
Evaluation and Validation 

Peter Marwedel 

TU Dortmund, Informatik 12 

Germany 

2013年 12 月 02 日  These slides use Microsoft clip arts. Microsoft copyright restrictions apply.  

©
 S

p
ri
n
g
e
r,

 2
0
1
0

 



 -  2 - 
 p. marwedel,  

informatik 12,  2012 

Structure of this course 

2: 

Specification 

3:  

ES-hardware 

4: system 

software (RTOS, 

middleware, …) 

8: 

Test 

5: Evaluation & 

validation (energy, cost, 

performance, …)  

7: Optimization 

6: Application 

mapping 

A
p
p
lic

a
ti
o
n
 K

n
o
w

le
d
g
e

 Design 

repository 
Design 

Numbers denote sequence of chapters 



 -  3 - 
 p. marwedel,  

informatik 12,  2012 

Validation and Evaluation 

Definition: Validation is the process of checking whether or 

not a certain (possibly partial) design is appropriate for its 

purpose, meets all constraints and will perform as expected 

(yes/no decision). 

 

Definition: Validation with mathematical rigor is called 

(formal) verification. 

 

Definition: Evaluation is the process of computing 

quantitative information of some key characteristics of a 

certain (possibly partial) design. 



 -  4 - 
 p. marwedel,  

informatik 12,  2012 

How to evaluate designs according to multiple 

criteria? 

Many different criteria are relevant for evaluating designs: 

 Average & worst case delay 

 power/energy consumption 

 thermal behavior 

 reliability, safety, security 

 cost, size 

 weight 

 EMC characteristics 

 radiation hardness, environmental friendliness, .. 

How to compare different designs? 

(Some designs are “better” than others) 



 -  5 - 
 p. marwedel,  

informatik 12,  2012 

Definitions 

 Let X: m-dimensional solution space for the design problem. 

Example: dimensions correspond to # of processors, size of 

memories, type and width of busses etc. 

 Let F: n-dimensional objective space for the design problem. 

Example: dimensions correspond to average and worst case 

delay, power/energy consumption, size, weight, reliability, … 

 Let f(x)=(f1(x),…,fn(x)) where xX be an objective function. 

We assume that we are using f(x) for evaluating designs. 

solution space  objective space  

f(x) 

x x 



 -  6 - 
 p. marwedel,  

informatik 12,  2012 

Pareto points 

ii

ii

vuni

vuni





:},...,1{

:},...,1{

 We assume that, for each objective, an order < and the 

corresponding order  are defined.  

 Definition: 

Vector u=(u1,…,un) F dominates vector v=(v1,…,vn) F 

 

u is “better” than v with respect to one objective and not 

worse than v with respect to all other objectives: 

 Definition: 

Vector u F is indifferent with respect to vector v F  

  neither u dominates v nor v dominates u 



 -  7 - 
 p. marwedel,  

informatik 12,  2012 

Pareto points 

 A solution xX is called Pareto-optimal with respect to X 

 there is no solution yX such that u=f(x) is dominated by 

v=f(y). x is a Pareto point.  

 Definition: Let S ⊆ F be a subset of solutions. 

v ∈ F is called a non-dominated solution with respect to S 

 v is not dominated by any element ∈ S. 

 v is called Pareto-optimal 

 v is non-dominated with respect to all solutions F. 

 A Pareto-set is the set of all Pareto-optimal solutions 

Pareto-sets define a Pareto-front 

(boundary of dominated subspace) 



 -  8 - 
 p. marwedel,  

informatik 12,  2012 

Pareto Point 

Objective 1 

(e.g. energy 

consumption) 

Objective 2 

(e.g. run time) 

worse 

better 

Pareto-point 

indifferent 

indifferent 

(Assuming minimization of objectives) 



 -  9 - 
 p. marwedel,  

informatik 12,  2012 

Pareto Set 

Objective 1 

(e.g. energy 

consumption) 

Objective 2 

(e.g. run time) 

Pareto set = set of all 

Pareto-optimal solutions 

dominated 

Pareto- 

set 

(Assuming minimization of objectives) 



 -  10 - 
 p. marwedel,  

informatik 12,  2012 

One more time … 

Pareto point                                      Pareto front 



 -  11 - 
 p. marwedel,  

informatik 12,  2012 

Design space evaluation  

Design space evaluation (DSE) based on Pareto-points is 

the process of finding and returning a set of Pareto-optimal 

designs to the user, enabling the user to select the most 

appropriate design. 



 -  12 - 
 p. marwedel,  

informatik 12,  2012 

How to evaluate designs according to multiple 

criteria? 

Many different criteria are relevant for evaluating designs: 

 Average & worst case delay 

 power/energy consumption 

 thermal behavior 

 reliability, safety, security 

 cost, size 

 weight 

 EMC characteristics 

 radiation hardness, environmental friendliness, .. 

How to compare different designs? 

(Some designs are “better” than others) 



 -  13 - 
 p. marwedel,  

informatik 12,  2012 

Average delays (execution times) 

 Estimated average execution times : 

Difficult to generate sufficiently precise 

estimates; 

Balance between run-time and precision 

 Accurate average execution times: 

As precise as the input data is. 

