
Multiprocessor Real-Time Scheduling: A
Summary

Prof. Dr. Jian-Jia Chen

LS 12, TU Dortmund

15 Jan. 2020

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 34

Outline

Introduction

Partitioned Scheduling for Implicit-Deadline EDF Scheduling

Partitioned Scheduling for Implicit-Deadline RM Scheduling

Global Multiprocessor Scheduling

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 2 / 34

Multiprocessor Models

• Identical (Homogeneous): All the processors have the same
characteristics, i.e., the execution time of a job is independent on
the processor it is executed.

• Uniform: Each processor has its own speed, i.e., the execution time
of a job on a processor is proportional to the speed of the processor.

• A faster processor always executes a job faster than slow
processors do.

• For example, multiprocessors with the same instruction set but
with different supply voltages/frequencies.

• Unrelated (Heterogeneous): Each job has its own execution time on
a specified processor

• A job might be executed faster on a processor, but other jobs
might be slower on that processor.

• For example, multiprocessors with different instruction sets.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 3 / 34

Scheduling Models

• Partitioned Scheduling:
• Each task is assigned on a dedicated processor.
• Schedulability is done individually on each processor.
• It requires no additional on-line overhead.

• Global Scheduling:
• A job may execute on any processor.
• The system maintains a global ready queue.
• Execute the M highest-priority jobs in the ready queue, where

M is the number of processors.
• It requires high on-line overhead.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 4 / 34

Problem Definition: Partitioned Scheduling

Partitioned Scheduling

Given a set T of tasks with implicit deadlines, i.e., ∀τi ∈ T,
Ti = Di , the objective is to decide a feasible task assignment onto
M processors such that all the tasks meet their timing constraints,
where Cim is the execution time of task τi on processor m.

• For identical multiprocessors: Ci = Ci1 = Ci2 = · · · = CiM .

• For uniform multiprocessors: each processor m has a speed
sm, in which Cimsm is a constant.

• For unrelated multiprocessors: Cim is an independent
parameter.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 5 / 34

Hardness and Approximation of Partitioned Scheduling

NP-complete

Deciding whether there exists a feasible task assignment is
NP-complete in the strong sense.

Proof

Reduced from the 3-Partition problem.

• Approximations are possible, but what do we approximate
when only binary decisions (Yes or No) have to be made?
• Deadline relaxation: requires modifications of task specification
• Period relaxation: requires modifications of task specification
• Resource augmentation by speeding up: requires a faster

platform
• Resource augmentation by allocating more processors: requires

a better platform

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 6 / 34

Hardness and Approximation of Partitioned Scheduling

NP-complete

Deciding whether there exists a feasible task assignment is
NP-complete in the strong sense.

Proof

Reduced from the 3-Partition problem.

• Approximations are possible, but what do we approximate
when only binary decisions (Yes or No) have to be made?
• Deadline relaxation: requires modifications of task specification
• Period relaxation: requires modifications of task specification
• Resource augmentation by speeding up: requires a faster

platform
• Resource augmentation by allocating more processors: requires

a better platform

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 6 / 34

Approximation Algorithms

An algorithm A is called an η-approximation algorithm (for a
minimization problem) if it guarantees to derive a feasible solution
for any input instance I with at most η times of the objective
function of an optimal solution. That is,

A(I) ≤ ηOPT (I),

where OPT (I) is the objective function of an optimal solution.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 7 / 34

Terminologies Used in Scheduling Theory

Graham’s Scheduling Algorithm Classification

• Classification: a|b|c
• a: machine environment

(e.g., uniprocessor, multiprocessor, distributed, . . .)
• b: task and resource characteristics

(e.g., preemptive, independent, synchronous, . . .)
• c : performance metric and objectives

(e.g., Lmax, sum of finish times, . . .)

