Evaluation and Validation

Jian-Jia Chen
(Slides are based on Peter Marwedel)
TU Dortmund, Informatik 12
Germany

2018年 01 月 09 日

These slides use Microsoft clip arts. Microsoft copyright restrictions apply.
Structure of this course

- 2: Specification
- 3: ES-hardware
- 4: system software (RTOS, middleware, …)

Design repository

- 5: Evaluation & validation (energy, cost, performance, …)
- 6: Application mapping
- 7: Optimization

Design

8: Test

Application Knowledge

Numbers denote sequence of chapters
Validation and Evaluation

Definition: *Validation* is the process of checking whether or not a certain (possibly partial) design is appropriate for its purpose, meets all constraints and will perform as expected (yes/no decision).

Definition: Validation with mathematical rigor is called *(formal) verification.*

Definition: *Evaluation* is the process of computing quantitative information of some key characteristics of a certain (possibly partial) design.
How to evaluate designs according to multiple criteria?

Many different criteria are relevant for evaluating designs:

- Average & worst case delay
- Power/energy consumption
- Thermal behavior
- Reliability, safety, security
- Cost, size
- Weight
- EMC characteristics
- Radiation hardness, environmental friendliness, ..

How to compare different designs?
(Some designs are “better” than others)
Definitions

- Let X: m-dimensional **solution space** for the design problem. Example: dimensions correspond to # of processors, size of memories, type and width of busses etc.

- Let F: n-dimensional **objective space** for the design problem. Example: dimensions correspond to average and worst case delay, power/energy consumption, size, weight, reliability, …

- Let $f(x) = (f_1(x), \ldots, f_n(x))$ where $x \in X$ be an **objective function**. We assume that we are using $f(x)$ for evaluating designs.
Pareto points

- We assume that, for each objective, an order \(<\) and the corresponding order \(\leq\) are defined.

Definition:
Vector \(u=(u_1,\ldots,u_n)\in F\) dominates vector \(v=(v_1,\ldots,v_n)\in F\)
\[\iff\]
\(u\) is “better” than \(v\) with respect to *at least* one objective and not worse than \(v\) with respect to all other objectives:
\[
\forall i \in \{1,\ldots,n\} : u_i \leq v_i \land \\
\exists i \in \{1,\ldots,n\} : u_i < v_i
\]

Definition:
Vector \(u\in F\) is *indifferent* with respect to vector \(v\in F\)
\[\iff\]
either \(u\) dominates \(v\) nor \(v\) dominates \(u\)
Pareto points

- A solution $x \in X$ is called **Pareto-optimal** with respect to X if there is no solution $y \in X$ such that $u = f(x)$ is dominated by $v = f(y)$. x is a **Pareto point**.

- **Definition**: Let $S \subseteq F$ be a subset of solutions. $v \in F$ is called a **non-dominated solution** with respect to S if v is not dominated by any element $\in S$.

- v is called **Pareto-optimal** if v is non-dominated with respect to all solutions F.

- A **Pareto-set** is the set of all Pareto-optimal solutions.

Pareto-sets define a **Pareto-front** (boundary of dominated subspace)
Pareto Point

Objective 1
(e.g. energy consumption)

Objective 2
(e.g. run time)

better

indifferent

worse

(Assuming minimization of objectives)
Pareto Set

Objective 1
(e.g. energy consumption)

Objective 2
(e.g. run time)

Pareto set = set of all Pareto-optimal solutions

(Assuming minimization of objectives)
One more time ...

Pareto point

Pareto front

\[O_2 \text{ (e.g. memory space)} \]

\[
\begin{array}{c}
\text{indifferent} \\
\text{dominated by (1)} \\
\text{(inferior designs)} \\
\text{dominating (1)} \\
\text{(superior designs)} \\
\text{indifferent}
\end{array}
\]

\[
\begin{array}{c}
\text{min} \\
\text{min}
\end{array}
\]

\[O_1 \text{ (e.g. energy)} \]

\[
\begin{array}{c}
dominated \\
design points
\end{array}
\]

\[O_1 \text{ (e.g. energy)} \]
Design space evaluation (DSE) based on Pareto-points is the process of finding and returning a set of Pareto-optimal designs to the user, enabling the user to select the most appropriate design.
How to evaluate designs according to multiple criteria?

