

Rechnerstrukturen WS 2011/12

- Boolesche Funktionen und Schaltnetze
 - ▶ Repräsentation boolescher Funktionen mit OBDDs (Wiederholung)
 - Synthese von OBDDs für boolesche Funktionen
 - Schaltnetze

Hinweis: Folien teilweise a. d. Basis von Materialien von Thomas Jansen

29. August 2011

Ordered Binary Decision Diagrams (OBDDs)

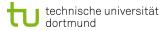
... zur Darstellungen boolescher Funktionen $f: B^n \to B$

erster Schritt Festlegen einer Variablenordnung
$$\pi$$
 (z. B. $\pi = (x_3, x_1, x_2, x_4)$)

dann Baue $\pi OBDD$ aus Knoten oder und Kanten van nach folgenden Regeln:

- Knoten mit Variablen, 0 oder 1 markiert
- Kanten mit 0 oder 1 markiert
- Variablen-Knoten mit je einer ausgehenden 0- und 1-Kante
- Konstanten-Knoten ohne ausgehende Kante
- genau ein Knoten ohne eingehende Kante

 $\pi_{\text{RechnerstruktUren}}$ nten zwischen Variablenknoten beachten π



*X*3

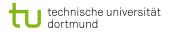
π OBDD – Ein Beispiel

Variablenordnung $\pi=(x_1,x_2,x_3)$ Beispiel Auswertung f(1,0,1) $x_1=1,\ x_2=0,\ x_3=1$ f(1,0,1)=1

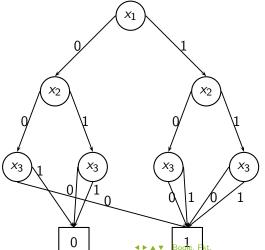
*X*3

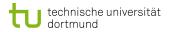
 X_3

*X*3

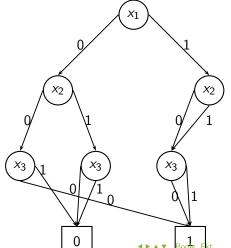


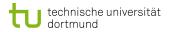
gleichartige Senken verschmelzen



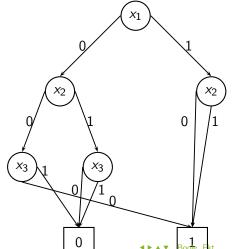


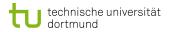
gleichartige Knoten verschmelzen



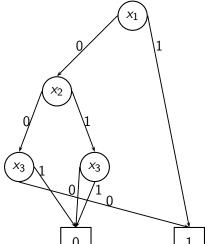


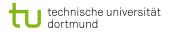
Knoten ohne Einfluss eliminieren



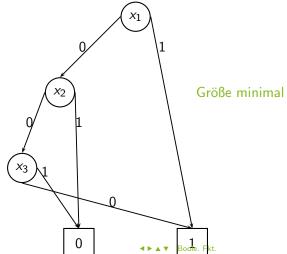


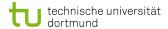
Knoten ohne Einfluss eliminieren





Knoten ohne Einfluss eliminieren





OBDD-Reduzierung

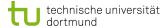
Satz 9

Die erschöpfende Anwendung der

- Verschmelzungsregel "Knoten mit gleicher Markierung und gleichen Nachfolgern können verschmolzen werden" und
- Eliminationsregel "Ein Knoten mit gleichem Null- und Einsnachfolger kann entfernt werden"

in beliebiger Reihenfolge führt zum reduzierten π OBDD.

reduziert = minimale Größe und eindeutig



Erzeugung von OBDDs

Wie kommt man zu einem $\pi OBDD$? für $f: B^n \to B$?

Kommt darauf an, wie f gegeben ist...

Welche Formate kennen wir?

- ► Funktionstabelle
- Wertevektor
- boolescher Ausdruck
- Normalformen
- informale Beschreibung
- OBDD

Erzeugung von OBDDs

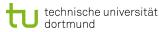
Man will nicht irgendein π OBDD, man will das reduzierte π OBDD.

