Real-Time Calculus

Prof. Dr. Jian-Jia Chen

LS 12, TU Dortmund

10, Dec., 2019

Abstract Models for Real-Time Calculus

Abstract Models for Module Performance Analysis

RM: Rate-Monotonic (a fixed-priority scheduler, detailed in Chapter 6) TDMA: Time Division Multiple Access (detailed later)

GPC: Greedy Processing Component (detailed later)

tu technische universität dortmund

fakultät für informatik

System ViewModule Performance Analysis (MPA)Math. ViewReal-Time Calculus (RTC)Min-Plus Calculus, Max-Plus Calculus

Backgrounds

- Real-Time Calculus can be regarded as a worst-case/best-case variant of classical queuing theory. It is a formal method for the analysis of distributed real-time embedded systems.
- Related Work:
 - Min-Plus Algebra: F. Baccelli, G. Cohen, G. J. Olster, and J. P. Quadrat, Synchronization and Linearity —An Algebra for Discrete Event Systems, Wiley, New York, 1992.
 - Network Calculus: J.-Y. Le Boudec and P. Thiran, Network Calculus -A Theory of Deterministic Queuing Systems for the Internet, Lecture Notes in Computer Science, vol. 2050, Springer Verlag, 2001.

Definition of Arrival Curves and Service Curves

- For a specific trace:
 - Data streams: R(t) = number of events in [0, t)
 - Resource stream: C(t) = available resource in [0, t)
- For the worst cases and the best cases in any interval with length $\Delta\colon$
 - Arrival Curve $[\alpha', \alpha'']$:

$$\alpha^{\prime}(\Delta) = \inf_{\lambda \ge 0, \forall R} \{ R(\Delta + \lambda) - R(\lambda) \}$$
$$\alpha^{\prime\prime}(\Delta) = \sup_{\lambda \ge 0, \forall R} \{ R(\Delta + \lambda) - R(\lambda) \}$$

Service Curve [β^I, β^u]:

che universität

$$\beta^{I}(\Delta) = \inf_{\lambda \ge 0, \forall C} \{ C(\Delta + \lambda) - C(\lambda) \}$$
$$\beta^{u}(\Delta) = \sup_{\lambda \ge 0, \forall C} \{ C(\Delta + \lambda) - C(\lambda) \}$$

Abstract Models for Real-Time Calculus

Example 1: Periodic with Jitter

A common event pattern that is used in literature can be specified by the parameter triple (p, j, d), where p denotes the period, j the jitter, and d the minimum inter-arrival distance of events in the modeled stream.

fi fakultät für

technische universität

Example 1: Periodic with Jitter

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 12 / 24

More Examples on Arrival Curves

13 / 24

Example 2: TDMA Resource

- Consider a real-time system consisting of *n* applications that are executed on a resource with bandwidth *B* that controls resource access using a TDMA (Time Division Multiple Access) policy.
- Analogously, we could consider a distributed system with *n* communicating nodes, that communicate via a shared bus with bandwidth *B*, with a bus arbitrator that implements a TDMA policy.
- TDMA policy: In every TDMA cycle of length \bar{c} , one single resource slot of length s_i is assigned to application i.

Example 2: TDMA Resource

fakultät für

informatik

technische universität dortmund

$$eta^u(\Delta) = B \min\left\{ \left[rac{\Delta}{ar{c}}
ight] s_i, \Delta - \left[rac{\Delta}{ar{c}}
ight] (ar{c} - s_i)
ight\}$$
 $eta^l(\Delta) = B \max\left\{ \left[rac{\Delta}{ar{c}}
ight] s_i, \Delta - \left[rac{\Delta}{ar{c}}
ight] (ar{c} - s_i)
ight\}$

computer science 12

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 15 / 24

More Examples on Service Curves

technische universität

dortmund

fakultät für

informatik

Abstraction

Greedy Processing Component (GPC)

• Component is triggered by incoming events.

sche universität

- A fully preemptable task is instantiated at every event arrival to process the incoming event.
- Active tasks are processed in a greedy fashion in FIFO order.
- Processing is restricted by the availability of resources.

Some Relations (only for your reference)

• The output upper arrival curve of a component satisfies

$$\alpha^{u\prime} \leq (\alpha^u \oslash \beta^\prime)$$

with a simple and pessimistic calculation.

• The remaining lower service curve of a component satisfies

$$\beta^{\prime\prime}(\Delta) = \sup_{0 \le \lambda \le \Delta} (\beta^{\prime}(\lambda) - \alpha^{\prime\prime}(\lambda))$$

More Relations (only for your reference)

$$\begin{aligned} \alpha^{u'} &= \left[\left(\alpha^{u} \otimes \beta^{u} \right) \oslash \beta^{l} \right] \land \beta^{u} \\ \alpha^{l'} &= \left[\left(\alpha^{u} \oslash \beta^{l} \right) \otimes \beta^{l} \right] \land \beta^{l} \\ \beta^{u'} &= \left(\beta^{u} - \alpha^{l} \right) \overline{\oslash} \mathbf{0} \\ \beta^{l'} &= \left(\beta^{l} - \alpha^{u} \right) \overline{\bigotimes} \mathbf{0} \end{aligned}$$

Without formal proofs....

Graphical Interpretation

informatik

Complete System Composition

RM: Rate-Monotonic (a fixed-priority scheduler, detailed in Chapter 6) TDMA: Time Division Multiple Access

GPC: Greedy Processing Component fakultät für informatik

technische universität dortmund

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 22 / 24

RTC Toolbox (http://www.mpa.ethz.ch/Rtctoolbox)

Overview		
TC Toolbox 0 Conversions 0 Downshad 1 Downshad 1 Downshad P RA P RA 10 Ser Coulde 10 Oversive 10 Ove	Real-Time Calculus Toolbox	Latest News (2010 0-03) (2015 0-05) (2016 and/ork load.) (2000 0-103) (2016 contents for 4 microsoft load.) (2000 1-03) (2016 New Yorkin 1, 2016 News (2000 1-03) (2016 New Yorkin 1, 2016 News (2000 0-103) (2016 New Yorkin 1, 2016 News (2000 0-03) (2016 New Yorkin 1, 2016 News (2006 0-03) (2016 New Yorkin 1, 2016 News (2006 0-03) (2016 New Yorkin 1, 2016 News (2006 0-03) (2016 New Yorkin 1, 2016 New York
Overview	Overview	·
Student Theses	The Real-Time Calculus (RTC) Toolbox is a free Matlab toolbox 🏠 system-level performance analysis of distributed real-time and embedded systems.	

Advantages and Disadvantages of RTC and MPA

- Advantages
 - Provides a powerful abstraction to model event arrivals and resource consumption
 - Considers resources as first-class citizens
 - Allows composition in terms of (a) tasks, (b) streams, (c) resources, (d) sharing strategies.
- Disadvantages
 - Needs some effort to understand and implement
 - Extension to new arbitration schemes not always simple
 - Not applicable for schedulers that change the scheduling policies dynamically.