|]
'tU technische universitat 'h ~ fakultat fur informatik
dortmund

informatik 12

Discrete Event Models

Peter Marwedel
TU Dortmund, Informatik 12
Germany

© Springer, 2010

20124 11 A 06 H

These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

Models of computation considered in this course

Communication/ Shared Message passing

local computations |memory Synchronous | Asynchronous
Undefined Plain text, use cases

components | (Message) sequence charts
Communicating finite |StateCharts SDL

state machines

Data flow Scoreboarding + Kahn networks,
Tomasulo Algorithm
(= Comp.Archict.) SDF

Petri nets C/E nets, P/T nets, ...

Discrete event (DE) |VHDL*, Only experimental systems, e.qg.
model Verilog*, distributed DE in Ptolemy
SystemC*, ...
Von Neumann model |C, C++, Java C, C++, Java with libraries
CSP, ADA |
technische universitat " fakultat for © P.Marwedel,

dortmund

informatik

* Classification is based on implementation of 2

Informatik 12, 2012 VHDL, Verilog, SystemC with central queue =

Discrete event semantics

Basic discrete event (DE) semantics
Queue of future actions, sorted by time
Loop:

Fetch next entry from queue

Perform function as listed in entry
May include generation of new entries

Until termination criterion = true

queue

O O 9

675 <i 5 10 13 15 19
38

; a=5 b:=7 c:=8 a:=6 a:=9

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

time
action

HDLs using discrete event (DE) semantics

Used in hardware description languages (HDLSs):
Description of concurrency is a must for HW description
languages!

Many HW components are operating concurrently

Typically mapped to “processes”
These processes communicate via “signals”

Examples:
MIMOLA [Zimmermann/Marwedel], ~1975 ...

VHDL (very prominent example in DE modeling)
One of the 3 most important HDLSs:
VHDL, Verilog, SystemC

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

VHDL

VHDL = VHSIC hardware description language
VHSIC = very high speed integrated circuit
1980: Def. started by US Dept. of Defense (DoD) in 1980

1984: first version of the language defined, based on ADA
(which in turn is based on PASCAL)

1987: revised version became IEEE standard 1076
1992: revised IEEE standard
1999: VHDL-AMS: includes analog modeling

2006: Major extensions

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

Simple example (VHDL notation)

S 00000>a gatel: 00011 1 5 gate2:
process (a,b) . process (a,b)
begin begin C
b C <= a nor b; 1b C <= a nor b;
end; end;
Ro1111

11000

Processes will wait for changes on their input ports.

If they arrive, processes will wake up, compute their code and deposit
changes of output signals in the event queue and wait for the next event.

If all processes walit, the next entry will be taken from the event queue.

technische universitat = fakultat for © P.Marwedel, 00 00 00 01 01
dortmund informatik Informatik 12, 2012 01 11 10 10 10

VHDL processes

Delays allowed:
process (a,b)
begin
c <= anor b after 10 ns;
end;

Equivalent to

process
begin
c <= anor b after 10 ns;
wait on a,b;
end;

technische universitat " fakultat fur
dortmund informatik

<=: signal assignment operator

Each executed signal
assignment will result in
adding entries in the projected
waveform, as indicated by the
(optional) delay time

Implicit loop around the code
In the body

Sensitivity lists are a shorthand
for a single wait on-statement
at the end of the process body

© P.Marwedel, 7
Informatik 12, 2012 B B

The full adder as an example

d —=
—————= SUMm

b — = full_adder

: ——= carry_ out
carry In ——=

entity full_adder is
port(a, b, carry_in: in Bit; -- input ports

sum,carry_out: out Bit); --output ports
end full_adder;

architecture behavior of full _adder is

begin
sum <= (a xor b) xor carry_in after 10 ns;
carry _out <= (a and b) or (a and carry_in) or

(b and carry_in) after 10 ns;
end behavior;

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

The full adder as an example
- Simulation results -

Signals Waves

. 'EEI"
T1ime 5

a

b

carry_1in

sum

carry_out

technische universitéat = fakultat fir © P.Marwedel,

dortmund informatik Informatik 12, 2012 - 9-

VHDL semantics: global control

According to the original VHDL standards document:

The execution of a model consists of an Initialization

phase followed by the repetitive execution of process
statements in the description of that model.

Initialization phase executes each process once.