Welchen Weg kennen wir, das zu bekommen?

- 1. Erstelle vollständigen binären Baum über den Variablen, schreibe passende Funktionswerte an die Senken.
- 2. Reduziere.

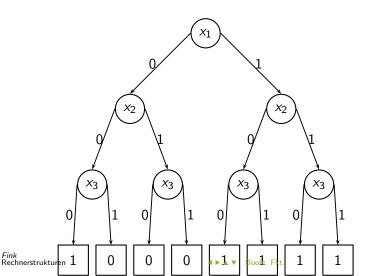
Ist das ein vernünftiges Vorgehen?

Nur, wenn vollständiger Binärbaum nicht wesentlich größer als Eingabe und reduziertes $\pi OBDD!$



π OBDD aus vollständigem Binärbaum

Variablenordnung $\pi = (x_1, x_2, x_3)$



Größe von Repräsentationen boolescher Funktionen

Wie groß ist ein $\pi OBDD$ für f, das vollständiger Binärbaum ist?

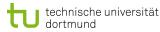
Beobachtung *i*-te Ebene
$$2^{i-1}$$
 Knoten also Senken $+\sum_{i=1}^{n} 2^{i-1} = \text{Senken} + \sum_{i=0}^{n-1} 2^i = 2^n - 1 + \text{Senken}$

Für welche Eingabeformate ist das also akzeptabel?

sicher nur für Wertetabelle und Wertevektor

also Vorgehen fast immer nicht akzeptabel

Erkenntnis Wir brauchen eine Alternative.



Schrittweise OBDD-Konstruktion

Idee baue $\pi OBDD$ schrittweise aus "einfachsten" $\pi OBDD$ s zusammen

klar π OBDD für Nullfunktion

0

klar π OBDD für Einsfunktion

1

klar π OBDD für x_i

klar π OBDD für $\neg f$ aus π OBDD für f

OBDD-Synthese

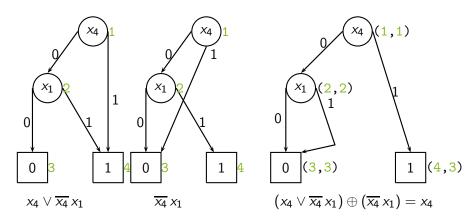
$$\begin{array}{c} \pi\mathsf{OBDD} \ \mathit{G}_1 \ \mathsf{f\"{u}r} \ \mathit{f}_1 \colon \mathit{B}^n \to \mathit{B} \\ \pi\mathsf{OBDD} \ \mathit{G}_2 \ \mathsf{f\"{u}r} \ \mathit{f}_2 \colon \mathit{B}^n \to \mathit{B} \end{array} \right\} \quad \rightsquigarrow \quad \pi\mathsf{OBDD} \ \mathit{G} \\ \quad \mathsf{f\"{u}r} \ \mathit{f}_1 \otimes \mathit{f}_2 \\ \end{array}$$

für beliebige boolesche Funktion $\otimes : B^2 \to B$

Wichtig gleiche Variablenordnung π

Idee Durchlaufe beide $\pi OBDDs$ parallel.

Ein einfaches Beispiel



Variablenordnung x_4 , x_2 , x_1 , x_3

boolesche Verknüpfung ⊕

π **OBDD-Synthese**

$$\begin{array}{c} \pi\mathsf{OBDD} \ \mathit{G}_1 \ \mathsf{für} \ \mathit{f}_1 \colon \mathit{B}^n \to \mathit{B} \\ \pi\mathsf{OBDD} \ \mathit{G}_2 \ \mathsf{für} \ \mathit{f}_2 \colon \mathit{B}^n \to \mathit{B} \end{array} \right\} \quad \rightsquigarrow \quad \pi\mathsf{OBDD} \ \mathit{G} \\ \quad \mathsf{für} \ \mathit{f}_1 \otimes \mathit{f}_2 \\ \end{array}$$

für beliebige boolesche Funktion $\otimes : B^2 \to B$

$$G_1$$
 hat Knoten $v_1, v_2, \ldots, v_{s_1}$.

$$G_2$$
 hat Knoten $w_1, w_2, \ldots, w_{s_2}$.