π x 

We need to compute average and worst case execution 

times 



 -  14 - 
 p. marwedel,  

informatik 12,  2012 

Worst case execution time (1) 

Definition of worst case execution time: 

W
C

E
T

E
S

T
 

© Graphics: adopted from 

R. Wilhelm + Microsoft Cliparts 

WCETEST must be  

1. safe (i.e. ≥ WCET) and 

2. tight (WCETEST-WCET≪WCETEST) 

Time 

constraint 

d
is

rt
ri
b
u
ti
o
n
 o

f 
ti
m

e
s
 

possible execution times 

worst-case performance 

worst-case guarantee 

W
C

E
T

 

B
C

E
T

 

B
C

E
T

E
S

T
 

timing predictability time 



 -  15 - 
 p. marwedel,  

informatik 12,  2012 

Worst case execution times (2) 

Complexity: 

 in the general case: undecidable if a bound exists. 

 for restricted programs: simple for “old“ architectures, 

very complex for new architectures with pipelines, caches, 

interrupts, virtual memory, etc. 

Approaches:  

 for hardware: requires detailed timing behavior  

 for software: requires availability of machine programs; 

complex analysis (see, e.g., www.absint.de) 



 -  16 - 
 p. marwedel,  

informatik 12,  2012 

WCET estimation: AiT (AbsInt) 



 -  17 - 
 p. marwedel,  

informatik 12,  2012 

WCET estimation for caches 

Old state 
{f} {e} 

Tag Index Offset 

LRU-based replacement 

= = = = 

Address 

New state {c} {e} {a} {d} 

{a} {d} 

Reference to c 

Youngest entry 

Variables getting older 



 -  18 - 
 p. marwedel,  

informatik 12,  2012 

Behavior at program joins 

Worst case 

Best case 

{c} {e} {a} {d} 

{a} {} {c,f} {d} 

{c} {e} {a} {d} 

{a} {c,f} {} {d} 

{} {} {a,c} {d} 

{a,c} {e,f} {} {d} 

Intersection+max. age 

Union+min. age 

Possibly several variables per entry 



 -  19 - 
 p. marwedel,  

informatik 12,  2012 

ILP model 

 Objective function reflects 

execution time as a function of 

the execution time of blocks. 

To be maximized. 

 Constraints reflect dependencies 

between blocks. 

 Avoids explicit consideration of 

all paths 

 Called implicit path 

enumeration technique. 



 -  20 - 
 p. marwedel,  

informatik 12,  2012 

Example (1) 

CFG Program 

_main: 21 cycles 

_L1:   27 

_L3:    2 

_L4:    2 

_L5:   20 

_L6:   13 

_L2:   20 

int main() 

{ 

  int i, j = 0; 

 

  _Pragma( "loopbound min 

                    100 max 100" ); 

  for ( i = 0; i < 100; i++ ) { 

    if ( i < 50 ) 

      j += i; 

    else 

      j += ( i * 13 ) % 42; 

  } 

 

  return j; 

} 

WCETs of BB 

(aiT 4 TriCore) 



 -  21 - 
 p. marwedel,  

informatik 12,  2012 

Example (2) 

/* Objective function = WCET to be maximized*/ 

21 x2 + 27 x7 + 2 x11 + 2 x14 + 20 x16 + 13 x18 + 20 x19; 

/* CFG Start Constraint */ x0 - x4 = 0; 

/* CFG Exit Constraint */  x1 - x5 = 0; 

/* Constraint for flow entering function main */ 

x2 - x4 = 0; 

/* Constraint for flow leaving exit node of main */ 

x3 - x5 = 0; 

/* Constraint for flow entering exit node of main */ 

x3 - x20 = 0; 

/* Constraint for flow entering main = flow leaving main */ 

x2 - x3 = 0; 

/* Constraint for flow leaving CFG node _main */ 

x2 - x6 = 0; 

/* Constraint for flow entering CFG node _L1 */ 

x7 - x8 - x6 = 0; 

/* Constraint for flow leaving CFG node _L1 */ 

x7 - x9 - x10 = 0; 

/* Constraint for lower loop bound of _L1 */ 

x7 - 101 x9 >= 0; 

/* Constraint for upper loop bound of _L1 */ 

x7 - 101 x9 <= 0; …. 

 Virtual start node 

 Virtual end node 

 Virtual end node per function 

Variables: 

 1 variable per node 

 1 variable per edge 

Constraints: „Kirchhoff“ equations per node 

 Sum of incoming 

edge variables = 

flux through node 

 Sum of outgoing 

edge variables =  

flux through node 

ILP 

_main: 21 cycles 

_L1:   27 

_L3:    2 

_L4:    2 

_L5:   20 

_L6:   13 

_L2:   20 

x7 

x6 

x8 

x9 

x10 

Presentation by R. Wilhelm @ FEST (DVD in 

German), starting at min. 31:35 min.-47:00  



 -  22 - 
 p. marwedel,  

informatik 12,  2012 

Example (3) 

 
Value of objective function: 6268 
 
Actual values of the variables: 
x2                              1 
x7                            101 
x11                           100 
x14                             0 
x16                           100 
x18                           100 
x19                             1 
x0                              1 
x4                              1 
x1                              1 
x5                              1 
x3                              1 
x20                             1 
x6                              1 
x8                            100 
x9                              1 
x10                           100 
x12                           100 
x13                             0 
x15                             0 
x17                           100 

Presentation by R. Wilhelm @ FEST (DVD in 

German), starting at min. 31:35 min.-47:00  



 -  23 - 
 p. marwedel,  

informatik 12,  2012 

Summary 

Evaluation and Validation 

 In general, multiple objectives 

 Pareto optimality 

 Design space evaluation (DSE) 

 Execution time analysis 

• Trade-off between speed and accuracy 

• Computation of worst case execution times 

• Cache/pipeline analysis 

• ILP model for computing WCET of application from WCET of 

blocks 


