
Computer Architecture

Jens Teubner, TU Dortmund
jens.teubner@cs.tu-dortmund.de

Summer 2020

© Jens Teubner · Computer Architecture · Summer 2020 1

Part I

Programming for Parallelism

© Jens Teubner · Computer Architecture · Summer 2020 2

Parallelism and its Implications

Moore’s Law⇝ parallelism↗

But:
Parallelism→ communication/synchronization
Amdahl’s Law:
→ Must keep sequential code parts really small.

Therefore:
Need efficient communication/synchronizationmechanisms
→ What are the ways to realize that?
Parallelize aggressively
→ Tool support?

© Jens Teubner · Computer Architecture · Summer 2020 3

Communication/Synchronization

SharedMemory:

interconnect

shared memory

CPU CPU CPU· · ·

Memory accessible by all
CPUs/threads.
Threads communicate
through memory.

Message Passing:

interconnect

CPU

local
memory

CPU

local
memory

CPU

local
memory

CPU

local
memory

Threads communicate
through messages.

© Jens Teubner · Computer Architecture · Summer 2020 4

Shared Memory↔Message Passing

� Pros/Cons of the twomechanisms?

© Jens Teubner · Computer Architecture · Summer 2020 5

OpenMP

OpenMP: An API for SharedMemoryMultiprocessing
Non-profit industry consortium
First version: October 1997 (for Fortran)
Latest version: November 2018 (version 5.0; Fortran/C/C++)
Supported by many modern compilers (e.g., gcc, LLVM, icc)

Idea:
Sharedmemory, parallelism through threads
Start from sequential code, introduce parallelism through
pragmas (#pragma in C/C++)

© Jens Teubner · Computer Architecture · Summer 2020 6

OpenMP Pragmas

Pragmas are directives for the compiler.

E.g., C/C++: (here: ignore warning for uninitialized variable)

#pragma diagnostic ignored "-Wuninitialized"
foo (b);

OpenMP pragmas begin with #pragma omp:

#pragma omp parallel for
for (unsigned int i = 0; i < N; i++)
a[i] = b[i] + k * c[i];

Pragmas are ignored if the compiler does not understand them.

© Jens Teubner · Computer Architecture · Summer 2020 7

“Hello World!” of OpenMP

#pragma omp parallel for
for (unsigned int i = 0; i < N; i++)
a[i] = b[i] + k * c[i];

Compiler will automatically assign loop iterations to parallel
threads.
→ Number of threads created is (by default) at the compiler’s

discretion.
Pragma is ignored by a non-OpenMP-aware compiler.
→ Above code will run just fine as sequential code.
Strategy:
→ Identify performance-critical loops.
→ Parallelize using OpenMP pragmas.

© Jens Teubner · Computer Architecture · Summer 2020 8

OpenMP Fork/Join Model

The OpenMP parallel clause declares a parallel region.

printf ("Initializing...\n");

#pragma omp parallel for
for (int i = 0; i < 1000; i++)

a[i] = random ();

printf ("Incrementing...\n");

#pragma omp parallel for
for (int i = 0; i < 1000; i++)

a[i] = a[i] + 1;

printf ("Done.\n");

serial

parallel

serial

parallel

serial

master thread

team of
threads

fork

join

⇝ pthread_create () / pthread_join ()

© Jens Teubner · Computer Architecture · Summer 2020 9

OpenMP parallel Directive

Actually…
Most #pragma omp directives apply to the following structured
block of code.

E.g., a C statement or a block inside { / }
Block must have single entry and single exit.

#pragma omp parallel only tells the master thread to fork and
create a team of threads
→ All threads will execute all of the code in the block.
→ Threads will share (almost1) all data.

� What will be the output of the following code?

#pragma omp parallel
printf ("Hello World!\n");

1Each thread will have its own program counter and stack.
© Jens Teubner · Computer Architecture · Summer 2020 10

Library Functions

Library functions help to interface with OpenMP.

#include <omp.h>
int
main (int argc, char **argv)
{
omp_set_num_threads (4);
#pragma omp parallel
{
unsigned int id = omp_get_thread_num ();
unsigned int cnt = omp_get_num_threads ();
printf ("I'm thread number %u (out of %u).\n",

id, cnt);
}

}

© Jens Teubner · Computer Architecture · Summer 2020 11

More About #pragma omp parallel

#pragma omp parallel:
Implicit barrier at the end of the structured block.
→ Execution continues only after all threads have joined.
Threads may or may not actually terminate at block end.
→ Thread creation is expensive.
→ Compiler might decide to rather put threads to sleep and

wake them up again later.