Wir starten in Wurzeln v_1 und w_1 .

Mit dem aktuellen Knotenpaar machen wir einen Synthese-Schritt.

Ergebnis des Synthese-Schritts: 1 Knoten des Ergebnis- π OBDD.

Ein Synthese-Schritt

aktuelle Knoten v_i, w_i

$$v_i$$
 hat Markierung $m_i \in \{x_1, x_2, \dots, x_n, 0, 1\}$ w_j hat Markierung $m_j \in \{x_1, x_2, \dots, x_n, 0, 1\}$

Falls
$$m_i \notin \{0,1\}$$
 $v_{i,0}$ ist Nullnachfolger von v_i $v_{i,1}$ ist Einsnachfolger von v_i

Falls
$$m_j \notin \{0,1\}$$
 $w_{j,0}$ ist Nullnachfolger von w_j $w_{j,1}$ ist Einsnachfolger von w_j

Wir unterscheiden mehrere Fälle nach den Markierungen m_i und m_i .

1. Fall: gleiche Variable

$$m_i = m_i = x_k$$

Erzeuge Knoten (v_i, w_j) mit Markierung x_k .

Nullnachfolger der von Synthese-Schritt $(v_{i,0}, w_{j,0})$ erzeugte Knoten

Einsnachfolger der von Synthese-Schritt $(v_{i,1}, w_{j,1})$ erzeugte Knoten

2. Fall: verschiedene Variable

$$m_i = x_k$$
, $m_j = x_{k'}$, x_k vor $x_{k'}$

Erzeuge Knoten (v_i, w_i) mit Markierung x_k .

Nullnachfolger der von Synthese-Schritt $(v_{i,0}, w_i)$

erzeugte Knoten

der von Synthese-Schritt($v_{i,1}, w_i$) Einsnachfolger

erzeugte Knoten

3. Fall: verschiedene Variable

$$m_i = x_k$$
, $m_j = x_{k'}$, x_k hinter $x_{k'}$

Erzeuge Knoten (v_i, w_j) mit Markierung $x_{k'}$.

Nullnachfolger der von Synthese-Schritt $(v_i, w_{j,0})$

erzeugte Knoten

Einsnachfolger der von Synthese-Schritt $(v_i, w_{j,1})$ erzeugte Knoten

4. Fall: eine Variable, eine Senke

$$m_i = x_k, m_j \in \{0, 1\}$$

Idee Konstante liegen in der Variablenordnung ganz hinten

Erzeuge Knoten (v_i, w_j) mit Markierung x_k .

Nullnachfolger der von Synthese-Schritt $(v_{i,0}, w_j)$ erzeugte Knoten

Einsnachfolger der von Synthese-Schritt $(v_{i,1}, w_j)$ erzeugte Knoten

5. Fall: eine Variable. eine Senke

$$m_i \in \{0,1\}, m_j = x_k$$

Erzeuge Knoten (v_i, w_i) mit Markierung x_k .

der von Synthese-Schritt($v_i, w_{i,0}$) Nullnachfolger

erzeugte Knoten

Einsnachfolger der von Synthese-Schritt $(v_i, w_{i,1})$ erzeugte Knoten

6. Fall: zwei Senken

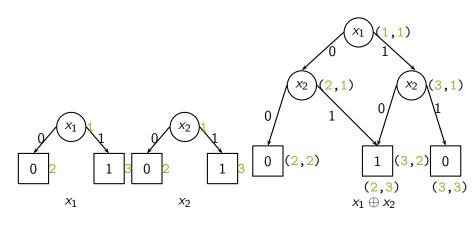
$$m_i \in \{0,1\}, m_j \in \{0,1\}$$

Erzeuge mit $m_i \otimes m_i$ markierte Senke.