Many different criteria are relevant for evaluating designs:

- Average & worst case delay
- power/energy consumption
- thermal behavior
- reliability, safety, security
- cost, size
- weight
- EMC characteristics
- radiation hardness, environmental friendliness, ..

How to compare different designs?
(Some designs are “better” than others)
Average delays (execution times)

- **Estimated** average execution times:
 Difficult to generate sufficiently precise estimates;
 Balance between run-time and precision

- **Accurate** average execution times:
 As precise as the input data is.

We need to compute **average** and **worst case** execution times.
Worst case execution time (1)

Definition of worst case execution time:

\[WCET_{EST} \]

must be

1. safe (i.e. \(\geq WCET \)) and
2. tight (\(WCET_{EST} - WCET \ll WCET_{EST} \))
Worst case execution times (2)

Complexity:
- in the general case: undecidable if a bound exists.
- for restricted programs: simple for "old" architectures, very complex for new architectures with pipelines, caches, interrupts, virtual memory, etc.

Approaches:
- for hardware: requires detailed timing behavior
- for software: requires availability of machine programs; complex analysis (see, e.g., www.absint.de)
Structure of this course

Numbers denote sequence of chapters

Design

2: Specification & modeling

Design repository

3: ES-hardware

5: Evaluation & validation (energy, cost, performance, ...)

4: system software (RTOS, middleware, ...)

6: Application mapping

7: Optimization

8: Test

["Appendix": Standard Optimization Techniques]
Integer linear programming models

Ingredients:
- Cost function
- Constraints

Involving linear expressions of integer variables from a set X

Cost function

\[
C = \sum_{x_i \in X} a_i x_i \quad \text{with} \quad a_i \in \mathbb{R}, x_i \in \mathbb{N} \quad (1)
\]

Constraints:

\[
\forall j \in J : \sum_{x_i \in X} b_{i,j} x_i \geq c_j \quad \text{with} \quad b_{i,j}, c_j \in \mathbb{R} \quad (2)
\]

Def.: The problem of minimizing (1) subject to the constraints (2) is called an integer linear programming (ILP) problem.

If all x_i are constrained to be either 0 or 1, the ILP problem is said to be a 0/1 integer linear programming problem.
Example

\[C = 5x_1 + 6x_2 + 4x_3 \]

\[x_1 + x_2 + x_3 \geq 2 \]

\[x_1, x_2, x_3 \in \{0,1\} \]

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>

Optimal
Remarks on integer programming

- Maximizing the cost function: just set $C'=-C$
- Integer programming is NP-complete.
- Running times depend exponentially on problem size, but problems of >1000 vars solvable with good solver (depending on the size and structure of the problem)
- The case of $x_i \in \mathbb{R}$ is called *linear programming* (LP). Polynomial complexity, but most algorithms are exponential, in practice still faster than for ILP problems.
- The case of some $x_i \in \mathbb{R}$ and some $x_i \in \mathbb{N}$ is called *mixed integer-linear programming*.
- ILP/LP models good starting point for modeling, even if heuristics are used in the end.
- Solvers: lp_solve (public), CPLEX (commercial), …
Petri Net: Matrix \mathcal{N} describing all changes of markings

\[
\begin{align*}
t(p) &= \begin{cases}
-W(p, t) & \text{if } p \in t \setminus t \\
+W(t, p) & \text{if } p \in t \setminus t \\
-W(p, t) + W(t, p) & \text{if } p \in t \cap t \\
0 & \text{otherwise}
\end{cases}
\end{align*}
\]

Def.: Matrix \mathcal{N} of net N is a mapping

$$\mathcal{N}: P \times T \to \mathbb{Z} \text{ (integers)}$$

such that $\forall \ t \in T : \mathcal{N}(p,t) = t(p)$

Component in column t and row p indicates the change of the marking of place p if transition t takes place.

