technische universitat

dortmund

S fakultat fur
informatik

Aperiodic Task Scheduling

Jian-Jia Chen

(slides are based on

Pete

TU Dortmund, Informatik 12

r Marwedel)

Germany

2020%

= 01 A 07H

Structure of this course

4)
— [o Design 1 J -
\Specification) repository J 1Deson J
) § A \
3:
 ES-hardware) 6: Application
mappin
. \ g
4: system 7: Optimization
- SO.](;th\iare (RTOS, 5: Evaluation &
middleware, ...)) validation & (energy,
cost, performance, ...)

Numbers denote sequence of chapters

technische universitat ® fakultatfur © JJ Chenand PMarwedel,
dortmund | informatik Informatik 12, 2018

Real-time scheduling

Assume that we are given a task graph G=(V,E).
\l/

Def.: A schedule S of G is a mapping @4..
V—D,

of a set of tasks V' to start times from domain D..

=05 ()G

\ ~So
\ S
\ SN
\ \\\
\\ So
\

3 ~
\ [NEN \
\ \ \\\ \
D * e
p l

Typically, schedules have to respect a number of constraints,
Incl. resource constraints, dependency constraints, deadlines.
Scheduling = finding such a mapping.

technische universitat = fakultatfur © JJ Chenand P.Marwedel, 3
dortmund informatik Informatik 12, 2018 - -

Hard and soft deadlines

real-time scheduling

—— | .
f hard deadlines) soft deadlines

periodic aperiodic
preemptive non-preemptive preemptive non—-preemptive
static dynamic static dynamic static dynamic static dynamic

@«.gl

Def.: A time-constraint (deadline) is called hard if not meeting
that constraint could result in a catastrophe [Kopetz, 1997].

All other time constraints are called soft.

We will focus on hard deadlines.

technische universitat ® fakultatfur © JJ Chenand PMarwedel,
dortmund informatik Informatik 12, 2018

Periodic and aperiodic tasks

real-time schedullng

hard deadllnes soft deadlines

” .
/. perlodlc aperiodic
AL)
L <]

preemptive non-| preemptlve preemptlve non-| preemptlve

PNV RN

static dynamic static dynamic statlc dynamlc statlc dynamlc

Def.: Tasks which must be executed once every T units of
time are called periodic tasks. 7'is called their period. Each
execution of a periodic task is called a job.

Def.: Tasks requesting the processor at unpredictable times
are called sporadic, if there is a minimum separation
between the times at which they request the processor.

All other tasks are called aperiodic.

technische universitat ® fakultatfur © JJ Chenand PMarwedel,
dortmund informatik Informatik 12, 2018

Preemptive and non-preemptive scheduling

real-time scheduling

- T

hard deadlines soft deadlines

periodic aperiodic
—preemptive preemptive 0- n—preemptive
= N Ve N

static dynamic static dynamic static dynamic static dynamic

Non-preemptive schedulers:
Jobs are executed until they are done.

Response time for external events may be quite long.

Preemptive schedulers: To be used if
- some tasks have long execution times or

- if the response time for external events to be short.

technische universitat ® fakultatfur © JJ Chenand PMarwedel,
dortmund informatik Informatik 12, 2018

Dynamic/online scheduling

Dynamic/online scheduling:
Processor allocation decisions
(scheduling) at run-time; based on the
information about the tasks arrived so

HISTORY
far.
real-time scheduling
- s
hard deadlines soft deadlines
periodic aperiodic
preemptive non—-preemptive preemptive non—preemptive
€ EID EE ED CEED G
technische universitat = fakultatfur © JJ Chenand P.Marwedel, _7-

dortmund informatik Informatik 12, 2018

Static/offline scheduling

Static/offline scheduling:

Scheduling taking a priori knowledge about arrival
times, execution times, and deadlines into account.
Dispatcher allocates processor when interrupted by
timer. Timer controlled by a table generated at

design time.

Time Action WCET
10 Start Task, 12
17 send M5 - @
22 Start Task;, Di tch

1spatcher

38 Start Task, 20 P
47 send M3

technische universitat
dortmund

® fakultatfur © JJ Chenand PMarwedel,

informatik Informatik 12, 2018

Time-triggered systems (1)

In an entirely time-triggered system, the temporal control structure of all
tasks is established a priori by off-line support-tools. This temporal control
structure is encoded in a Task-Descriptor List (TDL) that contains the
cyclic schedule for all activities of the node. This schedule considers the
required precedence and mutual exclusion relationships among the tasks
such that an explicit coordination of the tasks by the operating system at
run time is not necessary. ..

The dispatcher is activated by the synchronized clock tick. It looks at the
TDL, and then performs the action that has been planned for this instant
[KopetZz].