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 10 -

VHDL semantics: initialization

At the beginning of initialization, the current time, T, is 0 ns.

[> The ... effective value of each explicitly declared signal are
computed, and the current value of the signal is set to the effective
value. ...

Each ... process ... is executed until it suspends.
The time of the next simulation cycle (... in this case ... the 1st
cycle), T, is calculated according to the rules of step f of the

simulation cycle, below. T o g

Future values @signal drivers

%/_\

|:> Assign new values to signals Evaluate processes

:>Activate all processes

technische universitat " fakultat fur © P.Marwedel, 11
dortmund informatik Informatik 12, 2012 B B

VHDL semantics: The simulation cycle (1)

According to the standard, the simulation cycle is as follows:

a) Stop if T,=time‘high
and “nothing else is to be done” at T..
The current time, T_Is setto T,.

@ i#uture values for signal drivers

Assign new values to signals Evaluate processes

Activate all processes sensitive to signal changes

technische universitat " fakultat fur © P.Marwedel, 12
dortmund informatik Informatik 12, 2012 B B

VHDL semantics: The simulation cycle (2)

b) Each active explicit signal in the model is
updated. (Events may occur as a result.)
Previously computed entries in the queue are now assigned if their
time corresponds to the current time T,.
New values of signals are not assigned before the next simulation
cycle, at the earliest.
Signal value changes result in events & enable the execution of
processes that are sensitive to that signal.

Start of simulation

Future values for signal drivers

T

Assign new values to signals Evaluate processes

NS

Activate all processes sensitive to signal changes

technische universitat " fakultat fur © P.Marwedel, 13
dortmund informatik Informatik 12, 2012 B B

VHDL semantics: The simulation cycle (3)

d) V P sensitive to s: if event on s in current
cycle: P resumes.

e) Each ... process that has resumed in the current
simulation cycle is executed until it suspends*.
*Generates future values for signal drivers.

Start of simulation @

Future values for signal drivers
Assign new values to S|gnals Evaluate processes
Activate all processes senS|t|ve to signal changes

technische universitat " fakultat fur © P.Marwedel, 14
dortmund informatik Informatik 12, 2012 B B

VHDL semantics: The simulation cycle (4)

Start of simulation

uture values for signal drivers

G

Assign new values to signals Evaluate processes

NS

Activate all processes sensitive to signal changes

f) Time T, of the next simulation cycle = earliest of
1. time‘high (end of simulation time).
2. The next time at which a driver becomes active
3. The next time at which a process resumes
(determined by wait for statements).

Next simulation cycle (if any) will be a delta cycle if T, = T...

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 15 -

o-simulation cycles

Next simulation cycle (if any) will be a delta cycle if T, = T...
Delta cycles are generated for delay-less models.

There Is an arbitrary number of 6 cycles between any 2
physical time instants:

T T+1 T+2 T+3
|||||\\|||||||\\|||||||\\|||||||\\|||‘|| .
\\ \{ \\ N
In fact, simulation of delay-less hardware loops
might not terminate (don’t even advance T).
—1 00—)0—
technische universitat " fakultat for © P.Marwedel, - 16 -

dortmund informatik Informatik 12, 2012

o-simulation cycles
Simulation of an RS-Flipflop

2nd & gatel:

g 2000 ™ Oo/il process (S,Q)
/)o—— nQ begin
1st § nQ <= S nor Q;
™| 11000 gate2:
R 111 j"'_ Q process (R,nQ)
-~ begin
Q <= R nor nQ;
Ons Ons+d 0Ons+286 Ons+39d end:
R 1 1 1

d cycles reflect the fact that no real
gate comes with zero delay.

< should delay-less signal
assignments be allowed at all?

o) 0
o) 0
0 1

technische universitat " fakultat far © P.Marwedel, 17
dortmund _ informatik Informatik 12, 2012 B B

o-simulation cycles
and determinate simulation semantics

Semantics of
a<=bh:
b<=a: ?

Separation into 2 simulation phases results in determinate
semantics (= StateMate).

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 18-

|]
'tU technische universitat 'h ~ fakultat fur informatik
dortmund

informatik 12

Multi-valued logic and standard IEEE 1164

Peter Marwedel
TU Dortmund,
Informatik 12

© Springer, 2010

20 1 2 £ E 1 1 H 06 E These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

Abstraction of electrical signals

Complete analog simulation at the circuit level would be
time-consuming

We try to use digital values and DE simulation as long as
possible

However, using just 2 digital values would be too
restrictive (as we will see)

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 20 -

How many logic values for modeling ?