• Makespan problem:
• M||Cmax

• Input: M identical processors and N jobs with given execution
times arriving at time 0

• Output: Assign a job to a processor and execute the jobs to
minimize the maximum completion time

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 8 / 34

Bin Packing Problem

• Given a bin size b, and a set of items with individual sizes, the
objective is to assign each item to a bin without violating the
bin size constraint such that the number of allocated bins is
minimized.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 9 / 34

Outline

Introduction

Partitioned Scheduling for Implicit-Deadline EDF Scheduling

Partitioned Scheduling for Implicit-Deadline RM Scheduling

Global Multiprocessor Scheduling

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 10 / 34

Largest-Utilization-First (LUF) - for EDF Scheduling

Input: T,M;
1: re-index (sort) tasks such that Ci

Ti
≥ Cj

Tj
for i < j ;

2: Tm ← ∅,Um ← 0,∀m = 1, 2, . . . ,M;
3: for i = 1 to N, where N = |T| do
4: find m∗ with the minimum utilization, i.e., Um∗ = minm≤M Um;
5: if Um∗ + Ci

Ti
> 1 then

6: return ”The task assignment fails”;
7: else
8: assign task τi onto processor m∗, where

Um∗ ← Um∗ + Ci

Ti
,Tm∗ ← Tm∗ ∪ {τi};

9: return feasible task assignment T1,T2, . . . ,TM ;

Properties

• The time complexity is O((N + M) log(N + M))

• If a solution is derived, the task assignment is feasible by using EDF.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 11 / 34

Largest-Utilization-First (LUF) - for EDF Scheduling

Input: T,M;
1: re-index (sort) tasks such that Ci

Ti
≥ Cj

Tj
for i < j ;

2: Tm ← ∅,Um ← 0,∀m = 1, 2, . . . ,M;
3: for i = 1 to N, where N = |T| do
4: find m∗ with the minimum utilization, i.e., Um∗ = minm≤M Um;
5: if Um∗ + Ci

Ti
> 1 then

6: return ”The task assignment fails”;
7: else
8: assign task τi onto processor m∗, where

Um∗ ← Um∗ + Ci

Ti
,Tm∗ ← Tm∗ ∪ {τi};

9: return feasible task assignment T1,T2, . . . ,TM ;

Properties

• The time complexity is O((N + M) log(N + M))

• If a solution is derived, the task assignment is feasible by using EDF.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 11 / 34

Algorithm LUF

τ1

0.5

τ2

0.45

τ3

0.37

τ4

0.3

τ5

0.2

τ6

0.2

τ7

0.15

τ8

0.1

(0, 0, 0) (.5, 0, 0) (.5, .45, 0) (.5, .45, .37) (.5, .45, .67) (.5, .65, .67) (.7, .65, .67) (.7, .8, .67)

P1 P2 P3

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 12 / 34

Algorithm LUF

τ1

0.5

τ2

0.45

τ3

0.37

τ4

0.3

τ5

0.2

τ6

0.2

τ7

0.15

τ8

0.1

(0, 0, 0)

(.5, 0, 0) (.5, .45, 0) (.5, .45, .37) (.5, .45, .67) (.5, .65, .67) (.7, .65, .67) (.7, .8, .67)

P1 P2 P3

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 12 / 34

Algorithm LUF

τ1

0.5

τ2

0.45

τ3

0.37

τ4

0.3

τ5

0.2

τ6

0.2

τ7

0.15

τ8

0.1

(0, 0, 0)

(.5, 0, 0)

(.5, .45, 0) (.5, .45, .37) (.5, .45, .67) (.5, .65, .67) (.7, .65, .67) (.7, .8, .67)

P1

τ1

P2 P3

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 12 / 34

Algorithm LUF

τ1

0.5

τ2

0.45

τ3

0.37

τ4

0.3

τ5

0.2

τ6

0.2

τ7

0.15

τ8

0.1

(0, 0, 0) (.5, 0, 0)

(.5, .45, 0)

(.5, .45, .37) (.5, .45, .67) (.5, .65, .67) (.7, .65, .67) (.7, .8, .67)

P1

τ1

P2

τ2

P3

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 12 / 34

Algorithm LUF

τ1

0.5

τ2

0.45

τ3

0.37

τ4

0.3

τ5

0.2

τ6

0.2

τ7

0.15

τ8

0.1

(0, 0, 0) (.5, 0, 0) (.5, .45, 0)

(.5, .45, .37)

(.5, .45, .67) (.5, .65, .67) (.7, .65, .67) (.7, .8, .67)

