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Embedded Operating System

Device drivers are typically handled directly by tasks instead of
drivers that are managed by the operating system:

• This architecture improves timing predictability as access to
devices is also handled by the scheduler.

• If several tasks use the same external device and the
associated driver, then the access must be carefully managed.
(shared critical resource, mutual exclusion etc.)
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Embedded Linux

• Adaptation of a well-tested code base with the required
functionality to run in an embedded context.

• Linux has become the OS of choice for a large number of
complex embedded applications following this approach.
• However, integrating a number of different additional software

components is a complex task.
• May lead to functional as well as security deficiencies.

• These applications benefit from easy portability
• Linux has been ported to more than 30 processor architectures,

including the popular embedded ARM, MIPS, and PowerPC
architectures

• The system’s open-source nature, which avoids the licensing
costs arising for commercial embedded operating systems.
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An Example: LibC Optimization

libC: the C library, which provides basic functionality for the file
I/O, process synchronization and communication, string handling,
arithmetic operation, and memory management.

• musl: optimized for static linking

• uClibc: designed for systems without MMU (memory management units)

• dietlibc: target for smallest possible size to compile and link programs

• glibc: standard Linux GNU libC
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Busybox - All Linux Utilities in ONE Executable

Originally aimed to put a complete bootable system on a single
floppy disk that would serve both as a rescue disk and as an
installer for the Debian distribution

• Only one program for over 200 utilities, for example: sh, cat,
tail, echo, vi, nc, tr, sed, ifconfig, dmesg, lsmod, insmod, fsck

• Share code for parsing args, common functions

• Usually statically built

• The binary is linked to several file names
• When busybox is executed, it checks out its argv[0], and

assumes this to be the applet to execute
• The other arguments are parsed

• A whole “linux” userspace in a single command.
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Challenges of Using Linux for Embedded Computing

Adopting Linux to typical embedded environments poses a number
of challenges due to its original design as a server and desktop OS.

• Limited resources available within embedded system (CPU,
storage, RAM, and so on).

• Complex structure and large size → optimization for the
implementation of C library.

• Guarantee Real-Time properties is the most complex
challenges → some Linux kernel extensions are available e.g.,
RTAI [3], RT-Linux [1], etc.
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Real-Time Properties in Linux

Since Linux version 3.14 (in 2014), a configuration option
SCHED DEADLINE has been added to Linux:

• Supports for the earliest-first-deadline (EDF) scheduler and
different real-time schedulers (to be detailed later)

• Coexist with other non-real-time schedulers

• Tutorials are available in the Internet:
• Basic knowledge of real-time schedulers
• Constant bandwidth server (not covered in this lecture)
• Multiprocessor scheduler (to be detailed later)

• Limitations:
• not suitable for hard real-time systems (some routines do not

have hard real-time bounds), although you may see hard
guarantees in some documents

• for EDF, applications must be modified to signal the
beginning/end of a job (some kind of startjob()/endjob()
system call)
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µClinux

source: https://elinux.org/images/3/35/Austin-uClinux_ELC_43_small.pdf

• MMU can be optional in µClinux

• Is this a good thing or not?

• COW (copy on write) is forbidden ⇒ NO fork..... Use vfork
• many limitations

• However, the OS size remains a few MB in RAM, which is too big for
some micro-controllers
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LITMUSRT

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems
(LITMUSRT ) [2] is a real-time extension of the Linux kernel.

Linux kernel patch


RT schedulers

RT synchronization

[cache and GPU]

+

user space interface


C API

device files

scriptsandtools

+

tracing infrastructure


overheads

schedules

kernel debug log
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LITMUSRT

LITMUSRT enables practical multiprocessor real-time systems
research under realistic conditions.

• Allow implementation and evaluation of novel multiprocessor
schedulers and synchronization protocols.

• Based on Linux, multiple useful tools are available (debug,
schedule trace, and overhead trace).

• Flexible, fine-grained measurement of different overheads.
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LITMUSRT

However, LITMUSRT is only a testbed for the researchers to
develop and test their schedulers, resource sharing protocols, and
other real-time properties, rather than a real real-time operating
system!

More information, please refer to their website:
https://www.litmus-rt.org/documentation.html
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Evaluating the Use of Linux in Embedded Systems

• Technical side
• POSIX-like API which enables easy porting of existing code
• free-of-charge development tools and integration tools
• well-tested code base (thanks to many active users)
• Complex code base for debugging and verification

• Legal/Business side
• Benefits due to the availability of the source code free of cost
• However, GPL License version 2 governs that the source code

for modification has to be published as well ⇒ secrete leakage?