Two ('0' and '1') or more?

If real circuits have to be described, some abstraction of the
driving strength Is required.

& \We introduce the distinction between:

the logic level (as an abstraction of the voltage) and

the strength (as an abstraction of the current drive
capability) of a signal.

The two are encoded in logic values.

& CSA (connector, switch, attenuator) - theory [Hayes]

technische universitat " fakultat fur © P.Marwedel, 21
dortmund informatik Informatik 12, 2012 B B

1 signal strength

Logic values '0' and '1".
Both of the same strength.
Encoding false and true, respectively.

-tU technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

_ 22

2 signal strengths

Many subcircuits can
effectively disconnect
themselves from the
rest of the circuit
(they provide “high
Impedance” values to
the rest of the circuit).
Example: subcircuits
with open collector or
tri-state outputs.

technische universitat " fakultat fur
dortmund informatik

VDD

— Output A

P pp

GROUND

Input ='0" —> A disconnected

© P.Marwedel, 23
Informatik 12, 2012 B B

TriState circuits

NMOS-Tristate
VDD

J7 &

—

enable |

o—A

7_&

%a -

GROUND

enable =0’ —> A disconnected

. +3
CMOS-Tristate 9
g type
) &
IN ¢
V 1—9DL/|-t
o
Fnable e | | N tpe

Source: http://www-unix.oit.umass.edu/
~phys532/lecture3.pdf

< We introduce signal value 'Z', meaning “high impedance*

technische universitat

dortmund

" fakultat fur
informatik

© P.Marwedel, 24
Informatik 12, 2012 B B

http://www-unix.oit.umass.edu/

2 signal strengths (cont’ed)

We introduce an operation #, which generates the effective
signal value whenever two signals are connected by a wire.
#('0','Z2)='0"; #('1','Z2")="1", '0' and '1' are “stronger” than 'Z'

According to the partial order in
- \ the diagram, # returns the
smallest element at least as large
,0,/ \,1, - 1 strength as the two arguments (“Sup”).

] v In order to define #('0",'1"), we
Z Introduce 'X', denoting an

undefined signal level.

'X' has the same strength as '0'

and 1.

technische universitat " fakultat fur © P.Marwedel, 25
dortmund informatik Informatik 12, 2012 B B

Hasse diagram

Application example

VDD

e NPl

enable="0’ 7 => bus enable’="1

f_" &—{[l PD PD? ;%&_f’

signal value on bus = #(value from left subcircuit, value from right subcircuit)
#('Z', value from right subcircuit)
value from right subcircuit

“as If left circuit were not there®.

technische universitat " fakultat fur © P.Marwedel, 26
dortmund informatik Informatik 12, 2012 B B

GROUND

3 signal strengths

Current values VDD
iInsufficient for [T depletion
describing real transistor
Circuits: A
4 | PD
GROUND

Depletion transistor contributes a weak value to be
considered in the #-operation for signal A

< Introduction of 'H', denoting a weak signal of the same
level as '1".

#('H', '0)='0"; #('H','Z") ='H'

technische universitat " fakultat far © P.Marwedel, 27
dortmund informatik Informatik 12, 2012 B B

3 signal strengths

There may also be weak
signals of the same level as 'O’

!X!
i - t t
< Introduction of 'L', denoting // \! | } stronges
a weak signal of the same 0 1

level as '0": #('L', '"1)="1", N K
#('L','Z") ="L" W }
| | Z '\ medium strength

< Introduction of 'W', denoting L H
a weak signal of undefined N ¥
level 'X". #('L', 'H)="Wr, > .
#('L','W') ='W,
reflected by the partial order
shown.

technische universitat ~ fakultat far © P.Marwedel, _ 28

dortmund informatik Informatik 12, 2012

4 signal strengths (1)

VDD —
Current values
insufficient for o—|
describing pre- Bus
charging: I .
/ | PD —c
GROU?VD ’

Pre-charged '1'-levels weaker than any of the values
considered so far, except 'Z'.