P1

τ1

P2

τ2

P3

τ3

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 12 / 34

Algorithm LUF

τ1

0.5

τ2

0.45

τ3

0.37

τ4

0.3

τ5

0.2

τ6

0.2

τ7

0.15

τ8

0.1

(0, 0, 0) (.5, 0, 0) (.5, .45, 0) (.5, .45, .37)

(.5, .45, .67)

(.5, .65, .67) (.7, .65, .67) (.7, .8, .67)

P1

τ1

P2

τ2

P3

τ3

τ4

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 12 / 34

Algorithm LUF

τ1

0.5

τ2

0.45

τ3

0.37

τ4

0.3

τ5

0.2

τ6

0.2

τ7

0.15

τ8

0.1

(0, 0, 0) (.5, 0, 0) (.5, .45, 0) (.5, .45, .37) (.5, .45, .67)

(.5, .65, .67)

(.7, .65, .67) (.7, .8, .67)

P1

τ1

P2

τ2

τ5

P3

τ3

τ4

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 12 / 34

Algorithm LUF

τ1

0.5

τ2

0.45

τ3

0.37

τ4

0.3

τ5

0.2

τ6

0.2

τ7

0.15

τ8

0.1

(0, 0, 0) (.5, 0, 0) (.5, .45, 0) (.5, .45, .37) (.5, .45, .67) (.5, .65, .67)

(.7, .65, .67)

(.7, .8, .67)

P1

τ1

τ6

P2

τ2

τ5

P3

τ3

τ4

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 12 / 34

Algorithm LUF

τ1

0.5

τ2

0.45

τ3

0.37

τ4

0.3

τ5

0.2

τ6

0.2

τ7

0.15

τ8

0.1

(0, 0, 0) (.5, 0, 0) (.5, .45, 0) (.5, .45, .37) (.5, .45, .67) (.5, .65, .67) (.7, .65, .67)

(.7, .8, .67)

P1

τ1

τ6

P2

τ2

τ5

τ7

P3

τ3

τ4

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 12 / 34

Algorithm LUF

τ1

0.5

τ2

0.45

τ3

0.37

τ4

0.3

τ5

0.2

τ6

0.2

τ7

0.15

τ8

0.1

(0, 0, 0) (.5, 0, 0) (.5, .45, 0) (.5, .45, .37) (.5, .45, .67) (.5, .65, .67) (.7, .65, .67) (.7, .8, .67)

P1

τ1

τ6

U = 0.7

P2

τ2

τ5

τ7

U = 0.8

P3

τ3

τ4

τ8

U = 0.77

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 12 / 34

Optimality of Algorithm LUF

Theorem

If an optimal assignment for minimizing the maximal utilization re-
sults in at most two tasks on any processor, LUF is optimal.

Proof

The proof is omitted.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 13 / 34

What Happens if Algorithm LUF Fails?

Assume that there exists a feasible task partition on M processors
(for providing the analysis of resource augmentation).

• Suppose that Algorithm LUF fails when assigning task τj and Um for
m = 1, 2, . . . ,M is the utilization of processor m before assigning τj .

• Let Uopt be the utilization of the optimal assignment for minimizing the
maximal utilization for tasks {τ1, τ2, . . . , τj}.

• By definition, 1 ≥ Uopt ≥
∑j

i=1
Ci/Ti
M

.

• Cj

Tj
≤ 1

3
Uopt : otherwise, there will be at most two tasks on any processors

in the optimal solution. ⇒ this contradicts the assumption that
Algorithm LUF fails as it is optimal.

• Since Um∗ ≤ Um, we know that Um∗ ≤
∑M

m=1
Um
M

=
∑j−1

i=1
Ci/Ti
M

.

• Therefore,

Cj

Tj
+Um∗ ≤

Cj

Tj
(1− 1

M
) +

j∑
i=1

Ci/Ti

M
≤
(

4

3
− 1

3M

)
Uopt ≤

(
4

3
− 1

3M

)
.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 14 / 34

Algorithm LUF+: Resource Augmentation on Processors

Input: T;
1: re-index (sort) tasks such that Ci

Ti
≥ Cj

Tj
for i < j ;

2: T1 ← ∅,U1 ← 0, M̂ ← 1;
3: for i = 1 to N, where N = |T| do
4: find a processor m∗ with Um∗ + Ci

Ti
≤ 1;

5: if no such a processor exists then
6: M̂ ← M̂ + 1,TM̂ ← ∅,UM̂ ← 0;

7: m∗ ← M̂;
8: assign task τi onto processor m∗, where

Ui ← Ui + Ci

Ti
,Ti ← Ti ∪ {τi};

9: return task assignment T1,T2, . . . ,TM̂ ;

Properties

• The time complexity is O(N logN) or O(N2), depending on
the fitting approaches.