Zusammenfassung zum Merken

- 1. Erzeuge Knoten mit "weiter vorne liegender" Markierung.
- 2. Wenn beide Knoten mit gleicher Variabler markiert, aus beiden Knoten fortschreiten.
- 3. Bei ungleicher Variablenmarkierung, nur aus "weiter vorne liegenden" Knoten fortschreiten, im anderen Knoten warten.
- 4. Abbruch, wenn in beiden Knoten Senken erreicht.

Noch ein Beispiel



Variablenordnung x_1 , x_2

boolesche Verknüpfung \oplus

Größenzuwachs bei Synthese

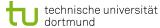
Wie groß wird das neue $\pi OBDD$?

Beobachtung für je zwei Knoten höchstens ein neuer Knoten

also aus $\pi OBDDs$ mit s_1 und s_2 Knoten neues $\pi OBDD$ mit $\leq s_1 \cdot s_2$ Knoten

Beobachtungen

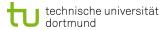
- Ergebnis- π OBDD in der Regel nicht reduziert
- ▶ Größe $s_1 \cdot s_2$ manchmal erforderlich (ohne Senken)



Operationen auf OBDDs

Erinnerung OBDDs unterstützen viele wichtige Operationen

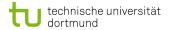
- Reduzierung√
- 2. Synthese √
- 3. Auswertung√
- 4. Konstantsetzung $x_i = c \sqrt{}$
 - OBDD durchlaufen
 - Vorgänger jedes x_i-Knotens auf c-Nachfolger des x_i-Knotens umsetzen
- Gleichheitstest √
 - ▶ Voraussetzung gleiche Variablenordnung π
 - ightharpoonup beide reduzierte $\pi OBDDs$ ab der Quelle parallel durchlaufen
 - bei ungleicher Markierung ungleich
 - rekursiv für Null- und Einsnachfolger



Operationen auf OBDDs (Fortsetzung)

Erinnerung OBDDs unterstützen viele wichtige Operationen

- 6. Null-/Einseingabe finden√
 - mit OBDD-Durchlauf Vorgänger-Zeiger berechnen
 - von passender Senke Aufstieg bis zur Quelle, dabei Belegung merken
- 7. Null-/Einseingaben zählen√
 - ▶ Beobachtung über Quelle laufen alle 2ⁿ Eingaben
 - ▶ Beobachtung jede Knoten halbiert Anzahl Eingaben und leitet Hälften jeweils über 0- und 1-Nachfolger
 - ▶ OBDD von der Quelle durchlaufen
 - an jedem Knoten Anzahl Eingaben notieren
 - bei mehrfach erreichten Knoten Anzahlen addieren
 - ▶ Summe an der passenden Senke ablesen (für reduziertes π OBDD)



Schaltnetze

bis jetzt Diskussion (theoretischer) Grundlagen

Wo bleibt die Hardware?

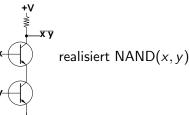
kommt jetzt aber immer noch abstrakt

Wunsch Realisierung boolescher Funktionen in Hardware

klar brauchen Realisierung einer funktional-vollständigen Menge boolescher Funktionen

Erinnerung Realisierung von NAND reicht aus

Beobachtung



Gatter

Realisierung mit Transistoren ... falsche Ebene!

Grundlage hier einfache logische Bausteine (Gatter)

Bausteine für Negation, Konjunktion, Disjunktion, ...