< Introduction of 'h', denoting a very weak signal of the
same level as '1'.
#('h', '0N="0"; #('h','Z") ="h'

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 29 -

4 signal strengths (2)

There may also be weak
signals of the same level as 'O’

< Introduction of 'I', denoting a
very weak signal of the same
level as '0": #('I', '0)="0",
#(l,'Z2") ="I';

< Introduction of 'w', denoting
a very weak signal of the same
level as 'W'". #('I', 'h")='w",
#('h','w") ="'w'; ...

reflected by the partial order
shown.

technische universitat " fakultat fur
dortmund informatik

Y N\ }
N K
.
N /¥

a
T
N K

© P.Marwedel,
Informatik 12, 2012

strongest

medium strength

pre—charged

weakest

- 30 -

5 signal strengths

Currentvalues =% — =
insufficient for 7 \

describing strength .~ —[
of supply voltage

f [o ==c

GROUND

Supply voltage stronger than any voltage considered so far.

< Introduction of 'FO' and 'F1', denoting a very strong signal
of the same levelas '0 ' and '1".

< Definition of 46-valued logic, also modeling uncertainty
(Coelho); initially popular, now hardly used.

technische universitat " fakultat fur © P.Marwedel, 31
dortmund informatik Informatik 12, 2012 B B

IEEE 1164

VHDL allows user-defined value sets.
% Each model could use different value sets (unpractical)

< Definition of standard value set according to standard
IEEE 1164:

{IOI, lll’ lZI, IXI, IHI, ILI’ IWI, IUI, l_l}
First seven values as discussed previously.

<. Everything said about 7-valued logic applies.

<. Combination of pre-charging and depletion transistors
cannot be described in IEEE 1164.

'U": un-initialized signal; used by simulator to initialize all not
explicitly initialized signals.

technische universitat " fakultat fur © P.Marwedel, 32
dortmund informatik Informatik 12, 2012 B B

Input don‘t care

"-" denotes input don't care.
Suppose:
f(a,b,c)=ab+bc exceptfor a=b=c='0" where f is undefined
Then, we could like specifying this in VHDL as
f<=selecta&b&c
'1'when "10-" --first term
'1'when "-11" -- second term
'X'when "000" --'X'= ('0'or'1") here (output don't care)
'0' otherwise;
Simulator would check if a & b & ¢ ="10-", I.e. if c="-".
Since c is never assigned a value of '-', this test would always
fail. Simulator does not know that "-" means either 1" or

"0", since it does not include any special handling for " -*,
(at least not for pre-VHDL’2006).

technische universitat " fakultat fur © P.Marwedel, 33
dortmund informatik Informatik 12, 2012 B B

Function std _match

Special meaning of "-" can be used in special function
std_match.

If std_match(a&b&c,"10-")
IS true for any value of ¢, but this does not enable the use of
the compact select statement.

< The flexibility of VHDL comes at the price of less
convenient specifications of Boolean functions.

VHDL2006 has changed this: "-" can be used in the
“Intended” way In case selectors

technische universitat " fakultat fur © P.Marwedel,
dortmund _ informatik Informatik 12, 2012

- 34 -

Outputs tied together

In hardware, connected outputs can be used:

Resolution function bus
used for assignmentsto 'Z'| 'Z'| '0'| 'h'

bus, if bus Is declared outputs
as std_logic.

Modeling in VHDL.: resolution functions

type std_ulogic is (‘U', 'X",'0", '1', 'Z', 'W", 'l', 'h', '-");
subtype std _logic is resolved std_ulogic;

-- Involve function resolved for assignments to std _logic

technische universitat " fakultat fur © P.Marwedel, 35
dortmund informatik Informatik 12, 2012 B B

Resolution function for IEEE 1164

type std _ulogic_vector is array(natural range<>)of std_ulogic;

function resolved (s:std;ulogic_vector) return ...
variable result: std_ulogic:='Z"; --weakest value is default
begin
If (s'length=1) then return s(s'low) --no resolution
else for i in s'range loop
result:=resolution_table(result,s(i))
end loop
end if;
return result;
end resolved;

technische universitat " fakultat fur © P.Marwedel, 36
dortmund informatik Informatik 12, 2012 B B

sup) in resolution functions

Using # (

gic_table :=(

H

L

Z W

constant resolution table : stdlo

--UXOl

DXOHNZIIX
DX XHododXx
DXoxXxoboooX
HX XK KX XXX

555555555

This table would be difficult to understand without the partial order

- 37 -

" fakultat fur

technische universitat

dortmund

© P.Marwedel,

Informatik 12, 2012

informatik

Summary

Discrete event models

Queue of future events, fetch and execute cycle,
commonly used in HDLs

processes model HW concurrency
signals model communication
wait, sensitivity lists
the VHDL simulation cycle

o cycles, determinate simulation

Multiple-valued logic
General CSA approach
Application to IEEE 1164

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 38 -

technische universitat
dortmund

More in depth:

Elements of VHDL
+

other DE-based languages

(Optional material)

fakultat fur informatik
informatik 12

Entities and architectures

In VHDL, HW components correspond to
“entities”

Entities comprise processes
Each design unit is called an entity.
Entities are comprised of entity declarations

Entity declaration

N

Architecture 1 Architecture 2 Architecture 3

Each architecture includes a model of the entity. By default,
the most recently analyzed architecture is used. The use of
another architecture can be requested in a configuration.

technische universitat " fakultat fur © P.Marwedel, 40
dortmund informatik Informatik 12, 2012 B B

The full adder as an example
- Architectures -

Architecture = Architecture header + architectural bodies

Architectural bodies can be
- behavioral bodies or - structural bodies.

Bodies not referring to hardware components are called
behavioral bodies.

architecture behavior of full _adder is

begin

sum <= (a xor b) xor carry_in after 10 Ns;
carry _out <= (a and b) or (a and carry_in) or

(b and carry_in) after 10 Ns;
end behavior;

technische universitat " fakultat fur

© P.Marwedel,
dortmund

informatik Informatik 12, 2012

- 4] -

Structural
] full_adder
bodies) 3:
2 _q i1: ; > or_ carry_out
— | half_adder | Y. — z | gate[]~
carry_in 2: B
-.| half_adder Sum

architecture structure of full_adder is
component half _adder
port (inl,in2:in Bit; carry.out Bit; sum:out Bit);
end component;
component or_gate
port (inl, in2:in Bit; o:out Bit);
end component;
signal x, y, z: Bit; -- local signals
begin -- port map section
11: half_adder port map (a, b, X, y);
12: half _adder port map (y, carry_in, z, sum);
1I3: or_gate port map (X, z, carry_out);
end structure;

technische universitat " fakultat fur © P.Marwedel, 42
dortmund informatik Informatik 12, 2012 B B

Assignments

2 kinds of assignments:

Variable assignments
Syntax: variable := expression;

Signal assignments

Syntax:

sighal <= expression,;

sighal <= expression after delay;

signal <= transport expression after delay;

sighal <=reject time inertial expression after delay;,

Possibly several assignments to 1 signal within 1 process.

For each signal there is one driver per process.
Driver stores information about the future of signal,
the so-called projected waveform.

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 43 -

Adding entries in the projected waveform

Each executed signal assignment will result in
adding entries in the projected waveform, as
Indicated by the delay time, e.q.:

output <= ‘0’ after 5 ns, ‘1’ after 10 ns;

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 44 -

1. Transport delay

signal <= transport expression after delay;

This corresponds to models for simple wires

4 -

Pulses will be propagated, no matter how short they are.

Example:

c <=transport a or b after 10 ns;

Pulse of 5 ns
| a
a >1 C b |
b~ ’
OR gate c U L R
S 2 8 8 ns
technische universitat " fakultat for © P.Marwedel,

dortmund informatik Informatik 12, 2012

1. Transport delay (2)

“All old transactions that are projected to occur at or after
the time at which the earliest of the new transactions is
projected to occur are deleted from the projected output
waveform” [VHDL LRM, chap. 8.4]

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 46 -

2. Inertial delay

By default, inertial delay is assumed.

Suppression of all “spikes” shorter than the delay,
resp. shorter than the indicated suppression threshold.

Inertial delay models the behavior of gates.

