
Mapping of
Applications to Platforms

Peter Marwedel
TU Dortmund, Informatik 12

Germany

2012年 12 月 18 日 These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

©
S

pr
in

ge
r,

20
10

- 2 - p. marwedel,
informatik 12, 2012

Structure of this course

2: Specification &
Modeling

3:
ES-hardware

4: system
software (RTOS,
middleware, …)

8:
Test

5: Evaluation &
Validation (energy, cost,
performance, …)

7: Optimization

6: Application
mapping

A
pp

lic
at

io
n

Kn
ow

le
dg

e Design
repository Design

Numbers denote sequence of chapters

- 3 - p. marwedel,
informatik 12, 2012

Classification of Scheduling Problems

Scheduling

Independent Tasks

EDD, EDF, LLF, RMS

Dependent Tasks

Resource
constrained

Time
constrained

Uncon-
strained

ASAP,
ALAPFDSLS

1 Proc.

LDF

- 4 - p. marwedel,
informatik 12, 2012

Scheduling with precedence constraints

Task graph and possible schedule:

- 5 - p. marwedel,
informatik 12, 2012

Simultaneous Arrival Times: The Latest Deadline
First (LDF) Algorithm

LDF [Lawler, 1973]: reads the task graph and
among the tasks with no successors inserts the one with the
latest deadline into a queue. It then repeats this process,
putting tasks whose successor have all been selected into the
queue.
At run-time, the tasks are executed in the generated total order.
LDF is non-preemptive and is
optimal for mono-processors.

If no local deadlines exist, LDF performs just a topological sort.

- 6 - p. marwedel,
informatik 12, 2012

Asynchronous Arrival Times:
Modified EDF Algorithm

This case can be handled with a modified EDF algorithm.
The key idea is to transform the problem from a given set of
dependent tasks into a set of independent tasks with different
timing parameters [Chetto90].
This algorithm is optimal for mono-processor systems.

If preemption is not allowed, the heuristic algorithm
developed by Stankovic and Ramamritham can be used.

- 7 - p. marwedel,
informatik 12, 2012

Dependent tasks

The problem of deciding whether or not a schedule exists
for a set of dependent tasks and a given deadline
is NP-complete in general [Garey/Johnson].

Strategies:

1. Add resources, so that scheduling becomes easier

2. Split problem into static and dynamic part so that only a
minimum of decisions need to be taken at run-time.

3. Use scheduling algorithms from high-level synthesis

- 8 - p. marwedel,
informatik 12, 2012

Classes of mapping algorithms
considered in this course

 Classical scheduling algorithms
Mostly for independent tasks & ignoring communication,
mostly for mono- and homogeneous multiprocessors

 Dependent tasks as considered in architectural
synthesis
Initially designed in different context, but applicable

 Hardware/software partitioning
Dependent tasks, heterogeneous systems,
focus on resource assignment

 Design space exploration using genetic algorithms
Heterogeneous systems, incl. communication modeling

- 9 - p. marwedel,
informatik 12, 2012

Task graph

Assumption:
execution time = 1
for all tasks

a

b c d e f g

h i j

k l m

n

z

- 10 - p. marwedel,
informatik 12, 2012

As soon as possible (ASAP) scheduling

ASAP: All tasks are scheduled as early as possible
Loop over (integer) time steps:
 Compute the set of unscheduled tasks for which all

predecessors have finished their computation
 Schedule these tasks to start at the current time step.

- 11 - p. marwedel,
informatik 12, 2012

As soon as possible (ASAP) scheduling: Example

=0

=2

=3

=4

=5

a

b c d e f g

h i j

k l m

n

z

=1

- 12 - p. marwedel,
informatik 12, 2012

As-late-as-possible (ALAP) scheduling

ALAP: All tasks are scheduled as late as possible

Start at last time step*:
Schedule tasks with no successors and tasks for which
all successors have already been scheduled.

* Generate a list, starting at its end

- 13 - p. marwedel,
informatik 12, 2012

As-late-as-possible (ALAP) scheduling: Example

=0

=2

=3

=4

=5Start

a

b c d e f g

h i j

k l m

n

z

=1

- 14 - p. marwedel,
informatik 12, 2012

(Resource constrained) List Scheduling

List scheduling: extension of ALAP/ASAP method
Preparation:
 Topological sort of task graph G=(V,E)
 Computation of priority of each task:

Possible priorities u:
• Number of successors
• Longest path
• Mobility =  (ALAP schedule)-  (ASAP schedule)

Source: Teich: Dig.
HW/SW Systeme

- 15 - p. marwedel,
informatik 12, 2012

Mobility as a priority function

urgent

less urgent
Mobility is not very precise

=1

=2

=3

=4

=5

=1

=2

=3

=4

=5

a

b c d e f g

h i j

k l m

n

z

=0
a

b c d e f g

h i j

k l m

n

z

=0

- 16 - p. marwedel,
informatik 12, 2012

Algorithm

List(G(V,E), B, u){
i :=0;

repeat {
Compute set of candidate tasks Ai ;
Compute set of not terminated tasks Gi ;
Select Si  Ai of maximum priority r such that
| Si | + | Gi | ≤ B (*resource constraint*)
foreach (vj  Si):  (vj):=i; (*set start time*)
i := i +1;