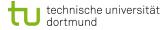
Spielregeln

- Eingänge mit Variablen oder Konstanten belegt
- nur Verbindungen von Ausgängen zu Eingängen
- keine Kreise

Ergebnis heißt Schaltnetz

Symbole für Gatter (1)

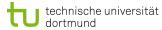
Funktion	DIN 40700	DIN EN 60617	IEEE
$y = \overline{x}$	x—————————————————————————————————————	xy	х
$y = x_1 \wedge x_2 \wedge x_3$	x ₁ ————————————————————————————————————	х ₁ ————	x ₁ ————————————————————————————————————
$y = \overline{x_1 \wedge x_2 \wedge x_3}$	X ₁ ————————————————————————————————————	х ₁ х ₂ х ₃ & — у	x ₁ ————————————————————————————————————



Symbole für Gatter (2)

Funktion	DIN 40700	DIN EN 60617	IEEE
$y = x_1 \lor x_2 \lor x_3$	х ₁ х ₂ х ₃	X ₁ ————————————————————————————————————	x ₁ ————————————————————————————————————
$y = \overline{x_1 \lor x_2 \lor x_3}$	x ₁	x ₁ ——y x ₂ — ≥1 →—y	x ₁ ————————————————————————————————————
$y = x_1 \oplus x_2$	х ₁ —у	x ₁	x ₁ ————————————————————————————————————
$y=\overline{x_1}\overline{x_2}ee x_1x_2$	x ₁	x ₁ =y	x ₁ ————————————————————————————————————

Fink Rech



Schaltnetz-Bewertung

Und jetzt beliebige Schaltnetze entwerfen?
mindestens relevant Größe und Geschwindigkeit

- ► Schaltnetzgröße (= Anzahl der Gatter) wegen Kosten, Stromverbrauch, Verlustleistung, Zuverlässigkeit, ...
- Schaltnetztiefe (= Länge längster Weg Eingang → Ausgang) wegen Schaltgeschwindigkeit
- ► Fan-In (= max. Anzahl eingehender Kanten) wegen Realisierungsaufwand
- ► Fan-Out (= max. Anzahl ausgehender Kanten) wegen Realisierungsaufwand
- Language Lan

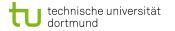
Was wir schon wissen

Jede boolesche Funktion kann mit einem $\{\land,\lor,\neg\}$ - bzw. einem $\{\oplus,\land,\neg\}$ -Schaltnetz der Tiefe 3 realisiert werden.

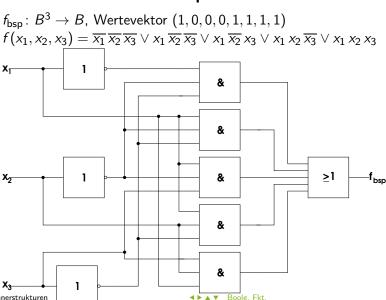
Beweis DNF, KNF oder RNF direkt umsetzen

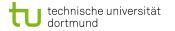
Probleme

- Fan-In des tiefsten Gatters kann extrem groß sein
- Größe des Schaltnetzes oft inakzeptabel

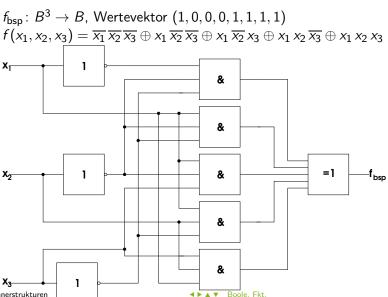


Beispiel: DNF



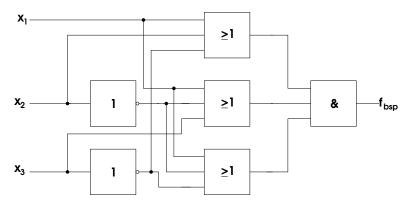


Beispiel: RNF



Beispiel: KNF

$$f_{\mathsf{bsp}} \colon B^3 \to B$$
, Wertevektor $(1,0,0,0,1,1,1,1)$
 $f(x_1,x_2,x_3) = (x_1 \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$



Multiplexer

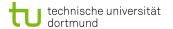
eine weitere Beispielfunktion ...

aber eine in der Praxis sehr wichtige diesmal!

$$MUX_d(y_1, y_2, \dots, y_d, x_0, x_1, \dots, x_{2^d-1}) = x_{(y_1 y_2 \dots y_d)_2}$$