For pure nets, (\mathcal{N}, M_0) is a complete representation of a net.
Petri Net: Place – invariants

Standardized technique for proving properties of system models

For any transition $t_j \in T$ we are looking for sets $R \subseteq P$ of places for which the accumulated marking is constant:

$$\sum_{p \in R} t_j(p) = 0$$

Example:
Characteristic Vector

\[
\sum_{p \in R} t_{-j}(p) = 0
\]

Let:
\[
c_R(p) = \begin{cases}
1 & \text{if } p \in R \\
0 & \text{if } p \notin R
\end{cases}
\]

\[
0 = \sum_{p \in R} t_{-j}(p) = \sum_{p \in P} t_{-j}(p) c_R(p) = t_{-j} \cdot c_R
\]

Scalar product
Condition for place invariants

\[\sum_{p \in R} t_j(p) = \sum_{p \in P} t_j(p) c_R(p) = t_j \cdot c_R = 0 \]

Accumulated marking constant for all transitions if

\[t_1 \cdot c_R = 0 \]

\[\ldots \quad \ldots \quad \ldots \]

\[t_n \cdot c_R = 0 \]

Equivalent to \(N^T c_R = 0 \) where \(N^T \) is the transposed of \(N \)
More detailed view of constraints

\[
\begin{pmatrix}
 t_1(p_1) \ldots t_1(p_n) \\
 t_2(p_1) \ldots t_2(p_n) \\
 \vdots \\
 t_m(p_1) \ldots t_m(p_n)
\end{pmatrix}
\begin{pmatrix}
 c_R(p_1) \\
 c_R(p_2) \\
 \vdots \\
 c_R(p_n)
\end{pmatrix}
=
\begin{pmatrix}
 0 \\
 0 \\
 0 \\
 0
\end{pmatrix}
\]

System of linear equations.
Solution vectors must consist of zeros and ones.
Put Things Together: Maximum Place Invariants

maximize \[\sum_{p \in P} x_p \]

such that \[\sum_{p \in P} t_j(p)x_p = 0 \quad \forall j \]

\[x_p \in \{0, 1\}, \forall p \in P \]
Another Example: Knapsack Problem

Example IP formulation:
The Knapsack problem:
I wish to select items to put in my backpack.

There are m items available.
Item i weighs w_i kg,
Item i has value v_i.
I can carry Q kg.

Let $x_i = \begin{cases} 1 & \text{if I select item } i \\ 0 & \text{otherwise} \end{cases}$

$$\max \sum_i x_i v_i$$

s.t. $\sum_i x_i w_i \leq Q$

$x_i \in \{0,1\}, \forall i$
Variance of Knapsack Problem

Given a set of periodic tasks with implicit deadlines
- Task τ_i: period T_i,
 - Options: Execution without/with scratchpad memory (SPM)
 - Without SPM: Worst-case execution time $C_{i,1}$
 - With SPM: required m_i scratchpad memory size and Worst-case execution time $C_{i,2}$
- $U_{i,1} = C_{i,1}/T_i$, $U_{i,2} = C_{i,2}/T_i$

Objective
- Select the tasks to be put into the SPM
- Minimize the required SPM size
- The task set should be schedulable by using EDF

\[
\begin{align*}
\text{min} & \quad \sum_i x_i m_i \\
\text{s.t.} & \quad \sum_i x_i U_{i,2} + \sum_i (1 - x_i) U_{i,1} \leq 1 \\
& \quad x_i \in \{0, 1\}, \quad \forall \ i
\end{align*}
\]
Summary

Integer (linear) programming

- Integer programming is NP-complete
- Linear programming is faster
- Good starting point even if solutions are generated with different techniques

Simulated annealing

- Modeled after cooling of liquids
- Overcomes local minima

Evolutionary algorithms

- Maintain set of solutions
- Include selection, mutation and recombination
Evolutionary Algorithms (1)

- **Evolutionary Algorithms** are based on the collective learning process within a population of individuals, each of which represents a search point in the space of potential solutions to a given problem.

