
Evaluation and Validation

Peter Marwedel
TU Dortmund, Informatik 12

Germany

2012 年 12 月 11 日 These slides use Microsoft clip arts. Microsoft copyright restrictions apply. 

©
S

pr
in

ge
r, 

20
10



- 2 - p. marwedel, 
informatik 12, 2012

Structure of this course

2:
Specification

3: 
ES-hardware

4: system 
software (RTOS, 
middleware, …)

8:
Test

5: Evaluation & 
validation & (energy, 
cost, performance, …) 

7: Optimization

6: Application 
mapping

A
pp

lic
at

io
n 

Kn
ow

le
dg

e Design 
repository Design

Numbers denote sequence of chapters



- 3 - p. marwedel, 
informatik 12, 2012

How to evaluate designs according to multiple 
criteria?

Many different criteria are relevant for evaluating designs:
 average & worst case delay
 power/energy consumption
 thermal behavior
 reliability, safety, security
 cost, size
 weight, numerical precision
 EMC characteristics
 radiation hardness, environmental friendliness, ..

How to compare different designs?
(Some designs are “better” than others)



- 4 - p. marwedel, 
informatik 12, 2012

Impact of shrinking feature sizes

 Reduced reliability due to smaller patterns within 
semiconductor chips [ITRS, 2009]

 Transient & permanent faults

Example : metal 
migration @ 
Pentium 4

www.jrwhipple.com/computer_hangs.html

Types of faults: Example: Electro-migration

Movie on metal migration

 Rate of faults expected to increase such that designs need 
to become fault-tolerant

http://www.jrwhipple.com/computer_hangs.html


- 5 - p. marwedel, 
informatik 12, 2012

Terms

 “A service failure, often abbreviated here to failure, is an 
event that occurs when the delivered service of a system 
deviates from the correct service.”
 “The definition of an error is the part of the total state of 

the system that may lead to its subsequent service failure”.
 “The adjudged or hypothesized cause of an error is called 

a fault. Faults can be internal or external of a system.”
Example: 
 Transient fault flipping a bit in memory.
 After this bit flip, the memory cell will be in error.
 Failure: if the system service is affected by this error.

We will consider failure rates & fault models. [Laprie et al., 1992, 2004]



- 6 - p. marwedel, 
informatik 12, 2012

 Let T: time until first failure (random variable)
 Let f(t) be the density function of T

Reliability: f(t), F(t)

f(t)


t

 F(t) = probability of the system being faulty at time t:

F(t) = Pr(T≤t)

Example: Exponential distribution

ttx
t

x eedxetF     1][)( 0
0

F(t)
1

t

Example: Exponential distribution

f(t)=e-t


t

dxxftF
0

)()(



- 7 - p. marwedel, 
informatik 12, 2012

 Reliability R(t) = probability that the time until the first 
failure is larger than some time t:

R(t)=Pr(T>t), t0

Reliability: R(t)

Example: Exponential distribution R(t)
1

t
1/

~0.37





t

dxxftR )()(

1)()()()(
0

 


t

t

dxxfdxxftRtF

)(1)( tFtR 

R(t)=e-t

dt
tdRtf )()( 



- 8 - p. marwedel, 
informatik 12, 2012

Failure rate

The failure rate at time t is the probability of the system failing 
between time t and time t+t:

t

t
1st phase 2nd phase 3rd phase

Typical behavior of hardware
systems ("bathtub curve")

For exponential distribution:






 



t

t

e
e

tR
tf
)(
)(

t
tTttTtt

t 




)|Pr(lim)(
0



Conditional probability ("provided 
that the system works at t "); 

FIT = expected number of failures 
in 109 hrs.

)(
)()(lim

0 ttR
tFttF

t 



 )(

)(
tR
tf



Pr(A|B)=Pr(AB)/Pr(B)



- 9 - p. marwedel, 
informatik 12, 2012

FIT & “10-9“ (per hour)

“10-9“: For many systems, probability of a catastrophe has to 
be less than 10-9 per hour  one case per 100,000 systems 
for 10,000 hours.

FIT: failure-in-time unit for failure rate 

1 FIT: rate of 10-9 failures per hour



- 10 - p. marwedel, 
informatik 12, 2012

MTTF = E{T }, the statistical mean value of T





0

)(}{ dttftTE  MTTF

  dteetdtet ttλt 






0

0
0

exp
MTTF

   vuvuvu ''

Example: Exponential distribution

   


 11011
0exp 
 teMTTF

According to the definition of
the statistical mean value

MTTF is the reciprocal value of failure rate.