Time Action WCET

10 Start 12

Task,
17 send M5 @
22 Start Di h
38 — 1 1spatcher
47 Beitd M3
technische universitat ® fakultatfur © JJ Chenand PMarwedel, _ 9.

dortmund informatik Informatik 12, 2018

Time-triggered systems (2)

... pre-run-time scheduling is often the only practical
means of providing predictability in a complex system.
[Xu, Parnas].

It can be easily checked if timing constraints are met.
The disadvantage is that the response to sporadic events may
be poor.

technische universitat ® fakultatfur © JJ Chenand PMarwedel, 10
dortmund informatik Informatik 12, 2018 - -

Centralized and distributed scheduling

Mono- and multi-processor scheduling:
Simple scheduling algorithms handle single processors,

more complex algorithms handle multiple processors.
algorithms for homogeneous multi-processor systems

algorithms for heterogeneous multi-processor systems
(includes HW accelerators as special case).

Centralized and distributed scheduling:
Multiprocessor scheduling either locally on 1 or on several
Processors.

technische universitat ® fakultatfur © JJ Chenand PMarwedel, 1
dortmund informatik Informatik 12, 2018 - -

Possible Statements regarding Schedulability

 If A holds, then the task system is schedulable by an
algorithm

 If the task system is schedulable by an algorithm, then B
holds

« Ifand only if C holds, the task system is schedulable by an
algorithm

technische universitat ® fakultatfur © JJ Chenand PMarwedel,
dortmund informatik Informatik 12, 2018

- 12-

Schedulability

Set of tasks is schedulable under a set of
constraints, if a schedule exists for that set
of tasks & constraints.

Exact tests are NP-hard in many situations.

Sufficient tests: sufficient conditions for
schedule checked.

Necessary tests: checking necessary
conditions. Used to show no schedule
exists. There may be cases in which no
schedule exists & we cannot prove it.

technische universitat ® fakultatfur © JJ Chenand PMarwedel,
dortmund informatik Informatik 12, 2018

P -

- 13-

technische universitat
dortmund

Classical scheduling
algorithms
for aperiodic
systems

S fakultat fur
informatik

These slides use Microsoft clip arts.
Microsoft copyright restrictions apply.

Graphics: © Alexandra Nolte, Gesine Marwedel, 2003

Aperiodic scheduling:
- Scheduling with no precedence constraints -

Let {t,;} be a set of tasks. Let:

c;be the execution time of t;,

d; be the absolute deadline
| will use deadline in this case when we have only
aperiodic tasks

r; be the arrive time

[; be the laxity or slack, defined as [, =d; - ¢, - r;

f; be the finishing time.

technische universitat ® fakultatfur © JJ Chenand PMarwedel,
dortmund informatik Informatik 12, 2018

- 15 -

Cost functions

Cost function: Different algorithms aim at minimizing different
functions.

Def.: Maximum lateness =
Mmax,; tasks (COMpletion time — deadline)
Is <0 if all tasks complete before deadline.

lask,
| —
lask, | ;—M
£ X latep
) €Ss
>
technische universitat = fakultatfur © JJ Chenand P.Marwedel,

dortmund informatik Informatik 12, 2018 - 16-

Uniprocessor with equal arrival times

Preemption is useless.

Earliest Due Date (EDD): Execute task with earliest due
date (deadline) first.

=

fi i f

EDD requires all tasks to be sorted by their (absolute)
deadlines. Hence, its complexity is O(n log(n)).

hJ technische universitat ® fakultatfur © JJ Chenand PMarwedel,
dortmund informatik Informatik 12, 2018

- 17 -

Optimality of EDD

EDD is optimal for minimizing the maximum lateness:

Given a set of n independent tasks, any algorithm that
executes the tasks in order of non-decreasing (absolute)
deadlines is optimal with respect to minimizing the maximum
lateness.

Proof (See Buttazzo, 2002):
Let S be a schedule produced by any algorithm A4

If S = the schedule of EDD — 31+ 7,,d,<d,, T,
iImmediately precedes t,in S.

Let S’ be the schedule obtained by exchanging t,and T,

technische universitat ® fakultatfur © JJ Chenand PMarwedel,
dortmund informatik Informatik 12, 2018

- 18 -

Exchanging t ,and t ,cannot increase lateness

Max. lateness for T ,and t,inSis L, (a,b)=f,-d,

Max. lateness for Tt ,and v ,inS"'is L', (a,b)=max(L’, L")

Two possible cases
1. L’aZL,b:%L’max(aab) =fa_da <f;z_da= Lmax(aab)
since T, starts earlier in schedule S'.
2. Lla < L'b: — leax(aab) =fb R db =fc‘z R db S][a R da = Lmax(aab)
since f,=f,and d, < d,
ol B4

max(aab) S Lmax(aab)

S - .
1
S . [[

v

felFf' b

-tLJ technische universitat ® fakultatfur © JJ Chenand PMarwedel, 19
dortmund informatik Informatik 12, 2018 - -

EDD is optimal

< Any schedule S with lateness L can be transformed into an
EDD schedule S* with lateness L* < [, which is the minimum
lateness.