- The population is arbitrarily initialized, and it evolves towards better and better regions of the search space by means of randomized processes of
 - **selection** (which is deterministic in some algorithms),
 - **mutation**, and
 - **recombination** (which is completely omitted in some algorithmic realizations).

[Bäck, Schwefel, 1993]
Evolutionary Algorithms (2)

- The environment (given aim of the search) delivers a quality information (fitness value) of the search points, and the selection process favours those individuals of higher fitness to reproduce more often than worse individuals.
- The recombination mechanism allows the mixing of parental information while passing it to their descendants, and mutation introduces innovation into the population

[Bäck, Schwefel, 1993]
Evolutionary Algorithms

Principles of Evolution

1. Selection

![Fish eating smaller fish](image1.png)

2. Mutation

![Mutation](image2.png)

3. Cross-over

![Parent figures creating offspring](image3.png)
An Evolutionary Algorithm in Action

max. y_2

hypothetical trade-off front

min. y_1
Issues in Multi-Objective Optimization

- How to maintain a diverse Pareto set approximation?
 ② density estimation

- How to prevent nondominated solutions from being lost?
 ③ environmental selection

- How to guide the population towards the Pareto set?
 ① fitness assignment
A Generic Multiobjective EA

population

archive

evaluate sample vary

update truncate

new population

new archive
Example: SPEA2 Algorithm

<table>
<thead>
<tr>
<th>Step 1:</th>
<th>Generate initial population P_0 and empty archive (external set) A_0. Set $t = 0$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2:</td>
<td>Calculate fitness values of individuals in P_t and A_t.</td>
</tr>
<tr>
<td>Step 3:</td>
<td>$A_{t+1} =$ nondominated individuals in P_t and A_t. If size of $A_{t+1} > N$ then reduce A_{t+1}, else if size of $A_{t+1} < N$ then fill A_{t+1} with dominated individuals in P_t and A_t.</td>
</tr>
<tr>
<td>Step 4:</td>
<td>If $t > T$ then output the nondominated set of A_{t+1}. Stop.</td>
</tr>
<tr>
<td>Step 5:</td>
<td>Fill mating pool by binary tournament selection.</td>
</tr>
<tr>
<td>Step 6:</td>
<td>Apply recombination and mutation operators to the mating pool and set P_{t+1} to the resulting population. Set $t = t + 1$ and go to Step 2.</td>
</tr>
</tbody>
</table>
Simulated Annealing

- General method for solving combinatorial optimization problems.
- Based the model of slowly cooling crystal liquids.
- Some configuration is subject to changes.
- Special property of Simulated annealing: Changes leading to a poorer configuration (with respect to some cost function) are accepted with a certain probability.
- This probability is controlled by a temperature parameter: the probability is smaller for smaller temperatures.
Simulated Annealing Algorithm

procedure SimulatedAnnealing;
var i, T: integer;
begin
 i := 0; T := MaxT;
 configuration := <some initial configuration>;
 while not terminate(i, T) do
 begin
 while InnerLoop do
 begin
 NewConfig := variation(configuration);
 delta := evaluation(NewConfig, configuration);
 if delta < 0
 then configuration := NewConfig;
 else if SmallEnough(delta, T, random(0,1))
 then configuration := NewConfiguration;
 end;
 T := NewT(i, T); i := i + 1;
 end; end;
Explanation

- Initially, some random initial configuration is created.
- Current temperature is set to a large value.
- Outer loop:
 - Temperature is reduced for each iteration
 - Terminated if (temperature ≤ lower limit) or (number of iterations ≥ upper limit).
- Inner loop: For each iteration:
 - New configuration generated from current configuration
 - Accepted if (new cost ≤ cost of current configuration)
 - Accepted with temperature-dependent probability if (cost of new config. > cost of current configuration).
Behavior for actual functions

130 steps

[people.equars.com/~marco/poli/phd/node57.html]

200 steps

http://foghorn.cadlab.lafayette.edu/cadapplets/fp/fpIntro.html
Performance

- This class of algorithms has been shown to outperform others in certain cases [Wegener, 2005].
- Demonstrated its excellent results in the TimberWolf layout generation package [Sechen]
- Many other applications …