• The resulting solution is feasible on M̂ processors.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 15 / 34

Algorithm LUF+: Resource Augmentation on Processors

Input: T;
1: re-index (sort) tasks such that Ci

Ti
≥ Cj

Tj
for i < j ;

2: T1 ← ∅,U1 ← 0, M̂ ← 1;
3: for i = 1 to N, where N = |T| do
4: find a processor m∗ with Um∗ + Ci

Ti
≤ 1;

5: if no such a processor exists then
6: M̂ ← M̂ + 1,TM̂ ← ∅,UM̂ ← 0;

7: m∗ ← M̂;
8: assign task τi onto processor m∗, where

Ui ← Ui + Ci

Ti
,Ti ← Ti ∪ {τi};

9: return task assignment T1,T2, . . . ,TM̂ ;

Properties

• The time complexity is O(N logN) or O(N2), depending on
the fitting approaches.

• The resulting solution is feasible on M̂ processors.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 15 / 34

Different Fitting Approaches

4: find a processor m∗ with Um∗ + Ci

Ti
≤ 1;

Fitting Strategies

• First-Fit: choose the feasible one with the smallest index

• Last-Fit: choose the feasible one with the largest index

• Best-Fit: choose the feasible one with the maximal utilization

• Worst-Fit: choose the feasible one with the minimal utilization

Suppose that we want to assign a task with utilization equal to 0.1.

P1 P2 P3 P4

0.6 0.7
0.5 0.65

First Fit Last FitBest Fit
Worst Fit

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 16 / 34

Different Fitting Approaches

4: find a processor m∗ with Um∗ + Ci

Ti
≤ 1;

Fitting Strategies

• First-Fit: choose the feasible one with the smallest index

• Last-Fit: choose the feasible one with the largest index

• Best-Fit: choose the feasible one with the maximal utilization

• Worst-Fit: choose the feasible one with the minimal utilization

Suppose that we want to assign a task with utilization equal to 0.1.

P1 P2 P3 P4

0.6 0.7
0.5 0.65First Fit

Last FitBest Fit
Worst Fit

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 16 / 34

Different Fitting Approaches

4: find a processor m∗ with Um∗ + Ci

Ti
≤ 1;

Fitting Strategies

• First-Fit: choose the feasible one with the smallest index

• Last-Fit: choose the feasible one with the largest index

• Best-Fit: choose the feasible one with the maximal utilization

• Worst-Fit: choose the feasible one with the minimal utilization

Suppose that we want to assign a task with utilization equal to 0.1.

P1 P2 P3 P4

0.6 0.7
0.5 0.65First Fit Last Fit

Best Fit
Worst Fit

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 16 / 34

Different Fitting Approaches

4: find a processor m∗ with Um∗ + Ci

Ti
≤ 1;

Fitting Strategies

• First-Fit: choose the feasible one with the smallest index

• Last-Fit: choose the feasible one with the largest index

• Best-Fit: choose the feasible one with the maximal utilization

• Worst-Fit: choose the feasible one with the minimal utilization

Suppose that we want to assign a task with utilization equal to 0.1.

P1 P2 P3 P4

0.6 0.7
0.5 0.65First Fit Last FitBest Fit

Worst Fit

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 16 / 34

Different Fitting Approaches

4: find a processor m∗ with Um∗ + Ci

Ti
≤ 1;

Fitting Strategies

• First-Fit: choose the feasible one with the smallest index

• Last-Fit: choose the feasible one with the largest index

• Best-Fit: choose the feasible one with the maximal utilization

• Worst-Fit: choose the feasible one with the minimal utilization

Suppose that we want to assign a task with utilization equal to 0.1.

