| . . - el
| technische universitat - J— fakultat fur informatik
dortmund informatik 12

N

Imperative model of computation

Jian-Jia Chen
(Slides are based on
Peter Marwedel)
Informatik 12
TU Dortmund
Germany

201 9£ E 1 0 ﬁ 22 E These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

Models of computation considered in

this course

Communication/
local computations

Shared
memory

Message passing

Synchronous

| Asynchronous

Undefined Plain text, use cases

components (Message) sequence charts

Communicating finite |StateCharts SDL

state machines

Data flow Kahn networks,
SDF

Petri nets C/E nets, P/T nets, ...

Discrete event (DE) |VHDL", Only experimental systems, e.q.

model (discussed Verilog®, distributed DE in Ptolemy

|ater) SystemC?*, ...

Imperative (Von C, C++, Java C, C++, Java with libraries

Neumann) model

CSP, ADA

* Classification based on semantic model

technische universitat
dortmund

" fakultat fur
informatik

© J.J. Chen and PMarwedel,

Informatik 12, 2019

Imperative (von-Neumann) model

The von-Neumann model reflects the principles
of operation of standard computers:

Sequential exgcution _of instructions)Q:%%(/lk
(total order of instructions) i S AE

Possible branches

Visibility of memory locations and addresses
Example languages

Machine languages (binary)

Assembly languages (mnemonics)

Imperative languages providing limited abstraction
of machine languages (C, C++, Java,)

technische universitat = fakultat far © J.J. Chen and PMarwedel,
dortmund informatik Informatik 12, 2019

Threads/processes

Threads/processes
Initially available only as entities managed by OS

In most cases:

Context switching between threads/processes,
frequently based on pre-emption

Made available to programmer as well

Partitioning of applications into threads
(same address space)

Languages initially not designed for communication,
but synchronization and communication is needed!

technische universitat = fakultat far © J.J. Chen and PMarwedel,
dortmund informatik Informatik 12, 2019

Problems with imperative languages and shared
memory

Access to shared memory leads to anomalies, that have to

be pruned away by mutexes, semaphores, monitors _
i/ 4
Potential deadlocks 7

Access to shared, protected resources leads to priority
inversion (< chapter 4)

Termination in general undecidable
Timing cannot be specified and not guaranteed

technische universitat = fakultat far © J.J. Chen and P.Marwedel, 5
dortmund informatik Informatik 12, 2019 TV

Synchronous message passing: CSP

CSP (communicating sequential processes)

[Hoare, 1989],

Rendez-vous-based communication:

Example:

process A

var a ...

a.=3;

cla; -- output
end

Determinate!

technische universitat " fakultat fur
dortmund informatik

process B
var b ...

c?b; -- input
end

© J.J. Chen and PMarwedel,
Informatik 12, 2019

Synchronous message passing: Ada

Named After Ada Lovelace (said to be the 1st female
programmer).

US Department of Defense (DoD) wanted to avoid multitude
of programming languages

< Definition of requirements

@+ Selection of a language from a set of competing designs
(selected design based on PASCAL)

Ada’ 95 is object-oriented extension of original Ada.

technische universitat = fakultat far © J.J. Chen and PMarwedel,
dortmund informatik Informatik 12, 2019

Synchronous message passing: Ada-rendez-vous

task screen out is

entry call_ch(val:character; x, y: integer);
entry call_int(z, x, y: integer);

end screen_out;

task body screen out is

select Sending a message:
accept call_ ch ... do .. begin
end call _ch; screen_out.call_ch('Z',10,20);
or exception
accept call int ... do .. when tasking error =>
end call_int; (exception handling)
end select; end,
technische universitat = fakultat fur © J.J. Chenand PMarwedel, _ 8-

dortmund informatik Informatik 12, 2019

Java

Potential benefits:
Clean and safe language
Supports multi-threading (no OS required?)
Platform independence (relevant for telecommunications)

Problems:

Size of Java run-time libraries? Memory requirements.
Access to special hardware features
Garbage collection time
Non-deterministic dispatcher
Performance problems

Checking of real-time constraints

technische universitat = fakultat far © J.J. Chen and P.Marwedel, 9
dortmund . L. informatik Informatik 12, 2019 -7

Overview over Java 2 Editions

v

o]

w»
-

communicator 'l

-
N N . -

| set-top box,
net TV

cell phone

Java Language

“J2ME ... addresses
the large, rapidly
growing consumer
space, which covers a
range of devices from
tiny commodities, such
as pagers, all the way
up to the TV set-top
box..”

card

ﬂ

Based on
JVM Card VM http://java.sun.com/
Memory: 10MB ¢4———p 1MB 512kB q¢——p 32kB products/cldc/wp/
64 bit 32 bit 16 bit 8 bit KVMwp.pdf
technische universitat * fakultat far © J.J. Chen and PMarwedel,

dortmund informatik Informatik 12, 2019

- 10 -

Lee’ s conclusion

Nontrivial software written with threads,
semaphores, and mutexes Is incomprehensible to humans.

Succinct Problem Statement

Threads are wildly nondeterministic.

The programmer’s job is to prune away the nondeterminism
by imposing constraints on execution order (e.q., mutexes).

Improve threads?

Or replace them?
[Edward Lee (UC Berkeley), Artemis Conference, Graz, 2007]

technische universitat = fakultat far © J.J. Chen and PMarwedel, 1
dortmund informatik Informatik 12, 2019 - -

Lifting Level of Abstraction

Model-Based Design
(e.g., Simulink, UML)

Automatic program synthesis: No
more programming

1

High-level languages:
Programming to the application

1

The “assembly age”:
Programming to the platform

Code generation

from specifications:
still mostly a dream

It is not yet feasible to
abstract algorithms.

Compilation:
perhaps “the” success
story of computer science

It is feasible to
abstract the platform.

technische universitat ® fakultat fur
dortmund informatik

© J.J. Chen and PMarwedel, 12
Informatik 12, 2019 - -

technische universitat ™ fakultat fiir informatik

dortmund 1 = informatik 12

Comparison of models

Jian-Jia Chen
(slides are based on
Peter Marwedel)
Informatik 12,
TU Dortmund,
Germany

20194 10 A 22 H

Models of computation considered in this course

Communication/
local computations

Shared
memory

Message passing

Synchronous

| Asynchronous

Undefined
components

Plain text, use cases

(Message) sequence charts

Communicating finite |StateCharts SDL

state machines

Data flow Kahn networks,
SDF

Petri nets C/E nets, P/T nets, ...

Discrete event (DE) |VHDL", Only experimental systems, e.qg.

model Verilog®, distributed DE in Ptolemy

SystemC*, ...

Imperative (Von
Neumann) model

C, C++, Java

C, C++, Java with libraries

CSP, ADA

* Classification based on semantic model

technische universitat
dortmund

" fakultat fur
informatik

© J.J. Chen and PMarwedel,

Informatik 12, 2019

- 14 -

Classification by Stuijk

Expressiveness and succinctness indicate, which
systems can be modeled and how compact the are.

Analyzability relates to the availability of scheduling
algorithms and the need for run-time support.

Implementation efficiency is influenced by the required
scheduling policy and the code size.

technische universitat = fakultat far © J.J. Chen and PMarwedel, 15
dortmund informatik Informatik 12, 2019 - -

The expressiveness/analyzability

conflict
Expressiveness and succinctness
Lt
n
Ty O Kahn process networks
AN Homogeneous SDF (HSDF)
Analyzability Implementation efficiency

[S. Stuijk, 2007]

technische universitat = fakultat far © J.J. Chen and PMarwedel, 16
dortmund informatik Informatik 12, 2019 - -

Properties of processes/threads (1)

Number of processes/threads

static;
dynamic (dynamically changed s’
hardware architecture?)