© Jens Teubner · Computer Architecture · Summer 2020 12

OpenMP for Directive

Parallelization of for loops is a common situation.
→ OpenMP for directive

#pragma omp for
for (unsigned int i = 0; i < 1000; i++)

do_something (i);

If #pragma omp for is found outside parallel region:
→ Directive has no effect.

If #pragma omp for is found inside parallel region:
→ Distribute iterations over threads.
→ Only allowed for “simple” loops where number of iterations can

be counted before the loop evaluation starts.

© Jens Teubner · Computer Architecture · Summer 2020 13

OpenMP for Directive

Example:

#pragma omp parallel
{

#pragma omp for
for (unsigned int i = 0; i < 1000; i++)

do_something (i);
}

More convenient shortcut:

#pragma omp parallel for
for (unsigned int i = 0; i < 1000; i++)

do_something (i);

© Jens Teubner · Computer Architecture · Summer 2020 14

Loop Scheduling

Scheduling of the following loop?

#pragma omp parallel for
for (unsigned int i = 0; i < 18; i++)

do_something (i);

Possible strategies: (: Thread 1; : Thread 2; : Thread 3)

static

static, 2

dynamic, 2

guided, 2

© Jens Teubner · Computer Architecture · Summer 2020 15

Loop Scheduling (cont.)

Loop scheduling can be controlled using the schedule clause:

#pragma omp parallel for schedule(dynamic,2)
for (unsigned int i = 0; i < 18; i++)

do_something (i);

If no schedule clause is given, the compiler will use its
implementation-dependent default.
The static policy may be helpful when you need to know which
thread processes which subset of the data.
Use dynamicwhen you expect that execution time varies
between iterations.

© Jens Teubner · Computer Architecture · Summer 2020 16

Data Sharing

SharedMemory programming model:
By default, all resources are shared between threads.
Except:

Program counter, register contents, etc. are private.
Each thread has its private stack.
Locally created variables are thus private, too.

Sharing can be controlled using clauses in the parallel/for
constructs.
Private variables:
→ Each thread gets its own copy.
→ These copies are not initialized by OpenMP.
for construct→ loop variable becomes private

© Jens Teubner · Computer Architecture · Summer 2020 17

Data Sharing Clauses

shared (list of variables)
→ All threads read/write to samememory location.
→ No (automatic) protection by OpenMP.
private (list of variables)
→ Each thread gets an uninitialized copy of the variable.
→ Only visible to the respective thread.
default (shared | private2 | none)
→ shared: All variables shared by default.
→ private: All variables private by default.
→ none: Sharing mode for each variable must be explicitly declared.

More sharing modes:
lastprivate, firstprivate, reduction, copyin; threadprivate, …

2Only allowed in Fortran.
© Jens Teubner · Computer Architecture · Summer 2020 18

Synchronized Access to Shared Variables

Critical sections can be specified using the critical construct:

unsigned int aggregate = 0;

#pragma omp parallel for
for (unsigned int i = 0; i < 100; i++)
{

unsigned int foo;
foo = compute_something (a[i]);

#pragma omp critical
{ aggregate += foo; }

}

For some simple assignments, atomic can be used instead:

#pragma omp atomic
aggregate += foo; � Advantage?

© Jens Teubner · Computer Architecture · Summer 2020 19

reduction Clause

reduction helps to handle a common task:

#pragma omp parallel for reduction(+:sum)
for (unsigned int i = 0; i < 100; i++)

sum += a[i];

→ Local variable (copied from shared during fork)
→ At join, local variables are combined and assigned to shared

variable.
→ The reduction clause contains

(a) an operator using which local variables are combined and
(b) a variable name (as for the other data sharing clauses).

© Jens Teubner · Computer Architecture · Summer 2020 20

Barrier Synchronization

By default, parallel threads will synchronize at end of structured
block.

To synchronize in-between, use #pragma omp barrier:
→ Threads will wait until all threads have reached the barrier.

#pragma omp parallel
{

do_this ();
#pragma omp barrier
/* Execute only after all threads have

finished do_this () */
do_that ();

}

© Jens Teubner · Computer Architecture · Summer 2020 21

nowait

(For performance reasons,) automatic barrier synchronization can
be skipped.

#pragma omp parallel
{

#pragma omp for nowait
for (unsigned int i = 0; i < N; i++)

do_this (i);
/* Some threads will still be running do_this (),

while others will already be doing do_that () */
do_that ();

}

© Jens Teubner · Computer Architecture · Summer 2020 22

Ordering

The order in which threads execute and finish loop iterations is
unspecified.

The ordered clause can be used to control the order of some
operations within a loop.

#pragma omp for ordered schedule(dynamic)
for (unsigned int i = 0; i < 100; i++)
{

compress (files[i]);

#pragma omp ordered
send (files[i]);

}

→ The compress () part will be executed in unspecified order.
→ Orderwill be enforced for the send () call.