• Security side
• distributed denial of service (DDoS) attacks for non-updated

Linux versions
• updates (due to security vulnerabilities have to be planned for

an embedded Linux
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OSEK/VDX

• OSEK/VDX stands for:
“Offene Systeme und deren Schnittstellen für die Elektronik
im Kraftfahrzeug / Vehicle Distributed Execution”

• OSEK was started by german vehicle manufacturers in 1993.

• VDX was a similar project in France and joined OSEK in 1994.

• Definition in the OSEK Specifications 2.2.3:
”The specification of the OSEK operating system is to
represent a uniform environment which supports efficient
utilisation of resources for automotive control unit application
software. The OSEK operating system is a single processor
operating system meant for distributed embedded control
units.”
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Goals of OSEK/VDX

• OSEK is designed to:
• offer necessary functionality to support event driven control

system with stringent real-time requirements,
• keep resource requirements minimal,
• support a wide range of hardware,
• ensure portability of application software,
• realize standardised interfaces (ISO/ANSI-C-like),
• be scalable, and
• support for automotive requirements.

• In this lecture we focus on:
• features of OSEK,
• task management,
• event mechanism,
• resource management, and
• alarms.
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Two special features of OSEK kernels

• All kernel objects are statically defined
• No dynamic memory allocation (most of them)
• No dynamic creation of jobs (most of them)
• OIL file specifies the objects off-line (# of tasks, size of stack)

• Stack Sharing support
• RAM is expensive on micro-controllers
• Persistent state is not stored in the stack
• Related to how task code is written:

Task ( x ){
i n t l o c a l ;
i n i t i a l i z a t i o n ( ) ;
f o r ( ; ; ) {

d o i n s t a n c e ( ) ;
e n d i n s t a n c e ( ) ;

}
}

Listing 1: Extended Task

i n t l o c a l ;
Task x ( ){

d o i n s t a n c e ( ) ;
}

S y s t e m i n i t i a l i z a t i o n ( ){
i n i t i a l i z a t i o n ( ) ;

}

Listing 2: Basic Task
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OIL: OSEK Implementation Language

TASK Task1 /∗ De f i n i t i o n o f t a s k s ∗/
{

AUTOSTART = FALSE ;
PRIORITY = 7 ;
ACTIVATION = 1 ;
SCHEDULE = FULL ;
STACKSIZE = 4096 ;

} ;
ALARM Task1 Alarm
{

COUNTER = SysTimerCnt ;
ACTION = ACTIVATETASK
{ TASK = Task1 ; } ;
AUTOSTART = TRUE
{

ALARMTIME = 1 ;
CYCLETIME = 8000 ;

} ;
} ;
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Task management

• In OSEK tasks are subdivided parts of control software.

• Tasks can be specified according to their real-time
requirements.

• OSEK introduces two different task concepts:
1 Basic tasks only release the CPU, when

• they terminate,
• the OSEK-OS loads a higher-priority task, or
• an interrupt occurs.

2 Extended tasks are additionally allowed to use the system call
WaitEvent.
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Task state model

Figure: Task state model of extended Tasks.

Note: Basic tasks do not have the waiting state.
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Scheduling policy

• Fully preemptive scheduling
• A task in the running state will be put into ready state, as

soon as a higher-priority task gets ready
• In fully preemptive systems, the programmer shall constantly

expect preemption of his/her task

• Non-preemptive scheduling
• The activated higher-priority tasks have to wait for the running

task to terminate
• Rescheduling only takes place after the task termination,

waiting or the scheduler gets called by the currently running
task

Embeddes Systems WS 18/19 (TU Dortmund) 21 / 34



Event mechanism

Figure: Task synchronization with fully preemptive tasks using an event.

When events are used with non-preemptive tasks, the scheduler
should be called after clearing an event.
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Resource management

• OSEK uses the Immediate Priority Ceiling protocol (PCP) to
prevent deadlocks and improve data integrity.
• The resource usage has to be specified in the OIL

configuration files.
• The calculation of the priority ceiling is done via the OIL

compiler.

• In OSEK resources can also be used to call the scheduler in
non-preemptive tasks.

• Resources can also be used by interrupt service routines (ISR)
and can prevent interrupts during task run time.

