Computer Architecture

Jens Teubner, TU Dortmund
jens.teubner@cs.tu-dortmund.de

Summer 2020

© Jens Teubner - Computer Architecture - Summer 2020 1

Part |

Programming for Parallelism

© Jens Teubner - Computer Architecture - Summer 2020 2

Parallelism and its Implications

Moore’s Law - parallelism ~
But:

= Parallelism — communication/synchronization
= Amdahl’s Law:

— Must keep sequential code parts really small.

Therefore:

= Need efficient communication/synchronization mechanisms
— What are the ways to realize that?

m Parallelize aggressively
— Tool support?

© Jens Teubner - Computer Architecture - Summer 2020 B

Communication/Synchronization

Shared Memory: Message Passing:
e local local
memory | | memory

interconnect

(shared memory} g
= Memory accessible by all local local
CPUs/threads. ‘ memory ‘ memory

m Threads communicate

through memory. m Threads communicate

through messages.

© Jens Teubner - Computer Architecture - Summer 2020 A

Shared Memory <+ Message Passing

X Pros/Cons of the two mechanisms?

© Jens Teubner - Computer Architecture - Summer 2020 [

OpenMP

OpenMP: An API for Shared Memory Multiprocessing
= Non-profit industry consortium
m First version: October 1997 (for Fortran)
m Latest version: November 2018 (version 5.0; Fortran/C/C++)
m Supported by many modern compilers (e.g., gcc, LLVM, icc)

Idea:
m Shared memory, parallelism through threads

m Start from sequential code, introduce parallelism through
pragmas (#pragma in C/C++)

© Jens Teubner - Computer Architecture - Summer 2020 6

OpenMP Pragmas

Pragmas are directives for the compiler.

E.g.,C/C++: (here: ignore warning for uninitialized variable)

#pragma diagnostic ignored "-Wuninitialized"
foo (b);

OpenMP pragmas begin with #pragma omp:

#pragma omp parallel for
for (unsigned int 1i=0; i<N; i++)
alil=bl[i] + k*c[il;

Pragmas are ignored if the compiler does not understand them.

© Jens Teubner - Computer Architecture - Summer 2020 7

“Hello World!” of OpenMP

#pragma omp parallel for
for (unsigned int i=0; i<N; i++)
alil =b[i] + kxc[i];

m Compiler will automatically assign loop iterations to parallel
threads.
— Number of threads created is (by default) at the compiler’s
discretion.
= Pragmaisignored by a non-OpenMP-aware compiler.
— Above code will run just fine as sequential code.
m Strategy:

— Identify performance-critical loops.
— Parallelize using OpenMP pragmas.

© Jens Teubner - Computer Architecture - Summer 2020 8

OpenMP Fork/Join Model

The OpenMP parallel clause declares a parallel region.

e O) e
serial
#pragma omp para_l]_el for
for (int i=0; i<1000; i++) parallel
a[i] =random () ;
printf ("Incrementing...\n"); serial g
#pragma omp parallel for
for (int i=0; 1<1000; i++) parallel
alil=alil+1; | Y 00 A g . .
serial §
printf ("Done.\n"); | S

~~ pthread_create () / pthread_join ()

© Jens Teubner - Computer Architecture - Summer 2020 9

OpenMP parallel Directive

Actually...
= Most #pragma omp directives apply to the following structured
block of code.
m E.g.,aCstatement orablockinside {/}
= Block must have single entry and single exit.
m #pragma omp parallel only tells the master thread to fork and
create a team of threads
— All threads will execute all of the code in the block.
— Threads will share (almost') all data.

S What will be the output of the following code?

#pragma omp parallel
printf ("Hello World!\n"); J

"Each thread will have its own program counter and stack.

© Jens Teubner - Computer Architecture - Summer 2020 10

Library Functions

Library functions help to interface with OpenMP.

#include <omp.h>
int
main (int argc, char *xargv)
{
omp_set_num_threads (4) ;
#pragma omp parallel
{
unsigned int id = omp_get_thread_num () ;
unsigned int cnt = omp_get_num_threads () ;
printf ("I'm thread number %u (out of %u).\n",
id, cnt);

© Jens Teubner - Computer Architecture - Summer 2020 11

More About #pragma omp parallel

#pragma omp parallel:
m Implicit barrier at the end of the structured block.
—» Execution continues only after all threads have joined.
m Threads may or may not actually terminate at block end.

— Thread creation is expensive.
— Compiler might decide to rather put threads to sleep and
wake them up again later.

© Jens Teubner - Computer Architecture - Summer 2020 12

OpenMP for Directive

Parallelization of for loops is a common situation.
—» OpenMP for directive
#pragma omp for
for (unsigned int i=0; i<1000; i++)
do_something (i) ;

If #pragma omp for is found outside parallel region:
— Directive has no effect.