< EDD is optimal for minimizing the maximum lateness
(g.e.d.)

< EDD is optimal for meeting the deadlines

Note that EDD is not always optimal for other cost functions

technische universitat ® fakultatfur © JJ Chenand PMarwedel, 20
dortmund informatik Informatik 12, 2018 - -

Sufficient and Necessary Schedulability Tests for
EDD

= A set of aperiodic tasks arriving at the same time (says, 0)
Is schedulable (by EDD) if and only if

Vk, Y ¢ =d,
T.:d;<d,

o Proof for if: this simply comes from the evaluation of EDD

o Proof for only if: this simply comes from the fact that the
demand must be no more than the available time

technische universitat ® fakultatfur © JJ Chenand PMarwedel, 21
dortmund informatik Informatik 12, 2018 - -

Earliest Deadline First (EDF): - Horn’s Theorem -

Different arrival times: Preemption potentially reduces lateness.

Theorem [Horn74]: Given a set of n independent tasks with
arbitrary arrival times, any algorithm that at any instant executes
the task with the earliest absolute deadline among all the ready
tasks is optimal with respect to minimizing the maximum

lateness.

technische universitat ® fakultatfur © JJ Chenand PMarwedel, 29
dortmund informatik Informatik 12, 2018 - -

Earliest Deadline First (EDF): - Algorithm -

Earliest deadline first (EDF) algorithm:
Each time a new ready task arrives:

It is inserted into a queue of ready tasks, sorted by their
absolute deadlines. Task at head of queue is executed.

If a newly arrived task is inserted at the head of the
queue, the currently executing task is preempted.

Straightforward approach with sorted lists (full comparison with
existing tasks for each arriving task) requires run-time O(n?);
(less with binary search or bucket arrays).

Sorted queue

ON N NON

A

!
Executing task

technische universitat ® fakultatfur © JJ Chenand PMarwedel, 23
dortmund informatik Informatik 12, 2018 - -

Earliest Deadline First (EDF): Example -

arrival |duration | deadline
T, 0 10 33

Task arrivals | o 4 3 28

I N N

Voo n| 5 10 29
Ty 1 A \\%:
k ——/ ;\ T\\ T 1 ' T T T ™ T ' 1

0 2/ 4 6 \8\10 12 14 16 18
Earlier deadline Later deadline
& preemption % no preemption

technische universitat
dortmund

= fakultat far

© JJ Chenand PMarwedel,
informatik

Informatik 12, 2018

Optimality of EDF

To be shown: EDF minimizes maximum lateness.
Proof (Buttazzo, 2002):

Let S be a schedule produced by generic schedule 4
Let Sgpr: schedule produced by EDF

Preemption allowed: tasks executed in disjoint time
Intervals

S divided into time slices of 1 time unit each

Time slices denoted by [z, #+1)

Let S(¢): task executing in [z, t+1)

Let £(¢): the unfinished task which, at time ¢, has the
earliest absolute deadline

Let 7.(¢7): time (=¢) at which the next slice of task E(7)
begins its execution in schedule S

technische universitat ® fakultatfur © JJ Chenand PMarwedel,
dortmund informatik Informatik 12, 2018

Optimality of EDF (2)

If S = Sepr, then there exists time ¢ S(¢) = E(¢)
ldea: swapping S(#) and E(¢) cannot increase max. lateness.

4
T A : ‘
Ty |h [*
A ;
1:3 [I I _ I I I I I
0 1 2 3 4 5 6 7 8 9 10 L

{ =4

technische universitat = fakultatfur © JJ Chenand P.Marwedel,
dortmund informatik Informatik 12, 2018 [Buttazzo, 2002]

Optimality of EDF (3)

Using the same argument as in

Algorithm interchange: the proof of EDD, it is easy to
{ for (=0 to D-1) { show that swapping cannot
if (S(z) = E(0)) { increase maximum lateness;
S(tx(1)) = S(2); hence EDF is optimal for
S(¢) = EQ); 11} minimizing the maximum
lateness.

Does interchange preserve schedulability?

