|]
'tU technische universitat 'h ~ fakultat fur informatik
dortmund

informatik 12

Communicating finite state machines

Peter Marwedel
TU Dortmund
Informatik 12

© Springer, 2010

20124 10 H 24 H

These slides use Microsoft clip arts.
Microsoft copyright restrictions apply.

Models of computation
considered in this course

Communication/ Shared Message passing

local computations |memory Synchronous | Asynchronous

Undefined Plain text, use cases

components | (Message) sequence charts

Communicating finite |StateCharts SDL

state machines

Data flow (Not useful) Kahn networks,
SDF

Petri nets C/E nets, P/T nets, ...

Discrete event (DE) |VHDL, Verilog, | Only experimental systems, e.g.

model SystemC, ... distributed DE in Ptolemy

Von Neumann model |C, C++, Java C, C++, Java with libraries

CSP, ADA |
technische universitat ~ fakultat far © P.Marwedel,

dortmund informatik Informatik 12, 2012 - 2-

StateCharts

Classical automata not useful for complex systems
(complex graphs cannot be understood by humans).

< Introduction of hierarchy = StateCharts [Harel, 1987]
StateChart = the only unused combination of

Jlow* or ,state” with ,diagram” or ,chart"

Used here as a (prominent) example of a
model of computation based on shared
memory communication.
appropriate only for local
(non-distributed) systems

technische universitat " fakultat for © P.Marwedel, 3
dortmund _ informatik Informatik 12, 2012 B B

Introducing hierarchy

FSM will be in exactly
one of the substates of S
If SIs active

(eitherin AorinBor..)

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

Definitions

Current states of FSMs are also called active states.

States which are not composed of other states are called
basic states.

States containing other states are called super-states.

Super-states S are called OR-super-states, if exactly one
of the sub-states of S is active whenever S is active.

S
{ f/,/\ }‘ superstate
g

OZOR OO0
B C D~
\ \j‘\\ \

" substates

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

Default state mechanism

Try to hide internal
structure from outside
world!

& Default state - _

-~
-~
~
~
~

Filled circle N
Indicates sub-state :
entered whenever
super-state Is entered.

Not a state by itself!

technische universitat " fakultat fur
dortmund informatik

© P.Marwedel, 6
Informatik 12, 2012 B B

History mechanism

k
m
\ (behavior different from last slide)

For input m, S enters the state it was in before S was left
(can be A, B, C, D, or E).

If S is entered for the first time, the default mechanism applies.

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

Combining history and default state mechanism

’\@/\

OaOn00020)

N
T
ﬁ same meaning
S
4 N
T T
- \

b
k
Mé History and default mechanisms

can be used hierarchically.

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

Concurrency

Convenient ways of describing concurrency req.
AND-super-states: FSM is in all (immediate) sub-states of a
super-state;

Exam P le: answering—machine

on

key—monitoring (excl. on/off))

key pressed
@

i done

- ine—monitoring

ring
L M,@

hangup
i (caller)

1 e

key—on

\ J

technische universitat " fakultat for © P.Marwedel, 9
dortmund informatik Informatik 12, 2012 B B

Entering and leaving AND-super-states

answering—machine

/’
on
" o | o i
line—monitoring | key—monitoring
S | @ S
I
"7 | > 2 >
ring | key pressed
I
| (excl. on/off Kproc
: I
I
hangup | done
1 (caller) :
I
N |
key—off
\e

Line-monitoring and key-monitoring are entered and left, when service
switch is operated.

technische universitat " fakultat fur © P.Marwedel,
dortmund _ informatik Informatik 12, 2012

Types of states

In StateCharts, states are either
basic states, or
AND-super-states, or

OR-super-states.

technische universitat " fakultat fur
dortmund informatik

© P.Marwedel,
Informatik 12, 2012

- 11 -

Timers

Since time needs to be modeled in embedded &
cyber-physical systems, timers need to be modeled.
In StateCharts, special edges can be used for timeouts.