P1 P2 P3 P4

0.6 0.7
0.5 0.65First Fit Last FitBest Fit

Worst Fit

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 16 / 34

Algorithm LUF+: How Many Processors?

• Suppose that the processor used by Algorithm LUF+ is M̂ ≥ 2.

• Let m∗ be the processor with the minimum utilization.

• By the fitting algorithm, we know that Um + Um∗ > 1 and Um ≥ Um∗ for
all the other processors ms.

• If Um∗ ≤ 0.5, by Um > 1− Um∗ , we know that

∑
τi∈T

Ci

Ti
≥ Um∗+

M̂∑
m=1,m 6=m∗

Um ≥ M̂−1−(M̂−2)Um∗ ≤ (M̂−2)(1−Um∗)+1 ≥ M̂

2
.

• If Um∗ > 0.5, by Um ≥ Um∗ , we know that

∑
τi∈T

Ci

Ti
≥ Um∗ +

M̂∑
m=1,m 6=m∗

Um ≥
M̂

2
.

Theorem

Algorithm LUF+ is a 2-approximation algorithm (with respect to
allocating more processors).

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 17 / 34

Outline

Introduction

Partitioned Scheduling for Implicit-Deadline EDF Scheduling

Partitioned Scheduling for Implicit-Deadline RM Scheduling

Global Multiprocessor Scheduling

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 18 / 34

Largest-Utilization-First (LUF+) - for RM Scheduling

Input: T;
1: re-index (sort) tasks such that Ci

Ti
≥ Cj

Tj
for i < j ;

2: T1 ← ∅,U1 ← 0, n1 ← 0; M̂ ← 1;
3: for i = 1 to N, where N = |T| do
4: find a processor m∗ with Um∗ + Ci

Ti
≤ (nm∗ + 1)

(
2

1
nm∗+1 − 1

)
;

5: if no such a processor exists then
6: M̂ ← M̂ + 1,TM̂ ← ∅,UM̂ ← 0, nM̂ ← 0;

7: m∗ ← M̂;
8: assign task τi onto processor m∗, where

Um∗ ← Um∗ + Ci

Ti
,Tm∗ ← Tm∗ ∪ {τi} , nm∗ ← nm∗ + 1;

9: return task assignment T1,T2, . . . ,TM̂ ;

Properties

• The time complexity is O((N + M) log(N + M))

• If a solution is derived, the task assignment is feasible by using RM.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 19 / 34

Largest-Utilization-First (LUF+) - for RM Scheduling

Input: T;
1: re-index (sort) tasks such that Ci

Ti
≥ Cj

Tj
for i < j ;

2: T1 ← ∅,U1 ← 0, n1 ← 0; M̂ ← 1;
3: for i = 1 to N, where N = |T| do
4: find a processor m∗ with Um∗ + Ci

Ti
≤ (nm∗ + 1)

(
2

1
nm∗+1 − 1

)
;

5: if no such a processor exists then
6: M̂ ← M̂ + 1,TM̂ ← ∅,UM̂ ← 0, nM̂ ← 0;

7: m∗ ← M̂;
8: assign task τi onto processor m∗, where

Um∗ ← Um∗ + Ci

Ti
,Tm∗ ← Tm∗ ∪ {τi} , nm∗ ← nm∗ + 1;

9: return task assignment T1,T2, . . . ,TM̂ ;

Properties

• The time complexity is O((N + M) log(N + M))

• If a solution is derived, the task assignment is feasible by using RM.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 19 / 34

A Simple Analysis

• The schedulability test Um∗ + Ci
Ti
≤ (nm∗ + 1)

(
2

1
nm∗+1 − 1

)
is

upper bounded by 69.3%.

• According to the above analysis for EDF, we can also

conclude that the utilization is at least 0.693M̂
2 .