Example:

c <= aorb after 10 ns;

No pulse of 5 ns

@y
O To
-

»
»

ns

20
40--
60
80

Tricky rules for removing events from projected waveform

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 47 -

2. Inertial delay (2)

“All old transactions that are projected to occur at or after the time at
which the earliest of the new transactions is projected to occur are
deleted from the projected output waveform”

The new transactions are then appended
“All of the new transactions are marked

An old transaction is marked if it immediately precedes a marked
transaction and its value component is the same as that of the marked
transaction;

The transaction that determines the current value of the driver is
marked:;

All unmarked transactions ... are deleted from the projected output
waveform”
[VHDL LRM, chap. 8.4]

technische universitat " fakultat fur © P.Marwedel, A8
dortmund informatik Informatik 12, 2012 B B

2. Inertial delay (3)

Assume that we are executing a signal assignment
output <= ‘1’ after 11 ns at time t=2 ns and the projected waveform is:

1 {0 1T 01
—— » t[ns]
0 5 10 15

= Transactions to occur at or after 13 ns are deleted from the output waveform
= The new transactions are then appended
= All of the new transactions are marked
= Transactions immediately preceding a marked transaction and their value
component is the same as that of the marked transaction;
= The transactions that determines the current value of the driver is marked,
= All unmarked transactions ... are deleted from the projected output waveform
1 A 77 11 A S
0) 10 15
Spikes are suppressed; not immediately obvious if
a) this suppresses all spikes and b) removes all unnecessary transactions.

> t[ns]

technische universitat " fakultat fur © P.Marwedel, 49
dortmund informatik Informatik 12, 2012 B B

Walt-statements

Four possible kinds of wait-statements:

wait on signal list;
wait until signal changes;
Example: wait on a;

wait until condition;
wait until condition is met;
Example: wait until c="1",

wait for duration;
wait for specified amount of time;
Example: wait for 10 ns;

walit;
suspend indefinitely

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 50 -

VHDL: Evaluation V//g\
.

Behavioral hierarchy (procedures and functions),

Structural hierarchy: through structural architectures,
but no nested processes,

No specification of non-functional properties,
No object-orientation,

Static number of processes,

Complicated simulation semantics,

Too low level for initial specification,

Good as an intermediate “Esperanto” or "assembly”
language for hardware generation.

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 51 -

Using C for ES Design: Motivation

Many standards (e.g. the GSM and MPEG-standards) are
published as C programs

Standards have to be translated if special hardware
description languages have to be used

The functionality of many systems is provided by a mix of
hardware and software components

Simulations require an interface between hardware
and software simulators unless the same language is
used for the description of hardware and software

Attempts to describe software and hardware in the same
language. Easier said than implemented.
Various C dialects used for hardware description.

technische universitat " fakultat fur © P.Marwedel, 52
dortmund informatik Informatik 12, 2012 B B

Drawbacks of a C/C++ Design Flow

C/C++ Is not created to design hardware !

C/C++ does not support
Hardware style communication - Signals, protocols
Notion of time - Clocks, time sequenced operations
Concurrency - Hardware is concurrent, operates in ||

Reactivity - Hardware is reactive, responds to stimuli,
Interacts with its environment (requires handling of exceptions)

Hardware data types - Bit type, bit-vector type, multi-
valued logic types, signed and unsigned integer types, fixed-point

types B
Missing links to hardware during debugging ;"ﬁ?

technische universitat " fakultat fur © P.Marwedel, 53
dortmund informatik Informatik 12, 2012 B B

SystemC: Required features

Requirements, solutions for modeling HW in a SW language:
C++ class library including required functions.

Concurrency: via processes, controlled by sensitivity
lists* and calls to wait primitives.

Time: Floating point numbers in SystemC 1.0.
Integer values in SystemC 2.0;
Includes units such as ps, ns, Us etc*.

Support of bit-datatypes: bitvectors of different lengths;
2- and 4-valued logic; built-in resolution*)

Communication: plug-and-play (pnp) channel model,
allowing easy replacement of intellectual property (I1P)

Determinate behavior not guaranteed.
* Good to know

VHDL ©

technische universitat " fakultat fur © P.Marwedel, 54
dortmund informatik Informatik 12, 2012 B B

SystemC language architecture

Channels for MoCs Methodology-specific Channels
Kahn process networks, SDF, etc Master/Slave library
Elementary Channels
Signal, Timer, Mutex, Semaphore, FIFO, etc

Core Language Data types
Module

Ports : :
Processes Bits and bit-vectors

Events Arbitrary precision integers
Interfaces Fixed-point numbers
Channels 4-valued logic types, logic-vectors

Event-driven simulation kernel C++ user defined types

C++ Language Standard

technlsche universitat - fakultat fur © P.Marwedel, 55
dortmund informatik Informatik 12, 2012 - -

Transaction-based modeling

Definition: “Transaction-level modeling (TLM) is a high-level approach
to modeling digital systems where details of communication among
modules are separated from the details of the implementation of functional
units or of the communication architecture.