- 11 - p. marwedel, 
informatik 12, 2012

MTTF, MTTR and MTBF

Ignoring the statistical nature of failures …

operational

faulty

MTTR
MTBF
MTTF t

MTBF
MTTFty Availabili 


)(lim tAA

t

MTTR  = mean time to repair
(average over repair times using distribution M(d))

MTBF* = mean time between failures = MTTF + MTTR

* Mixed up with MTTF, if starting in operational state is implicitly assumed

MTTF



- 12 - p. marwedel, 
informatik 12, 2012

Actual failure rates 

Failure rates derived from 
experiments at higher 
temperatures.

Example: failure rates less than 
100 FIT for the first 20 years 
(175,300 hrs) of life at 150°C @ 
TriQuint (GaAs)
[www.triquint.com/company/quality/faqs/faq_11.cfm]

Target: Failures rates of systems ≤ 1FIT
Reality: Failures rates of circuits ≤ 100 FIT
redundancy is required to make a system more reliable 

than its components
 non-constant failure rates!

Different devices

© Courtesy Triquint Inc.

http://www.triquint.com/company/quality/faqs/faq_11.cfm


- 13 - p. marwedel, 
informatik 12, 2012

Fault tree Analysis (FTA)

Damages are resulting from hazards/risks. 
For every damage there is a severity and a probability.
Several techniques for analyzing risks.
 FTA is a top-down method of analyzing risks. Analysis 

starts with possible damage, tries to come up with
possible scenarios that lead to that damage.
 FTA typically uses a graphical representation of 

possible damages, including symbols for AND- and 
OR-gates.
 OR-gates are used if a single event could result in a 

hazard.
 AND-gates are used when several events or conditions 

are required for that hazard to exist.



- 14 - p. marwedel, 
informatik 12, 2012

Example



- 15 - p. marwedel, 
informatik 12, 2012

Limitations

The simple AND- and OR-gates cannot model all situations.

For example, their modeling power is exceeded if shared 
resources of some limited amount (like energy or storage 
locations) exist.

Markov models may have to be used to cover such cases.



- 16 - p. marwedel, 
informatik 12, 2012

Failure mode and effect analysis (FMEA)

 FMEA starts at the components and tries to estimate their 
reliability. The first step is to create a table containing
components, possible faults, probability of faults and 
consequences on the system behavior.

 Using this information, the reliability of the system 
is computed from the reliability of its parts
(corresponding to a bottom-up analysis). 



- 17 - p. marwedel, 
informatik 12, 2012

Safety cases

Both approaches may be used in “safety cases”.

In such cases, an independent authority has to be 
convinced that certain technical equipment is indeed safe.

One of the commonly requested properties of technical 
systems is that no single failing component should 
potentially cause a catastrophe.



- 18 - p. marwedel, 
informatik 12, 2012

Dependability requirements

Allowed failures may be in the order of 1 failure per 10 9 h.
~ 1000 times less than typical failure rates of chips.
 For safety-critical systems, the system as a whole must 

be more dependable than any of its parts.
 fault-tolerance mechanisms must be used.
Low acceptable failure rate  systems not 100% testable.
 Safety must be shown by a combination of testing and 

reasoning. Abstraction must be used to make the system 
explainable using a hierarchical set of behavioral models. 
Design faults and human failures must be taken into 
account.



- 19 - p. marwedel, 
informatik 12, 2012

Kopetz‘s 12 design principles (1-3)

1. Safety considerations may have 
to be used as the important part 
of the specification, driving the 
entire design process.

2. Precise specifications of design 
hypotheses must be made right 
at the beginning. These include 
expected failures and their 
probability.

3. Fault containment regions 
(FCRs) must be considered. 
Faults in one FCR should not 
affect other FCRs.

Passenger 
compart-
ment stable

Safety-critical & non-safety 
critical electronics



- 20 - p. marwedel, 
informatik 12, 2012

Kopetz‘s 12 design principles (4-6)

4. A consistent notion of time 
and state must be 
established. Otherwise, it will 
be impossible to differentiate 
between original and follow-
up errors.