• Therefore, the approximation factor of LUF+ is 2
0.693 ≈ 2.887.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 20 / 34

Remarks (Augmenting the Number of Processors)

Survey by Davis and Burns (ACM Computing Surveys, 2011):

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 21 / 34

Results for Constrained- and Arbitrary-Deadline Systems

implicit deadlines constrained deadlines arbitrary deadlines

partitioned with EDF
4
3
− 1

3M
(Graham

1969)
3− 1

M
(Baruah/Fisher 2006) 4− 2

M
(Baruah/Fisher 2005)

(1 + ε)
(Hochbaum/Shmoys
1987)

2.6322 − 1
M

(Chen/Chakraborty 2011)
3− 1

M
(Chen/Chakraborty 2011)

partitioned with DM
(bin-packing) 7

4
(Bur-

chard et al. 1995)
3 − 1

M
(Baker/Fisher/Baruah

2009)
4− 2

M
(Baker/Fisher/Baruah 2009)

(bin-packing) 1.5
(Rothvoß2009)

2.84306 (Chen 2016) 3− 1
M

(Chen 2016)

The above factors are for speed-up factors, except the two results in partitioned
RM scheduling.

Jian-Jia Chen, Georg von der Brüggen, Wen-Hung Huang, Robert I. Davis: On the
Pitfalls of Resource Augmentation Factors and Utilization Bounds in Real-Time
Scheduling. ECRTS 2017: 9:1-9:25

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 22 / 34

Outline

Introduction

Partitioned Scheduling for Implicit-Deadline EDF Scheduling

Partitioned Scheduling for Implicit-Deadline RM Scheduling

Global Multiprocessor Scheduling

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 23 / 34

Global Scheduling

• We will only focus on identical multiprocessors in this module.
• The system has a global queue.
• A job can be migrated to any processor.
• Priority-based global scheduling:

• Among the jobs in the global queue, the M highest priority
jobs are chosen to be executed on M processors.

• Task migration here is assumed no overhead.
• Global-EDF: When a job finishes or arrives to the global queue,

the M jobs in the queue with the shortest absolute deadlines
are chosen to be executed on M processors.

• Global-FP, Global-DM, Global-RM: When a job finishes or
arrives to the global queue, the M jobs in the queue with the
highest priorities (defined by fixed-priority ordering,
deadline-monotonic strategy, or rate-monotonic strategy) are
chosen to be executed on M processors.

• Pfair scheduling, and the variances (not discussed in this
lecture).

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 24 / 34

Good News for Global Scheduling

• McNaughton’s wrap-around rule for P|pmtn|Cmax on M
processors (historically, task migration is also called task
preemption in the literature)

• Compute Cmax as max{maxτi∈T Ci ,
∑

τi∈T
Ci

M }
• Assign the tasks according to any order from time 0 to Cmax

• If a task’s processing exceeds Cmax, the task is migrated to a
new processor from time 0

• Repeat the assignment of tasks until all the tasks are assigned

• The resulting schedule minimizes Cmax

R. McNaughton. Scheduling with deadlines and loss functions. Management Science,
6:1-12, 1959.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 25 / 34

McNaughton’s Algorithm: Example

D

split tasks

unsplit tasks

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 26 / 34

Weakness of Partitioned Scheduling

• Restricting a task on a processor reduces the schedulability
• Restricting a task on a processor makes the problem NP-hard
• The NP-completeness does no hold any more if the migration

has no overhead.
• Proportionate Fair (pfair) algorithm introduced by Baruah et

al. provides an optimal utilization bound for schedulibility
• A task set with implicit deadlines is schedulable on M identical

processors if the total utilization of the task set is no more
than M.

• The idea is to divide the time line into quanta, and execute
tasks proportionally in each quanta.

• It has very high overhead.
• There are several variances to reduce the overhead.

Sanjoy K. Baruah, N. K. Cohen, C. Greg Plaxton, Donald A. Varvel: Proportionate
Progress: A Notion of Fairness in Resource Allocation. Algorithmica 15(6): 600-625
(1996)

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 27 / 34

Bad News for Global Scheduling

For Global-EDF or Global-RM, the least upper bound for
schedulability analysis is at most 1.

Input:

M + 1 tasks:

• One heavy task τk : Dk = Tk = Ck

• M light tasks τi s: Ci = ε and Di = Ti = Ck − ε, in which ε is
a positive number, very close to 0.

Result:

The M light tasks (with higher priority than the heavy task) will be
scheduled on M processors. The heavy task misses the deadline
even when the utilization is 1 + Mε.