Communication mechanisms such as buses or FIFOs are modeled as
channels, and are presented to modules using SystemC interface classes.
Transaction requests take place by calling interface functions of these
channel models, which encapsulate low-level details of the information
exchange.

At the transaction level, the emphasis is more on the functionality of the
data transfers - what data are transferred to and from what locations - and
less on their actual implementation, that is, on the actual protocol used for
data transfer.

This approach makes it easier for the system-level designer to experiment,
for example, with different bus architectures (all supporting a common
abstract interface) without having to recode models that interact with any
of the buses, provided these models interact with the bus though the
common interface.” Grotker et al., 2002

technische universitat " fakultat fur © P.Marwedel, 56
dortmund informatik Informatik 12, 2012 B B

Verilog

HW description language competing with VHDL
Standardized:
IEEE 1364-1995 (Verilog version 1.0)
IEEE 1364-2001 (Verilog version 2.0)
Features similar to VHDL.:
Designs described as connected entities
Bitvectors and time units are supported
Features that are different:
Built-in support for 4-value logic and for logic with 8
strength levels encoded in two bytes per signal.
More features for transistor-level descriptions
Less flexible than VHDL.
More popular in the US (VHDL common in Europe)

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

SystemVerilog

Corresponds to Verilog versions 3.0 and 3.1. Includes:

Additional language elements for modeling behavior
C data types such as Int

Type definition facilities
Definition of interfaces of HW components as entities
Mechanism for calling C/C++-functions from Verilog

Limited mechanism for calling Verilog functions from C.

Enhanced features for describing the testbench
Dynamic process creation.

Interprocess communication and synchronization
Automatic memory allocation and deallocation.
Interface for formal verification.

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 58 -

SpecC [Gajski, DOmer et. al. 2000]

SpecC is based on the clear separation between
communication and computation. Enables ,plug-and-play”
for system components; models systems as hierarchical
networks of behaviors communicating through channels.

Consists of behaviors, channels and interfaces.

Behaviors include ports, locally instantiated components,
private variables and functions and a public main function.
Channels encapsulate communication. Include variables
and functions, used for the definition of a communication
protocol.

Interfaces: linking behaviors and channels.

Declare communication protocols (defined in a channel).

technische universitat " fakultat for © P.Marwedel,

dortmund informatik Informatik 12, 2012 - 59 -

Example

dortmund informatik

Informatik 12, 2012

chqnnel
G : I
= p' L ¢c:2 @ p2
o)
("= Ry v Ry v (R NN R S | S—
D1 P2 p3 o) p2 p3
b1) b2
\\ / \. J y
beha</ior
technische universitat = fakultat fr © P.Marwedel, 60

S L |

B p1 1 5 R p2
SpecC-Example 2| B

c1)—

interface L {void Write(int x);}; 41—t 1Tt T
interface R {int Read (void);}; (p1 p2 p3 p1 p2 p3
channel C implements L,R Uﬂ b2

% v .

{ int Data; bool Valid;

void Write(int x) {Data=x; Valid=true;}
Int Read(void) {while ('Valid) waitfor(10); return (Data);}
I3
behavior B1 (in int p1, L p2, in int p3)
{void main(void) {/*...*/ p2.Write(pl);} };
behavior B2 (out int pl1, R p2, out int p3)
{void main(void) {/*...*/ p3=p2.Read(); } };
behavior B(in int p1, out int p2)
{intcl; Cc2; Bl1bl(pl,c2,cl); B2 b2 (cl,c2,p2);
void main (void)
{par {b1.main();b2.main();}}
I3

technische universitat " fakultat for © P.Marwedel,
dortmund informatik Informatik 12, 2012

- 61 -

Observer Pattern using Discrete Events

DE Director

Clock

D@—* Value Producer 1 = Merge

PoissonClock

p.@—* Value Producer 2 Observer

Messages have a (semantic) time, and actors react to
messages chronologically. Merge now becomes
deterministic.

Value Consumer

Lee, Berkeley 40 - 62 -