© Jens Teubner · Computer Architecture · Summer 2020 23

Work-Sharing Constructs

for is also called awork-sharing construct.

Another work-sharing construct is sections:

#pragma omp parallel sections
{

work_one ();
#pragma omp section
{ work_two ();

work_three (); }
#pragma omp section
work_four ();

}

→ All work_x calls will be executed exactly once.
→ The tasks work_one (), work_two ()+ work_three (), and

work_four ()may be run in parallel.
© Jens Teubner · Computer Architecture · Summer 2020 24

Running Code by Just One Thread

The directives
#pragma omp single and
#pragma omp master

can be used to enforce execution of code blocks by just one thread.
→ single→ some thread will run it
→ master→ themaster thread will run it

#pragma omp parallel
{

work_one ();
#pragma omp single
{ work_two ();

work_three (); }
work_four ();

}

© Jens Teubner · Computer Architecture · Summer 2020 25

MPI—Message Passing Interface

De facto standard for communication protocol in large-scale
computing systems.
Driven mostly by researchers (from academia and industry).
Designed to be portable.
Effort started in 1991, current version is 3.1 (June 2015)3.
Several free implementations available.

ProgrammingModel:
MPI defines an API formessage passing.
Implementations available for numerous communication
substrates
→ “Real networks”
→ Shared memory

3This is a book of 868 pages!
© Jens Teubner · Computer Architecture · Summer 2020 26

MPI—Message Passing Interface

The core of MPI are the send and receive functions.

send (“buffer”, “dest”, tag)
→ Send data (specified by “buffer”) to themachine given by “dest”.
→ tag: message “type”

receive (“buffer”, “source”, tag)
→ Listen for messages of type tag, coming from “source”
→ Put received data into “buffer”

Two-sided communication:
There must be matching processes that send and receive data.

© Jens Teubner · Computer Architecture · Summer 2020 27

send API

More specifically:

MPI_Send (address, count, datatype, destination, tag, comm)
Send count elements of type datatype, starting frommemory
address address.
destination is an integer, also called rank
→ Processes in an MPI group are identified by integers 0 . . .n.
tag is also an integer, used for message matching.
comm: communication context
→ Identifies a group of MPI processes.

© Jens Teubner · Computer Architecture · Summer 2020 28

receive API

MPI_Recv (address,maxcount, datatype, source, tag, comm,
status)

The receive buffer at addressmust be large enough to hold
maxcount objects of type datatype.
source is the rank of the node that we want to receive from
→ or use wildcard MPI_ANY_SOURCE
status is a return parameter with information about actual size,
source, and tag.

Note:
→ For both, send and receive, blocking and non-blocking

versions exist.

© Jens Teubner · Computer Architecture · Summer 2020 29

Data Types

All data in MPI is typed.
→ Types aremachine- and language-independent.
→ This increases portability.

MPI base types:

MPI type C type

MPI_CHAR char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int
...

...

© Jens Teubner · Computer Architecture · Summer 2020 30

Derived Types

Derived datatype: sequence of basic data types.
→ Represented as a typemap:

type map =
{
⟨type0,disp0⟩, . . . , ⟨typen−1,dispn−1⟩

}
.

Displacement dispi:
→ Data elements need not be contiguous in memory.
� Why is this useful, even important?

The type signature is a list of type, without the displacements:

type signature =
{
type0, . . . , typen−1

}
.

© Jens Teubner · Computer Architecture · Summer 2020 31

MPI “Hello World!”

#include <mpi.h>
int main (int argc, char **argv) {

char msg[40];
int myrank;
MPI_Status status;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &myrank);
if (myrank == 0) {

strcpy (msg, "Hello, there");
MPI_Send (msg, strlen (msg)+1, MPI_CHAR, 1, 99, MPI_COMM_WORLD);

}
else if (myrank == 1) {

MPI_Recv (msg, 40, MPI_CHAR, 0, 99, MPI_COMM_WORLD, &status);
printf ("received: %s\n", msg);

}
MPI_Finalize ();

}

© Jens Teubner · Computer Architecture · Summer 2020 32

Communication Patterns

API functions exist for typical patterns; e.g.:
MPI_Bcast ()
→ Replicate data (broadcast) to a group of processes
MPI_Reduce ()
→ Collect data and reduce (⇝ OpenMP’s reduce)
MPI_Scatter ()
→ Distribute an array of data; one piece to every process
MPI_Gather ()
→ Opposite of MPI_Scatter ()
MPI_Allgather (), MPI_Allreduce ()
→ MPI_Gather ()/MPI_Reduce (), plus MPI_Bcast ()
MPI_Barrier ()
→ Wait for all processes to reach the barrier.

© Jens Teubner · Computer Architecture · Summer 2020 33

	Programming for Parallelism