5. Well-defined interfaces have 
to hide the internals of 
components.

6. It must be ensured that 
components fail 
independently.

2 independent
brake hose 
systems

t

source

Follow-up



- 21 - p. marwedel, 
informatik 12, 2012

Kopetz‘s 12 design principles (7-9)

7. Components should consider themselves to 
be correct unless two or more other 
components pretend the contrary to be true 
(principle of self-confidence).

8. Fault tolerance mechanisms must be 
designed such that they do not create any 
additional difficulty in explaining the behavior 
of the system. Fault tolerance mechanisms 
should be decoupled from the regular 
function.

9. The system must be designed for diagnosis. 
For example, it has to be possible to 
identifying existing (but masked) errors.

one of the systems 
sufficient for  braking



- 22 - p. marwedel, 
informatik 12, 2012

Kopetz‘s 12 design principles (10-12)

10.The man-machine interface must be 
intuitive and forgiving. Safety should be 
maintained despite mistakes made by 
humans.

11.Every anomaly should be recorded. 
These anomalies may be unobservable 
at the regular interface level. Recording 
to involve internal effects, otherwise 
they may be masked by fault-tolerance 
mechanisms.

12.Provide a never-give up strategy.
ES may have to provide uninterrupted 
service. Going offline is unacceptable.

airbag



- 23 - p. marwedel, 
informatik 12, 2012

How to evaluate designs according to multiple 
criteria?

Many different criteria are relevant for evaluating designs:
 average & worst case delay
 power/energy consumption
 thermal behavior
 reliability, safety, security
 cost, size
 weight, numerical precision
 EMC characteristics
 radiation hardness, environmental friendliness, ..

How to compare different designs?
(Some designs are “better” than others)



- 24 - p. marwedel, 
informatik 12, 2012

Electro-magnetic compatibility (EMC)

Source: http://intrage.insa-tlse.fr/
~etienne/emccourse/what_for.html

Red: high emission; Validation of EMC properties 
often done at the end of the design phase.

Example: car engine controller

http://intrage.insa-tlse.fr/


- 25 - p. marwedel, 
informatik 12, 2012

Simulations

 Simulations try to imitate the behavior of the real system 
on a (typically digital) computer.

 Simulation of the functional behavior requires executable 
models.

 Simulations can be performed at various levels. 

 Some non-functional properties (e.g. temperatures, 
EMC) can also be simulated.

 Simulations can be used to evaluate and to validate a 
design



- 26 - p. marwedel, 
informatik 12, 2012

Validating functional behavior by simulation

Various levels of abstractions used for simulations:

 High-level of abstraction: fast, but sometimes not 
accurate

 Lower level of abstraction: slow and typically 
accurate

 Choosing a level is always a compromise



- 27 - p. marwedel, 
informatik 12, 2012

Simulations: Limitations

 Typically slower than the actual design.
 Violations of timing constraints likely if 
simulator is connected to the actual environment 
 Simulations in the real environment may be 

dangerous
 There may be huge amounts of data and it may 

be impossible to simulate enough data in the 
available time.
 Most actual systems are too complex to allow 

simulating all possible cases (inputs). 
Simulations can help finding errors in designs,
but they cannot guarantee the absence of errors.



- 28 - p. marwedel, 
informatik 12, 2012

Rapid prototyping/Emulation

 Prototype: Embedded system that can be generated 
quickly and behaves very similar to the final product.

 May be larger, more power consuming and have other 
properties that can be accepted in the validation phase

 Can be built, for example, using FPGAs.

Source & ©: http://www. eedesign.
com/editorial/1997/toolsandtech9703.html

Example: 
Quickturn Cobalt 
System (1997), 
~0.5M$ for 
500kgate entry 
level system

http://www.


- 29 - p. marwedel, 
informatik 12, 2012

Emulation

 Simulations: based on models, which are approximations 
of real systems.

 In general:  difference between real system and model.

 Reduce gap by implementing parts of SUD more precisely!