frimeout

If event a does not happen while the system is in the left
state for 20 ms, a timeout will take place.

technische universitat " fakultat fur © P.Marwedel, 12
dortmund informatik Informatik 12, 2012 B B

Using timers in an answering machine

llﬁ off

l[imeout

tzmeout
%.
recard) silent

return

(callee)

dead

|

b7

tu

technische universitat
dortmund

" fakultat fur
informatik

© P.Marwedel,
Informatik 12, 2012

- 13-

General form of edge labels

Q event [condition] / reaction Q
Events:

Exist only until the next evaluation of the model
Can be either internally or externally generated
Conditions:
Refer to values of variables that keep their value until
they are reassigned
Reactions:
Can either be assignments for variables
or creation of events
Example:
service-off [not in Lproc] / service:=0

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 14 -

The StateCharts simulation phases
(StateMate Semantics)

How are edge labels evaluated?

Three phases:
Effect of external changes on events and conditions is
evaluated,
The set of transitions to be made in the current step
and right hand sides of assignments are computed,
Transitions become effective, variables obtain new
values.

Separation into phases 2 and 3 enables a resulting unique

(“determinate”) behavior.

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 15 -

Example

swap

\ fa:=1; b:= 0

-

e/a:=b e/b:=a

L
In phase 2, variables a and b are assigned to temporary

variables:

P

a’:=b,b" =g
In phase 3, these are assigned to a and b.
a:=a,b:=Db’;

As a result, variables a and b are swapped.

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 16 -

Example (2)

swap

e/a:=b

.

\

—

e/b:=a

fa:=1;b:= 0

P

In a single phase environment, executing the left state first
would assign the old value of b (=0) to a and b:

a:=0,b:=0;

Executing the right state first would assign the old value of a

(=1) to a and b.

The result would depend on the execution order.

technische universitat
dortmund

b:=1a:=1;

" fakultat fur
informatik

© P.Marwedel,
Informatik 12, 2012

- 17 -

Reflects model of clocked hardware

clock '[_

> >
1 r 1 T
Ol a 9 b

—=1D =

In an actual clocked (synchronous) hardware system,
both registers would be swapped as well.

Same separation into phases found in other languages
as well, especially those that are intended to model

hardware.

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 18-

Steps

Execution of a StateMate model consists of
a sequence of (status, step) pairs

Status Step Status Step Status Step Status
& --------= O m—————— = > mmm————— 2 =

Status= values of all variables + set of events + current time
Step = execution of the three phases (StateMate semantics)

M’ Other implementations of
phase 2 StateCharts do not have these 3
| phases (and hence could lead to

Phase 3 different results)!

technische universitat " fakultat fur © P.Marwedel, 19
dortmund informatik Informatik 12, 2012 B B

Other semantics

Several other specification languages for
hierarchical state machines (UML, dave, ...) do
not include the three simulation phases.

These correspond more to a SW point of view
with no synchronous clocks.

Some systems allow turning the multi-phased
simulation on and off.

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 20 -

.\ ———
.G”'vuv
v’<V R »-k

Broadcast mechanism

Values of variables are visible to all parts
of the StateChart model
New values become effective in phase 3 of the

current step and are obtained by all parts of the
model in the following step.

& StateCharts implicitly assumes a broadcast mechanism
for variables
(— implicit shared memory communication
—other implementations would be very inefficient -).

& StateCharts is appropriate for local control systems (©),

but not for distributed applications for which updating
variables might take some time (®).

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 21 -

Lifetime of events

Events live until the step following the one in which they
are generated (“one shot-events").

