LEGO Mindstorm EV3 Robots

Jian-Jia Chen
Informatik 12
TU Dortmund
Germany
LEGO Mindstorm EV3 Robot
LEGO Mindstorm EV3 Components
LEGO Mindstorm EV3 Components

- Motor
- 4 output ports (A, B, C, D)
- USB port for software upload
- Lego NXT control unit
- Ultra sonic Sensor
- Colour/Light sensor
- Gyro sensor
- Touch sensor
- 4 input ports (1, 2, 3, 4) for connecting sensors
Basic robot for lab

1 ultra sonic sensor

2 independently controlled wheels

The basic robot will be extended by additional sensors and actuators during the labs
Data flow programming using LabVIEW

- LabVIEW programs = Graphs
- Specification of operations and dependences
- Can be executed in arbitrary sequence as long as data dependences are met
- We don’t care about the precise sequential code needed for each of the nodes.

Example:
Virtual instruments

VI = virtual instrument
VIs represented in 2 windows:
- Front panel: user interface
- Block diagram: functionality of the system
LabVIEW NXT tool kit

Front panel irrelevant, since robots have no “user interface“

Mindstorm EV3 programming:

- Functions menu contains all required features for programming EV3

- Use **only** these functions

The other features are not available for the Mindstorms EV3
Input

Menu: Mindstorm Robotics => I/O => Sensor => Touch/Sound/Light/Ultrasonic/Rotation

Touch sensor
- reads in touch sensor data from designated input port
- Mode: pressed/released/bumped/count
- Output: yes/no

Sound sensor
- reads in sound sensor data from designated input port
- Output: volume in dB/dBA
Input

Menu: Mindstorm Robotics => I/O => Sensor => Touch/Sound/Light/Ultrasonic/Rotation

Light sensor
- reads in light sensor data from designated input port
- Output: intensity (0-100)

Ultra sonic sensor:
- reads ultrasonic sensor data from designated input port
- Output: distance (cm)
Comparison

Menu: Mindstorm Robotics => Programming => Comparison

Essentially self-explaining

- Result: Boolean
- Exception: Select

? 2 ? 1 Mux
Case-dependent data flow
(control elements present in LabView)

Menu: Mindstorm Robotics => Programming => Structures => Case Structure

Move from Functions-Palette into editing area using drag & drop

- Consists of several sub diagrams, only one of which can be active
- Click on the arrows next to the case label to display a particular sub diagram.
- The case selector serves as the input to the case structure;
 Possible data types: Bool, String, Integer.
- Action to be performed designated by additional elements within the case structure
- Right click opens context menu
Data flow loops

Menu: Mindstorm Robotics => Programming => Structures => While Loop

- Sub diagram will be repeated until Boolean condition is true
- Condition is represented by conditional terminal
- Right allows selecting whether iterations will stop or continue if condition is true
- The iteration terminal includes the number of the actually executed iteration
Output

Menu Mindstorm Robotics => I/O=> Move Motors

Move Motors

Moves DC motors with either constant power or constant speed

Inputs

Motors specifies which motor controller and port each motor is connected to.

NXT establishes the flow of the program. Wire the *NXT* output of the previous VI in the program to the *NXT* input of this VI.

Power/Speed specifies the amount of power, from -100 to 100, with which you want to move the motors or the speed, in seconds, at which you want to move the motors.
Outputs

NXT establishes the flow of the program. Wire the **NXT** output of this VI to the **NXT** input of the next VI in the program.
Menu: Mindstorm Robotics => I/O=> Stop Motors

Stop Motors
Stops DC motors immediately or slows to a stop, depending on **Brake** or **Coast**

Inputs
- **Motors** specifies which motor controller and port each motor is connected to.
- **NXT** establishes the flow of the program.

Outputs
- **NXT** establishes the flow of the program. Wire the NXT output of this VI to the NXT input of the next VI in the program.
Display

Menu: Mindstorm Robotics => I/O=> Display

Display
- Writes text on the NXT brick's screen given a line number (Line 1 = top of the screen, Line 8 = bottom of the screen)
- displays only strings.
- 16 characters on a line

This example writes "Hello World!" in the upper left-hand corner on the NXT brick's screen.
Downloading software

Menu: Tools => NXT/EV3 Terminal

- Download either via USB or Bluetooth
- Terminal window
- Find NXT/EV3
- File => Target to EV3 => Deploy
Small example

Goal: robot moves forward until ultrasonic sensor detects a obstacle 20 cm away from it.

Terminate loop if Comparison returns true