Definition: Emulation is the process of executing a model of 
the SUD where at least one component is not represented by 
simulation on some kind of host computer.
“Bridging the credibility gap is not the only reason for a growing interest in 
emulation—the above definition of an emulation model remains valid when 
turned around— an emulation model is one where part of the real system 
is replaced by a model. Using emulation models to test control systems 
under realistic conditions, by replacing the “real system“ with a model, is 
proving to be of considerable interest … [McGregor, 2002] 



- 30 - p. marwedel, 
informatik 12, 2012

Example of a recent commercial emulator

[www.verisity.com/images/products/xtremep{1|3}.gif ]

http://www.verisity.com/images/products/xtremep


- 31 - p. marwedel, 
informatik 12, 2012

Formal verification

 Formal verification = formally proving a system correct, 
using the language of mathematics.

 Formal model required. Obtaining this cannot be 
automated. 

 Model available  try to prove properties.
 Even a formally verified system can fail (e.g. if 

assumptions are not met).
 Classification by the type of logics.

Ideally: Formally verified tools transforming specifications 
into implementations (“correctness by construction“).
In practice: Non-verified tools and manual design steps
 validation of each and every design required 
Unfortunately has to be done at intermediate steps and not 
just for the final design  Major effort required.



- 32 - p. marwedel, 
informatik 12, 2012

Propositional logic (1)

 Consisting of Boolean formulas comprising Boolean 
variables and connectives such as  and .
 Gate-level logic networks can be described.
 Typical aim: checking if two models are equivalent

(called tautology checkers or equivalence checkers).
 Since propositional logic is decidable, it is also decidable 

whether or not the two representations are equivalent.
 Tautology checkers can frequently cope with designs 

which are too large to allow simulation-based exhaustive 
validation. 



- 33 - p. marwedel, 
informatik 12, 2012

Propositional logic (2)

 Reason for power of tautology checkers: Binary Decision 
Diagrams (BDDs)
 Complexity of equivalence checks of Boolean functions 

represented with BDDs: O(number of BDD-nodes) 
(equivalence check for sums of products is NP-hard).
#(BDD-nodes) not to be ignored!
 Many functions can be efficiently represented with BDDs.

In general, however, the #(nodes) of BDDs grows 
exponentially with the number of variables.
 Simulators frequently replaced by equivalence checkers if   

functions can be efficiently represented with BDDs.
 Very much limited ability to verify FSMs.



- 34 - p. marwedel, 
informatik 12, 2012

First order logic (FOL)

FOL includes quantification, using  and .
Some automation for verifying FOL models is feasible.
However, since FOL is undecidable in general, there may be 
cases of doubt.



- 35 - p. marwedel, 
informatik 12, 2012

Higher order logic (HOL)

Higher order logic allows functions to be manipulated like 
other objects.
For higher order logic, proofs can hardly ever be automated
and typically must be done manually with some proof-support.



- 36 - p. marwedel, 
informatik 12, 2012

Model checking

Aims at the verification of finite state systems.
Analyzes the state space of the system.
Verification using this approach requires three stages:

 generation of a model of the system to be verified,

 definition of the properties expected, and

 model checking (the actual verification step).



- 37 - p. marwedel, 
informatik 12, 2012

2 types of input

Verification tools can prove or disprove the properties.
In the latter case, they can provide a counter-example.
Example: Clarke’s EMC-system



- 38 - p. marwedel, 
informatik 12, 2012

Examples

1.
M,s ⊨ AGg

means:
in the transition graph M, property g holds for all paths
(denoted by A) and all states (denoted by G).

2.
For the Thalys example, we could prove that the number 
of trains is indeed constant.



- 39 - p. marwedel, 
informatik 12, 2012

Computational properties

 Model checking is easier to automate than FOL.

 In 1987, model checking was implemented using BDDs.

 It was possible to locate several errors in the 
specification of the future bus protocol.

 Model checking becoming very popular

 Extensions are needed in order to also cover real-time 
behavior and numbers.



- 40 - p. marwedel, 
informatik 12, 2012

Summary

Evaluation and Validation:
 Reliability

• Definitions
• Failure rates
• MTBF, MTTF, MTTR
• Fault tree analysis, FMEA
• Kopetz’ 12 principles

 Electro-magnetic compatibility (briefly)
 Simulation, Emulation
 Formal verification

• Propositional,
• first order, higher order based techniques,
• model checking



- 41 - p. marwedel, 
informatik 12, 2012

ACM Turing award 2008
granted for basic work on model checking

Edmund M. Clarke, CMU, Pittsburgh

E. Allen Emerson, U. Texas at Austin

Joseph Sifakis, VERIMAG, Grenoble