If #pragma omp for is found inside parallel region:
— Distribute iterations over threads.

— Only allowed for “simple” loops where number of iterations can
be counted before the loop evaluation starts.

© Jens Teubner - Computer Architecture - Summer 2020 13

OpenMP for Directive

Example:
#pragma omp parallel
{
#pragma omp for
for (unsigned int i=0; i<1000; i++)
do_something (i) ;
X

More convenient shortcut:

#pragma omp parallel for
for (unsigned int i=0; i<1000; i++)
do_something (i) ;

© Jens Teubner - Computer Architecture - Summer 2020 14

Loop Scheduling

Scheduling of the following loop?

#pragma omp parallel for
for (unsigned int i=0; i<18; i++)
do_something (i) ;

Possible strategies: (l: Thread 1; l: Thread 2; [0: Thread 3)

TN [T TTTT satic
T [O [T] static, 2
TR [T [[aynanic, 2
T [BT [guided, 2

© Jens Teubner - Computer Architecture - Summer 2020 15

Loop Scheduling (cont.)

Loop scheduling can be controlled using the schedule clause:

#pragma omp parallel for schedule(dynamic,2)
for (unsigned int i=0; i<18; i++)
do_something (i) ;

m If no schedule clause is given, the compiler will use its
implementation-dependent default.

m The static policy may be helpful when you need to know which
thread processes which subset of the data.

m Use dynamic when you expect that execution time varies
between iterations.

© Jens Teubner - Computer Architecture - Summer 2020 16

Data Sharing

Shared Memory programming model:
m By default, all resources are shared between threads.
= Except:
m Program counter, register contents, etc. are private.

m Each thread has its private stack.
Locally created variables are thus private, too.

m Sharing can be controlled using clauses in the parallel/for
constructs.

m Private variables:

— Each thread gets its own copy.
—» These copies are not initialized by OpenMP.

m for construct — loop variable becomes private

© Jens Teubner - Computer Architecture - Summer 2020 17

Data Sharing Clauses

shared (list of variables)
— All threads read/write to same memory location.
— No (automatic) protection by OpenMP.
private (list of variables)
— Each thread gets an uninitialized copy of the variable.
— Only visible to the respective thread.
default (shared | private? | none)
— shared: All variables shared by default.
—» private: All variables private by default.
— none: Sharing mode for each variable must be explicitly declared.

More sharing modes:

B lastprivate, firstprivate, reduction, copyin; threadprivate, ...

20nly allowed in Fortran.
© Jens Teubner - Computer Architecture - Summer 2020 18

Synchronized Access to Shared Variables

Critical sections can be specified using the critical construct:

unsigned int aggregate=0;
#pragma omp parallel for
for (unsigned int i=0; i<100; i++)
{
unsigned int foo;
foo=compute_something (a[i]);
#pragma omp critical
{ aggregate+=foo; }
I

For some simple assignments, atomic can be used instead:

#pragma omp atomic

> ?
aggregate +=foo; Advantage?

© Jens Teubner - Computer Architecture - Summer 2020 19

reduction Clause

reduction helps to handle a common task:

#pragma omp parallel for reduction(+:sum)
for (unsigned int i=0; i<100; i++)
sum+=alil;

— Local variable (copied from shared during fork)

— Atjoin, local variables are combined and assigned to shared
variable.

— The reduction clause contains

an operator using which local variables are combined and
a variable name (as for the other data sharing clauses).

© Jens Teubner - Computer Architecture - Summer 2020 20

Barrier Synchronization

By default, parallel threads will synchronize at end of structured
block.

To synchronize in-between, use #pragma omp barrier:
— Threads will wait until all threads have reached the barrier.

#pragma omp parallel

{
do_this () ;
#pragma omp barrier
/* Execute only after all threads have
finished do_this () */
do_that () ;
}

© Jens Teubner - Computer Architecture - Summer 2020 21

nowait

(For performance reasons,) automatic barrier synchronization can
be skipped.

#pragma omp parallel
{
#pragma omp for nowait
for (unsigned int i=0; i<N; i++)
do_this (i);
/* Some threads will still be running do_this (),
while others will already be doing do_that () */
do_that () ;
}

© Jens Teubner - Computer Architecture - Summer 2020 22

The order in which threads execute and finish loop iterations is
unspecified.

The ordered clause can be used to control the order of some
operations within a loop.

#pragma omp for ordered schedule(dynamic)
for (unsigned int i=0; i<100; i++)
{
compress (files[il);
#pragma omp ordered
send (files[il);
}

— The compress () part will be executed in unspecified order.
— Order will be enforced for the send () call.

© Jens Teubner - Computer Architecture - Summer 2020 23

Work-Sharing Constructs

for is also called a work-sharing construct.