}
until (all nodes are scheduled);
return ();

} Complexity: O(|V|)

may be
repeated
for
different
task/
processor
classes

- 17 - p. marwedel,
informatik 12, 2012

Example

Assuming B =2, unit execution
time and u : path length

u(a)= u(b)=4
u(c)= u(f)=3
u(d)= u(g)= u(h)= u(j)=2
u(e)= u(i)= u(k)=1
 i : Gi =0

a b

i

c f

g

h j

k

d

e
a b

c

f

g

d

e

h

i

j

k

=0

=1

=2

=3

=4

=5

Modified example
based on J. Teich

- 18 - p. marwedel,
informatik 12, 2012

(Time constrained) Force-directed scheduling

 Goal: balanced utilization of
resources

 Based on spring model;

 Originally proposed for high-level
synthesis

Pierre G. Paulin, J.P. Knight, Force-directed scheduling in automatic data path
synthesis, Design Automation Conference (DAC), 1987, S. 195-202

© Photo: Microsoft

- 19 - p. marwedel,
informatik 12, 2012

Phase 1: Generation of ASAP and ALAP Schedule

=1

=2

=3

=4

=5

=1

=2

=3

=4

=5

a

b c d e f g

h i j

k l m

n

z

=0
a

b c d e f g

h i j

k l m

n

z

=0

- 20 - p. marwedel,
informatik 12, 2012

Next: computation of “forces”

 Direct forces push each task into the direction of lower
values of D(i).

 Impact of direct forces on dependent tasks taken into account by
indirect forces

 Balanced resource usage  smallest forces
 For our simple example and time constraint=6:

result = ALAP schedule
0

1

2

3

4

5

2 31 4 5

i

=1

=2

=3

=4

=5

a

b c d e f g

h i j

k l m

n

z

=0

 More precisely …

- 21 - p. marwedel,
informatik 12, 2012

1.Compute time frames R(j); 2. Compute “probability“ P(j,i)
of assignment j  i

R(j)={ASAP-control step … ALAP-control step}

if

0 otherwise

- 22 - p. marwedel,
informatik 12, 2012

3. Compute “distribution” D(i)
(# Operations in control step i)

P(j,i) D(i)

- 23 - p. marwedel,
informatik 12, 2012

4. Compute direct forces (1)

Pi(j,i‘):  for force on task j in time step i‘,
if j is mapped to time step i.
The new probability for executing j in i is 1;
the previous was P (j, i).



The new probability for executing j in i‘ i is 0;
the previous was P (j, i).

i

if

otherwise

- 24 - p. marwedel,
informatik 12, 2012

4. Compute direct forces (2)

 SF(j, i) is the overall change of direct forces resulting from the
mapping of j to time step i.

Example

otherwise
if

- 25 - p. marwedel,
informatik 12, 2012

4. Compute direct forces (3)

Direct force if
task/operation 1
is mapped to
time step 2

- 26 - p. marwedel,
informatik 12, 2012

5. Compute indirect forces (1)

D
Mapping task 1 to time step 2
implies mapping task 2 to time step 3

 Consider predecessor and
successor forces:

Pj, i (j‘,i‘) is the  in the probability of mapping j‘ to i‘
resulting from the mapping of j to i

j‘  predecessor of j

j‘  successor of j

- 27 - p. marwedel,
informatik 12, 2012

5. Compute indirect forces (2)

Example: Computation of successor forces for task 1 in time step 2

j‘  predecessor of j

j‘  successor of j

- 28 - p. marwedel,
informatik 12, 2012

Overall forces

The total force is the sum of direct and indirect forces:

In the example:

The low value suggests mapping task 1 to time step 2

- 29 - p. marwedel,
informatik 12, 2012

Overall approach

procedure forceDirectedScheduling;
begin

AsapScheduling;
AlapScheduling;
while not all tasks scheduled do

begin
select task T with smallest total force;
schedule task T at time step minimizing forces;
recompute forces;

end;
end

May be
repeated
for
different
task/
processor
classes

Not sufficient for today's complex,
heterogeneous hardware platforms

- 30 - p. marwedel,
informatik 12, 2012

Evaluation of HLS-Scheduling

 Focus on considering dependencies

 Mostly heuristics, few proofs on optimality

 Not using global knowledge about periods etc.

 Considering discrete time intervals

 Variable execution time available only as an extension

 Includes modeling of heterogeneous systems

- 31 - p. marwedel,
informatik 12, 2012

Overview

Scheduling of aperiodic tasks with real-time constraints:
Table with some known algorithms:

EDF* (Chetto)LDF (Lawler), ASAP,
ALAP, LS, FDS

Dependent
tasks

EDF (Horn)EDD (Jackson)Independent
tasks

Arbitrary arrival times;
preemptive

Equal arrival times;
non-preemptive

- 32 - p. marwedel,
informatik 12, 2012

Conclusion

 HLS-based scheduling
• ASAP
• ALAP
• List scheduling (LS)
• Force-directed scheduling (FDS)

 Evaluation