No, the argument is slightly buggy. Why not? How to fia(iet?d

technische universitat ® fakultatfur © JJ Chenand PMarwedel,

dortmund informatik Informatik 12, 2018 [Buttazzo, 2002] - 27 -

Sufficient and Necessary Schedulability Tests for
EDF

= A set of aperiodic tasks is schedulable (by EDD) if and only
if

Vr. <d, E c,=d,-r

T nsrjandd<d

o Proof for only if (necessary test): this simply comes from
the fact that the demand must be no more than the
available time

o Proof for if (sufficient test)

technische universitat ® fakultatfur © JJ Chenand PMarwedel, 28
dortmund informatik Informatik 12, 2018 - -

Proof: Sufficient Schedulability Test for EDF

Proof by contrapositive:
Suppose that EDF schedule does not meet the deadline
Let task T, be the first task which misses its absolute deadline d,

Let t, be the last instant before d,, at which either the processor is idle or the
processor executes a task with absolute deadline larger than d

By EDF, t,must be an arrival time of a job, called t;
Therefore, t, is equal to ;
Due to the deadline miss of t,, the processor must be busy between r; and d,

The processor executes only the jobs arriving no earlier than r; and with
absolute deadline less than or equal to d

Therefore, we conclude the proof by showing that

31, <d,, E c,>d, -,

T n=srjandd;<d

technische universitat ® fakultatfur © JJ Chenand PMarwedel, 29
dortmund informatik Informatik 12, 2018 - -

Least laxity (LL), Least Slack Time First (LST)

Priorities = decreasing function of the laxity
(lower laxity = higher priority); changing priority; preemptive.

arrival | duration | deadline
T 0 10 33
T, 4 3 28 1(I4)=33-15-6=12
j/(29=29—15—2=12
T3 5 10 29 f
A
T | | | || |
. = — .
| : -
. | I o I
3 |

L O e L Y L L B
0 2 4 .6 8 10 12 14 16 18 20 22 t

(T1)=33-4-6=23 | (f1)=33—5—6=22 1(1,)=33-13-6=14 [(I;)=33-16-6=11
1(T,)=28-4-3=21 [(T,)=28-5-2=21 [(T,)=28-13-2=13 [(I3)=29-16-1=12
1(T3)=29-5-10=14 [(T3)=29-13-2=14

technische universitat ® fakultatfur © JJ Chenand PMarwedel, 30
dortmund . L informatik Informatik 12, 2018 - -

Properties

Not sufficient to call scheduler & re-compute laxity just at
task arrival times.

Overhead for calls of the scheduler.
Many context switches.
Detects missed deadlines early.

LL is also an optimal scheduling for mono-processor
systems to meet the deadlines.

Dynamic priorities & cannot be used with a fixed prio OS.

LL scheduling requires the knowledge of the execution
time.

technische universitat ® fakultatfur © JJ Chenand PMarwedel, 31
dortmund informatik Informatik 12, 2018 - -

Scheduling without preemption (1)

Lemma: If preemption is not allowed, optimal schedules may
have to leave the processor idle at certain times.

Proof. Suppose: optimal schedulers never leave processor
idle.

technische universitat ® fakultatfur © JJ Chenand PMarwedel, 39
dortmund informatik Informatik 12, 2018 - -

Scheduling without preemption (2)

T,. periodic, available at times 4*n, ¢,=2, T, =4, D, =4

T,. periodic, available at times 4*n+1,c,=1, T, =4, D,= 1

t, has to start at r =0

+ deadline missed, but schedule is possible (start t, first)
%~ scheduler is not optimal < contradiction! g.e.d.

Available Missed deadline

g
} ldle
Ty £
T S
T
I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 t
technische universitat = fakultatfur © JJ Chenand P.Marwedel, . 33-

dortmund informatik Informatik 12, 2018

Scheduling without preemption

Preemption not allowed: = optimal schedules may leave
processor idle to finish tasks with early deadlines arriving late.

= Knowledge about the future is needed for optimal
scheduling algorithms
“-No online algorithm can decide whether or not to keep idle.

EDF is optimal among all scheduling algorithms not keeping
the processor idle at certain times.

If arrival times are known a priori, the scheduling problem
becomes NP-hard in general. B&B typically used.

technische universitat ® fakultatfur © JJ Chenand PMarwedel, 34
dortmund informatik Informatik 12, 2018 - -

Summary

Hard vs. soft deadlines
Static vs. dynamic =TT-OS
Schedulability

Classical scheduling
Aperiodic tasks

No precedences

Simultaneous (¥ EDD)
& Asynchronous Arrival Times (¥ EDF, LL)

No preemption (brief)

technische universitat ® fakultatfur © JJ Chenand PMarwedel,
dortmund informatik Informatik 12, 2018

- 35-