Beispiel

y_1	<i>y</i> ₂	<i>y</i> ₃	$MUX_3(y_1, y_2, y_3, x_0, x_1, \dots, x_7)$
0	0	0	x_0
0	0	1	x_1
0	1	0	x_2
0	1	1	<i>x</i> ₃
1	0	0	x_4
1	0	1	<i>x</i> ₅
1	1	0	<i>x</i> ₆
1	1	1	X ₇



Multiplexer

Warum ist MUX in der Praxis wichtig?

direkte Speicheradressierung

OBDD-Realisierung

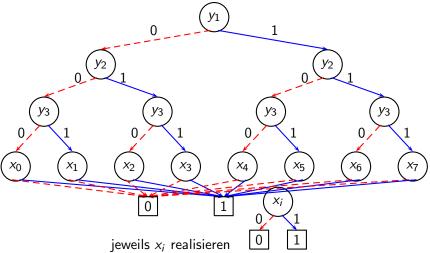
Welche Variablenordnung π ?

wohl sinnvoll Adressvariablen zuerst

denn Wir müssen uns sonst alle Datenvariablen merken!

OBDD-Realisierung MUX₃

Variablenordnung $\pi = (y_1, y_2, y_3, x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7)$



Einfluss von π auf OBDD-Größe

Beispiel MUX_d

gesehen Variablenordnung $\pi = (y_1, y_2, \dots, y_d, x_0, x_1, \dots, x_{2^d-1})$

Größe des reduzierten $\pi OBDDs$?

oben vollständiger Binärbaum über y_1, y_2, \dots, y_d

 $2^0 + 2^1 + \dots + 2^{d-1} = 2^d - 1$ Knoten

unten je ein x_i -Knoten und zwei Senken

 $2^d + 2$ Knoten

zusammen $2^d - 1 + 2^d + 2 = 2^{d+1} + 1$ Knoten

Einfluss von π auf OBDD-Größe

Beispiel MUX_d

gesehen Variablenordnung $\pi = (y_1, y_2, \dots, y_d, x_0, x_1, \dots, x_{2^d-1})$

Größe des reduzierten $\pi \mathsf{OBDD}\ 2^{d+1} + 1$

Betrachte Variablenordnung $\pi = (x_0, x_1, \dots, x_{2^d-1}, y_1, y_2, \dots, y_d)$

Größe des reduzierten $\pi OBDDs$?

Behauptung $\forall x \neq x' \in \{0,1\}^{2^d}$: nach Lesen von x bzw. x'

verschiedene Knoten erreicht

Beweis durch Widerspruch

Widerspruchsbeweis zur OBDD-Größe

Behauptung $\forall x \neq x' \in \{0,1\}^{2^d}$: nach Lesen von x bzw. x' verschiedene Knoten erreicht

Annahme für $x \neq x' \in \{0,1\}$ gleiche Knoten v erreicht

Betrachte $i = \min\{j \mid x_j \neq x_i'\}$

Betrachte $y_1, y_2, \dots, y_d \text{ mit } (y_1 y_2 \dots y_d)_2 = i$

Beobachtung
$$MUX_d(y_1, y_2, ..., y_d, x) = x_i$$

$$\neq x_i' = \mathsf{MUX}_d(y_1, y_2, \dots, y_d, x')$$

aber OBDD berechnet gleichen Wert, da gleicher Knoten erreicht

also minimales OBDD für
$$\pi = (x_0, x_1, \dots, x_{2^d-1}, y_1, y_2, \dots, y_d)$$

hat Größe mindestens $2^{2^d} + 2^d - 1$

$$egin{array}{c|c|c|c} d & {\sf min.\ OBDD-Gr\"oße}\ \pi = (d,x) & {\sf min.\ OBDD-Gr\"oße}\ \pi = (x,d) \ 2 & 9 & \geq 19 \ \end{array}$$

 $egin{array}{c|c} 4 & 33 & \geq 65\,551 \ & & & & & \geq 1,1579\cdot 10^{77} \ & & & & & \geq 1,1579\cdot 10^{77} \ \end{array}$ Boole. Fkt.

Schaltnetz für MUX₃