Sudarshan K. Dhall, C. L. Liu, On a Real-Time Scheduling Problem, OPERATIONS
RESEARCH Vol. 26, No. 1, January-February 1978, pp. 127-140.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 28 / 34

Bad News for Global Scheduling

For Global-EDF or Global-RM, the least upper bound for
schedulability analysis is at most 1.

Input:

M + 1 tasks:

• One heavy task τk : Dk = Tk = Ck

• M light tasks τi s: Ci = ε and Di = Ti = Ck − ε, in which ε is
a positive number, very close to 0.

Result:

The M light tasks (with higher priority than the heavy task) will be
scheduled on M processors. The heavy task misses the deadline
even when the utilization is 1 + Mε.

Sudarshan K. Dhall, C. L. Liu, On a Real-Time Scheduling Problem, OPERATIONS
RESEARCH Vol. 26, No. 1, January-February 1978, pp. 127-140.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 28 / 34

Gold Approach: Resource Augmentation

• The bad news on the least upper bound was very important in
80’s, since the research in this direction suffered from the so
called “Dhall effect”.

• With resource augmentation, by Phillips et al., the “Dhall
effect” disappears
• For Global-EDF, the resource augmentation factor by

“speeding up” is 2− 1
M .

• That is, if a feasible schedule exists on M processors, applying
Global-EDF is also feasible on M processors by speeding up
the execution speed with 2− 1

M .
• We will focus on schedulability test here first (for the first two

parts) and the resource augmentation at the end.

Cynthia A. Phillips, Clifford Stein, Eric Torng, Joel Wein: Optimal Time-Critical
Scheduling via Resource Augmentation. STOC 1997: 140-149

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 29 / 34

Critical Instants?

• The analysis for uniprocessor scheduling is based on the gold
critical instant theorem.

• Synchronous release of higher-priority tasks and as early as
possible for the following jobs do not lead to the critical
instant for global multiprocessor scheduling
• Suppose that there two identical processors and 3 tasks:

(Ci ,Di ,Ti) are τ1 = (1, 2, 2), τ2 = (1, 3, 3), τ3 = (5, 6, 6)

Feasible for τ3. Infeasible for τ3.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 30 / 34

Identifying Interference

ak dk

τi τi τi τi

head body tail

• Problem window (interval) is defined in [ak , dk).
• The jobs of task τi in the problem window can be categorized

into three types:
• Head job (at most one): some computation demand is carried

in to the problem window for a job arrival before ak .
• Body jobs: the computation demand has to be done in the

problem window.
• Tail job (at most one): some computation demand can be

carried out from the problem window.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 31 / 34

Necessary Condition for Deadline Misses

ak dk

τk τk τk

• If τk misses the deadline at dk , there must be at least Dk − Ck units
of time in which all M processors are executing other higher-priority
jobs.

• Definition: demand W (∆) in a time interval with length ∆ is the
total amount of computation that needs to be completed within the
interval.

• If τk misses its deadline at time dk , then

W (Dk) > M(Dk − Ck) + Ck

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 32 / 34

Summary of Existing Results

Regarding to speedup factors

implicit deadlines constrained deadlines arbitrary deadlines

Global EDF 2− 1
M

(Bonifaci et al. 2008)

Global DM
3− 1

M
(Bertogna et al.

2005)
3− 1

M
(Baruah et al. 2010) 3 (Chen et al. 2018)

3+
√

7
2
≈ 2.823 (Chen

et al. 2015)
3 (Chen et al. 2015)

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 33 / 34

Biondi and Sun’s Effect?

• The state-of-the-art schedulability analysis have issues for
global fixed-priority schedulability and EDF analyses

• For example, if the task set is deemed schedulable under
global RM (by using the above schedulability test), there is a
partitioned schedule which meets all deadlines

• Youcheng Sun, Marco Di Natale: Assessing the pessimism of current multicore
global fixed-priority schedulability analysis. SAC 2018: 575-583

• Alessandro Biondi, Youcheng Sun: On the ineffectiveness of 1/m-based
interference bounds in the analysis of global EDF and FIFO scheduling.
Real-Time Systems 54(3): 515-536 (2018)

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 34 / 34

	Introduction
	Partitioned Scheduling for Implicit-Deadline EDF Scheduling
	Partitioned Scheduling for Implicit-Deadline RM Scheduling
	Global Multiprocessor Scheduling