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

_ 22

Conflicts

5 N 3 N

=0 O O

\ J \ J
¢A /x<20 \/x>10

Techniques for resolving these conflicts wanted

technische universitat " fakultat fur © P.Marwedel, 23
dortmund informatik Informatik 12, 2012 B B

Determinate vs. deterministic

Kahn (1974) calls a system determinate if we will always
obtain the same result for a fixed set (and timing) of inputs

Others call this property deterministic
However, this term has several meanings:

Non-deterministic finite state machines

Non-deterministic operators
(e.g. + with non-deterministic result in low order bits)

Behavior not known before run-time
(unknown input results in non-determinism)

In the sense of determinate as used by Kahn

In order to avoid confusion, we use the term “determinate” In
this course.

technische universitat " fakultat fur © P.Marwedel, 24
dortmund informatik Informatik 12, 2012 B B

StateCharts determinate or not?

Must all simulators return the same result for a given input?
Separation into 2 phases a required condition
Semantics = StateMate semantics may be non-determinate
Potential other sources of non-determinate behavior:

Choice between conflicting transitions resolved arbitrarily:
Tools typically issue a warning if such a situation could exist

- Determinate behavior for StateMate semantics if
transition conflicts are resolved and no other sources of
undefined behavior exist

technische universitat " fakultat fur © P.Marwedel, 25
dortmund informatik Informatik 12, 2012 B B

Evaluation of StateCharts (1)

Pros (®):

Hierarchy allows arbitrary nesting of AND- and OR-super
states.

(StateMate-) Semantics defined in a follow-up paper to
original paper.

Large number of commercial simulation tools available
(StateMate, StateFlow, BetterState, ...)

Avallable “back-ends" translate StateCharts into SW or
HW languages, thus enabling software or hardware
Implementations.

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 26 -

Evaluation of StateCharts (2)

Cons (%®):
Not useful for distributed applications,
No program constructs,
no description of non-functional behavior,
no object-orientation,
no description of structural hierarchy,
generated programs may be inefficient.

Extensions:

Module charts for description of structural hierarchy.

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 27 -

Synchronous vs. asynchronous languages (1)

Description of several processes in many languages non-
determinate: The order in which executable threads are
executed is not specified (may affect result).

Synchronous languages: based on automata models.
“Synchronous languages aim at providing high

level, modular constructs, to make the design

of such an automaton easier [Nicolas Halbwachs].

Synchronous languages describe concurrently
operating automata. “.. when automata are © P Mernedel, 2008
composed in parallel, a transition of the product

IS made of the "simultaneous" transitions of all of them®.

technische universitat " fakultat fur © P.Marwedel, 28
dortmund informatik Informatik 12, 2012 B B

Synchronous vs. asynchronous languages (2)

Synchronous languages implicitly assume the presence of a
(global) clock.

Each clock tick, all inputs are considered, new outputs and
states are calculated and then the transitions are made.

technische universitat " fakultat fur © P.Marwedel, 29
dortmund informatik Informatik 12, 2012 B B

Abstraction of delays

Let
f(x): some function computed from input X,
A(f(x)): the delay for this computation
d. some abstraction of the real delay
Consider compositionality: f(x)=g(h(x))
Then, the sum of the delays of g and h would be a safe
upper bound on the delay of f.

Two solutions:
1. 6 =0, always < synchrony
2. 0 =7 (hopefully bounded) = asynchrony

Asynchronous languages don’t work [Halbwachs]
(Examples based on missing link to real time, e.g. what
exactly does a wait(10 ns) in a programming language do?)

technische universitat " fakultat far Based on slide 15 of N. Halbwachs: Synchronous Programming of Reactive
dortmund informatik Systems, ARTIST2 Summer School on Embedded Systems, Florianopolis, 2008

Compositionality

Abstract synchronous behavior
sequence of reactions to input events, to which all processes

take part:

. B '

Composition of behaviors:

At the abstract level, a
single FSM reacts
Immediately

At the abstract level,
reaction of connected

: 1 s .
| | other automata is
\ \ Immediate
'-,“ Based on slide 16 of N. Halbwachs: Synchronous
* L | L] Programming of Reactive Systems, ARTIST2 Summer
School on Embedded Systems, Florianopolis, 2008
technische universitat = fakultat far © P.Marwedel, 31
dortmund . . informatik Informatik 12, 2012 B B

Concrete Behavior

The abstraction of synchronous languages is valid, as long
as real delays are always shorter than the clock period.