Nesting:

Nested declaration of processes
process {
process {
process {

1}

or all declared at the same level
process { ... }
process { ... }
process { ... }

technische universitat = fakultat far © J.J. Chen and PMarwedel,
dortmund informatik Informatik 12, 2019

- 17 -

Properties of processes/threads (2)

Different techniques for process creation
Elaboration in the source (c.f. ADA)
declare

process Pl ..
explicit fork and join (c.f. Unix)
id = fork();
process creation calls
id = create process(Pl);

E.g.: StateCharts comprises a static number of processes,
nested declaration of processes, and process creation
through elaboration in the source.

technische universitat = fakultat far © J.J. Chen and PMarwedel,
dortmund informatik Informatik 12, 2019

- 18 -

How to cope with MoC and language problems

in practice?

Mixed approaches:

(RT-) UML or equivalenll (RT-) UML or equivalenll
\]
SDL (RT-) Java
Yy N ¥ \L ________________
C—programs VHDL
\ ‘L
Assembly programs Net list
Y ‘L Y
Objectcode hardware Objectcode
technische universitat = fakultat fur © J.J. Chenand PMarwedel,

dortmund 1 % informatik

Informatik 12, 2019

- 19-

Transformations between models

Transformations between models are possible, e.g.
Frequent transformation into sequential code
Transformations between restricted Petri nets and SDF

Transformations should be based on the precise

description of the semantics
(e.g. Chen, Sztipanovits et al., DATE, 2007)

technische universitat = fakultat far © J.J. Chen and PMarwedel, 20
dortmund informatik Informatik 12, 2019 - -

Mixing models of computation: Ptolemy

Ptolemy (UC Berkeley) is an environment for
simulating multiple models of computation.

http://ptolemy.berkeley.edu/
(http://ptolemy.berkeley.ed u/ptolemyll/ptlI8.0/ptlI8.0.1/doc/index.htm)

Available examples are restricted to a subset of the
supported models of computation.

technische universitat = fakultat far © J.J. Chen and PMarwedel, 21
dortmund informatik Informatik 12, 2019 - -

UML (Unified Modeling Language) for
embedded systems?

Initially not designed for real-time. @{__ \1/
Initially lacking features: ﬂ

Partitioning of software into tasks and processes
specifying timing
specification of hardware components
Projects on defining profiles for embedded/real-time systems
Schedulability, Performance and Timing Analysis
SysML (System Modeling Language)
UML Profile for SoC
Modeling and Analysis of Real-Time Embedded Systems
UML/SystemC, ...

Profiles may be incompatible

technische universitat = fakultat far © J.J. Chen and PMarwedel,
dortmund informatik Informatik 12, 2019

- 29.

Modeling levels

Levels, at which modeling can be done:
System level
Algorithmic level: just the algorithm
Processor/memory/switch (PMS) level
Instruction set architecture (ISA) level: function only

Transaction level modeling (TML): memory reads &
writes are just “transactions” (not cycle accurate)

Register-transfer level: registers, muxes, adders, ..§&
(cycle accurate, bit accurate)

Gate-level: gates

Layout level
Tradeoff between accuracy and simulation speed
technische universitat = fakultat far © J.J. Chen and P.Marwedel, - 23.

dortmund 1 % informatik Informatik 12, 2019

What ‘s the bottom line?

The prevailing technique for writing embedded
SW has inherent problems; some of the difficulties of writing embedded
SW are not resulting from design constraints, but from the modeling.

However, there is no ideal modeling technique.
The choice of the technique depends on the application.
Check code generation from non-imperative models

There is a tradeoff between the power of a modeling technique and its
analyzability.

It may be necessary to combine modeling techniques.

In any case, open your eyes & think about the model
before you write down your spec! Be aware of pitfalls.

P T

You may be forced, to use imperative models, but you can
still implement, for example, finite state machines or KPNs in Java.

technische universitat = fakultat far © J.J. Chen and PMarwedel, 24
dortmund informatik Informatik 12, 2019 - -