Another work-sharing construct is sections:

#pragma omp parallel sections
{
work_one () ;
#pragma omp section
{ work_two () ;
work_three (); }
#pragma omp section
work_four () ;
+

— Allwork_x calls will be executed exactly once.
— The tasks work_one (), work_two () + work_three (), and
work_four () may be run in parallel.

© Jens Teubner - Computer Architecture - Summer 2020 24

Running Code by Just One Thread

The directives
m #pragma omp single and
W #pragma omp master
can be used to enforce execution of code blocks by just one thread.
—» single — some thread will run it
— master — the master thread will run it

#pragma omp parallel
{

work_one () ;

#pragma omp single
{ work_two () ;
work_three (); }

work_four ();

© Jens Teubner - Computer Architecture - Summer 2020

MPI—Message Passing Interface

m De facto standard for communication protocol in large-scale
computing systems.

m Driven mostly by researchers (from academia and industry).
m Designed to be portable.

m Effort started in 1991, current version is 3.1 (June 2015)3.

m Several free implementations available.

Programming Model:
m MPI defines an API for message passing.

= Implementations available for numerous communication
substrates
— “Real networks”
— Shared memory

3This is a book of 868 pages!

© Jens Teubner - Computer Architecture - Summer 2020 26

MPI—Message Passing Interface

The core of MPI are the send and receive functions.

send (“buffer”, “dest”, tag)
— Send data (specified by “buffer”) to the machine given by “dest”.
— tag: message “type”

receive (“buffer”, “source”, tag)

—» Listen for messages of type tag, coming from “source”
—» Put received data into “buffer”

Two-sided communication:
m There must be matching processes that send and receive data.

© Jens Teubner - Computer Architecture - Summer 2020 27

More specifically:
MPI_Send (address, count, datatype, destination, tag, comm)
m Send count elements of type datatype, starting from memory
address address.
m destination is an integer, also called rank
—+ Processes in an MPI group are identified by integers 0...n.
m tag is also an integer, used for message matching.
m comm: communication context
— ldentifies a group of MPI processes.

© Jens Teubner - Computer Architecture - Summer 2020 28

receive API

MPI_Recv (address, maxcount, datatype, source, tag, comm,

status)
m The receive buffer at address must be large enough to hold

maxcount objects of type datatype.
m source is the rank of the node that we want to receive from
— or use wildcard MPI_ANY_ SOURCE
m status is a return parameter with information about actual size,
source, and tag.
Note:

— For both, send and receive, blocking and non-blocking
versions exist.

© Jens Teubner - Computer Architecture - Summer 2020 29

Data Types

All data in MPl is typed.

— Types are machine- and language-independent.

— This increases portability.

MPI base types:

MPI type Ctype

MPI_CHAR char

MPI_SHORT signed short int

MPI_INT signed int
signed long int

MPI_LONG

© Jens Teubner - Computer Architecture - Summer 2020

30

Derived Types

Derived datatype: sequence of basic data types.
—» Represented as a type map:

type map = {(typeg, dispy), ..., (type,_q,disp,_q)} -

Displacement disp;:

— Data elements need not be contiguous in memory.
S Why is this useful, even important?

The type signature is a list of type, without the displacements:

type signature = {type, ... type,_4} .

© Jens Teubner - Computer Architecture - Summer 2020 31

MPI “Hello World!”

#include <mpi.h>
int main (int argc, char **argv) {
char msg[40];
int myrank;
MPI_Status status;
MPI_Init (&argc, &argv) ;
MPI_Comm_rank (MPI_COMM_WORLD, &myrank) ;
if (myrank==0) {
strcpy (msg, "Hello, there");
MPI_Send (msg, strlen (msg)+1, MPI_CHAR, 1, 99, MPI_COMM_WORLD) ;
}
else if (myrank==1) {
MPI_Recv (msg, 40, MPI_CHAR, 0, 99, MPI_COMM_WORLD, &status) ;
printf ("received: %s\n", msg);
}
MPI_Finalize ();

© Jens Teubner - Computer Architecture - Summer 2020 32

Communication Patterns

API functions exist for typical patterns; e.g.:
m MPI Bcast ()
— Replicate data (broadcast) to a group of processes
= MPI_Reduce ()
— Collect data and reduce (~ OpenMP’s reduce)
m MPI_Scatter ()
— Distribute an array of data; one piece to every process
m MPI_Gather ()
— Opposite of MPI_Scatter ()
m MPI_Allgather (), MPI_Allreduce ()
—» MPI_Gather ()/MPI_Reduce (), plus MPI_Bcast ()
m MPI_Barrier ()
— Wait for all processes to reach the barrier.

© Jens Teubner - Computer Architecture - Summer 2020 33

	Programming for Parallelism