Reference: slide 17 of N. Halbwachs: Synchronous
Programming of Reactive Systems, ARTIST2 Summer
School on Embedded Systems, Florianopolis, 2008

technische universitat " fakultat fur © P.Marwedel, 32
dortmund informatik Informatik 12, 2012 B B

Synchronous languages

Require a broadcast mechanism for all parts of the model.
|dealistic view of concurrency.

Have the advantage of guaranteeing determinate
behavior.

& StateCharts (using StateMate semantics)

IS an “almost” synchronous language [Halbwachs].
Immediate communication is the lacking feature which
would make StateCharts a fully synchronous language.

technische universitat " fakultat fur © P.Marwedel, 33
dortmund informatik Informatik 12, 2012 B B

Implementation and specification model

For synchronous languages, the implementation model is
that of finite state machines (FSMs).

The specification may use different notational styles
“Imperative”. Esterel (textual)
SyncCharts: graphical version of Esterel
“Data-flow”: Lustre (textual)

SCADE (graphical) is a mix containing elements from
multiple styles

Nevertheless, specifications always include a close link to
the generated FSMs (i.e., “imperative” does not have
semantics close to von-Neumann languages)

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 34 -

Applications

SCADE Suite, including the SCADE KCG

Qualified Code Generator, is used by AIRBUS and many of its
main suppliers for the development of most of the A380 and
A400M critical on board software, and for the A340-500/600

Secondary Flying Command System, aircraft in operational
use since August 2002.

Francois Pilarski, Systems Engineering Framework - Senior Manager
Engineering,Systems & Integration Tests; Airbus France.

2| x|
18} Code Generator - Simulator I Controler DO178B Generation ﬂ I n Sta n C e Of
Build I Simulation I Wiapper
Generated Code I Check I Expansion I Configuration (14 m O d e I - b aS e d

Roat node: IFIight_ControI j

Code Generator: W d e S i g n n

Output directorny: gfﬁiﬁ?{?ﬂia M;l

I Split to multiple files I"I

Standard C +i4 Boolean as bits

v Internal wariables 7 nterfaces

Optimizations
¥ | Standard
¥ User variables [~ Constants

Source: http://www.esterel-
technologies.com/products/scade-suite/

-tU technische universitat " fakultat for © P.Marwedel, 35
dortmund informatik Informatik 12, 2012 B B

http://www.esterel-

Threads are Not the Only Possibility:

41 example: Synchronous Languages
—— addssm L1 Typical usage pattern:

Editor ﬁ‘“"“ . | o specify tasks alignedto a
=T T~ =l synchronous signal value master “clock” and subclocks
_Q—- I o clock calculus checks for

“'IE““"“'- | consistency and deadlock
. -—II— o decision logic is given with
=R O hierarchical state machines.
}.;m,;“—.r-wnw—L \ ﬂTD)
- . I _ ~ SsM
L:D | / ! re. o, o . . Editor
-L[::]m:i]]r Q\%i-'l Al <ag ‘_‘.(2:;1 ased el -
-) MLTITUDE_STEP 2 ‘k <
R . N o tassswed, peed s, setinglimesswed, 9] 9

spaed_bution_tumed/
start_APT _bmer

fspeed_dispTspoed_ref)

state machine giving decision logic

/speed_dash)
-

Lustre/SCADE, from http://www.esterel-technologies.com/ Lee, Berkeley 29 . 36-

Summary

Communicating finite state machines
StateCharts

Hierarchical states
OR-States
AND-States

Timers
Broadcasting of updates of variables = shared memory

Determinate vs. deterministic

Synchronous languages
Based on clocked finite state machine view

Based on O-delay (real delays must be small)

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 37 -