• The task is not allowed to terminate, wait or call the
scheduler while it holds resources.
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Alarm management

• Alarms manage reoccurring events in the OSEK-OS.

• Alarms are always bound to counters.
• Counters are represented by a value ”ticks”.
• OSEK doesn’t standardise an API to manipulate counters.
• The OSEK-OS takes care of advancing the counters ”ticks”.
• OSEK-OS’s must provide at least one counter deriving from a

timer.
• more than one alarm can be attached to a counter.

• Alarms can activate tasks, set events or call an alarm-callback
routine (user defined).

• Alarms can be single alarms or cyclic.
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Alarm model

Figure: Layered model of alarm management.
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ERIKA Enterprise

• An open-source OSEK/VDX Hard RTOS

• v2.x (certified OSEK/VDX compliant)
• Hard Real-Time with FP-Scheduling and Immediate PCP

• Support for EDF and Resource Reservation Schedulers

• Support for stack sharing among tasks

• 1-4KB Flash footprint, for 8-32 bit microcontrollers

• v3.x
• Support Limited Preemption

• Support for manycore platforms
(Partition and Global Scheduling)

• Single copy of RTOS among all cores, whereas v2.x requires
one copy of per core

• 1-4KB Flash footprint, for 8-64 bit microcontrollers
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Conformance Classes

• Supported by the OSEK/VDX standard (also ERIKA)

• BCC1: Smallest class supporting 8 tasks with different
priorities and one shared resource

• BCC2: BCC1 + one task with multiple activations

• ECC1: BCC1 + Extended tasks that can wait for an event

• ECC2: BCC1 + the above two additional features

• ERIKA provides additional two classes:
• EDF (earliest-deadline-first scheduling) optimized for small

micro-controllers

• FRSH: EDF extension providing resource reservation scheduler
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Direct Interrupts Control

• Tasks are scheduled by the scheduler

• Interrupts are scheduled by hardware

• Two types of Interrupt Service Routines (ISR):
• Category 1: simpler and faster, does not implement a call to

the scheduler at the end of the ISR

• Category 2: this ISR can call some primitives that change the
scheduling behavior. The end of it is a rescheduling point

• Only a subset of system API services are allowed in ISR
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EV3OSEK

• EV3OSEK is an OS for Lego Mindstorms EV3 (2013).
• Aims to fulfill the OSEK standard.
• NXTOSEK port by Westsächsische Hochschule Zwickau.
• Used in exercise sessions.

• SoC TexsInstruments AM1808
• ARM926EJ-S
• ARM9
• 300MHz
• 64 MB RAM

• LEGO motor and sensor compatible
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NXTOSEK and EV3OSEK

• NXTOSEK is an OS for Lego Mindstorms NXT (2006).
• uses Toppers/JSP or Toppers/ATK(OSEK) kernel.
• has to be flashed on the brick.

• Only the Toppers ATK(OSEK) kernel has been ported to EV3.
• ECRobot API in EV3OSEK supports less hardware in EV3.
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AUTOSAR

AUTOSAR - AUTomotive Open Systems ARchitecture

• Middleware and system-level standard, jointly developed by
automobile manufacturers, electronics and software suppliers
and tool vendors. More than 100 members

• Motto: “cooperate on standards, compete on
implementations” Reality: current struggle between OEM and
Tier1 suppliers

• Target: facilitate portability, composability, integration of SW
components over the lifetime of the vehicle

• AUTOSAR provides a set of specifications based on
standardized exchange format for
• Basic Software modules,
• application interfaces, and
• a common development methodology.
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Three Layer Architectures

• Basic Software: standardized software modules
• Runtime environment(RTE): Middleware which describes

information exchange between the application software components
and between the Basic Software and the applications.

• Application Layer: application software components that interact
with the RTE
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AUTOSAR: Timing Extension

• Release 4.3.1 in Dec. 2017 (now free of charge for download)

• Created as a supplement to the formal definition of the
Timing Extensions by means of the AUTOSAR meta-model

• Support constructing embedded real-time systems that satisfy
given timing requirements and to perform timing
analysis/validations of those systems once they have build up
• Configure and specify the timing behavior of the

communication stack.
• However, the specification of analysis and validation results

(e.g. the maximum resource load of an ECU, etc.) is not
addressed in AUTOSAR Timing Extension.

Note: OSEK/VDX, AUTOSAR, and AUTOSAR Timing
Extensions are standards for interfaces and format exchange. The
validation of the correctness is not part of the specifications.
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