, spinning can cause problems:

thread 1 |_§\ E time

e

thread 2 \) el

= More threads than hardware contexts.

m Operating system preempts running taské.

m Working and spinning threads all appear busy to the OS.
= Working thread likely had longest time share already
— gets de-scheduled by O0S.

= Long delay before working thread gets re-scheduled.

m By the time working thread gets re-scheduled (and can now
make progress), waiting thread likely gets de-scheduled, too.

© Jens Teubner - Computer Architecture - Summer 2020 126

Machine Util (%)
O Work M Contention [Prio-Invert
100 —

80

60 -

40

15 31 47 63 71 95 127 159 191
Client Threads

Source: Johnson et al. Decoupling Contention
Management from Scheduling. ASPLOS 2010.

© Jens Teubner - Computer Architecture - Summer 2020 127

	Multi-Core Systems

