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Multiprocessor Models

• Identical (Homogeneous): All the processors have the same
characteristics, i.e., the execution time of a job is independent on
the processor it is executed.

• Uniform: Each processor has its own speed, i.e., the execution time
of a job on a processor is proportional to the speed of the processor.

• A faster processor always executes a job faster than slow
processors do.

• For example, multiprocessors with the same instruction set but
with different supply voltages/frequencies.

• Unrelated (Heterogeneous): Each job has its own execution time on
a specified processor

• A job might be executed faster on a processor, but other jobs
might be slower on that processor.

• For example, multiprocessors with different instruction sets.
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Scheduling Models

• Partitioned Scheduling:
• Each task is assigned on a dedicated processor.
• Schedulability is done individually on each processor.
• It requires no additional on-line overhead.

• Global Scheduling:
• A job may execute on any processor.
• The system maintains a global ready queue.
• Execute the M highest-priority jobs in the ready queue, where

M is the number of processors.
• It requires high on-line overhead.
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Problem Definition: Partitioned Scheduling

Partitioned Scheduling

Given a set T of tasks with implicit deadlines, i.e., ∀τi ∈ T,
Ti = Di , the objective is to decide a feasible task assignment onto
M processors such that all the tasks meet their timing constraints,
where Cim is the execution time of task τi on processor m.

• For identical multiprocessors: Ci = Ci1 = Ci2 = · · · = CiM .

• For uniform multiprocessors: each processor m has a speed
sm, in which Cimsm is a constant.

• For unrelated multiprocessors: Cim is an independent
parameter.
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Hardness and Approximation of Partitioned Scheduling

NP-complete

Deciding whether there exists a feasible task assignment is
NP-complete in the strong sense.

Proof

Reduced from the 3-Partition problem.

• Approximations are possible, but what do we approximate
when only binary decisions (Yes or No) have to be made?
• Deadline relaxation: requires modifications of task specification
• Period relaxation: requires modifications of task specification
• Resource augmentation by speeding up: requires a faster

platform
• Resource augmentation by allocating more processors: requires

a better platform
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Approximation Algorithms

An algorithm A is called an η-approximation algorithm (for a
minimization problem) if it guarantees to derive a feasible solution
for any input instance I with at most η times of the objective
function of an optimal solution. That is,

A(I ) ≤ ηOPT (I ),

where OPT (I ) is the objective function of an optimal solution.
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Terminologies Used in Scheduling Theory

Graham’s Scheduling Algorithm Classification

• Classification: a|b|c
• a: machine environment

(e.g., uniprocessor, multiprocessor, distributed, . . .)
• b: task and resource characteristics

(e.g., preemptive, independent, synchronous, . . .)
• c : performance metric and objectives

(e.g., Lmax, sum of finish times, . . .)

• Makespan problem:
• M||Cmax

• Input: M identical processors and N jobs with given execution
times arriving at time 0

• Output: Assign a job to a processor and execute the jobs to
minimize the maximum completion time
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Bin Packing Problem

• Given a bin size b, and a set of items with individual sizes, the
objective is to assign each item to a bin without violating the
bin size constraint such that the number of allocated bins is
minimized.
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Largest-Utilization-First (LUF) - for EDF Scheduling

Input: T,M;
1: re-index (sort) tasks such that Ci

Ti
≥ Cj

Tj
for i < j ;

2: Tm ← ∅,Um ← 0,∀m = 1, 2, . . . ,M;
3: for i = 1 to N, where N = |T| do
4: find m∗ with the minimum utilization, i.e., Um∗ = minm≤M Um;
5: if Um∗ + Ci

Ti
> 1 then

6: return ”The task assignment fails”;
7: else
8: assign task τi onto processor m∗, where

Um∗ ← Um∗ + Ci

Ti
,Tm∗ ← Tm∗ ∪ {τi};

9: return feasible task assignment T1,T2, . . . ,TM ;

Properties

• The time complexity is O((N + M) log(N + M))

• If a solution is derived, the task assignment is feasible by using EDF.
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Optimality of Algorithm LUF

Theorem

If an optimal assignment for minimizing the maximal utilization re-
sults in at most two tasks on any processor, LUF is optimal.

Proof

The proof is omitted.
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What Happens if Algorithm LUF Fails?

Assume that there exists a feasible task partition on M processors
(for providing the analysis of resource augmentation).

• Suppose that Algorithm LUF fails when assigning task τj and Um for
m = 1, 2, . . . ,M is the utilization of processor m before assigning τj .

• Let Uopt be the utilization of the optimal assignment for minimizing the
maximal utilization for tasks {τ1, τ2, . . . , τj}.

• By definition, 1 ≥ Uopt ≥
∑j

i=1
Ci/Ti
M

.

• Cj

Tj
≤ 1

3
Uopt : otherwise, there will be at most two tasks on any processors

in the optimal solution. ⇒ this contradicts the assumption that
Algorithm LUF fails as it is optimal.

• Since Um∗ ≤ Um, we know that Um∗ ≤
∑M

m=1
Um
M

=
∑j−1

i=1
Ci/Ti
M

.

• Therefore,

Cj

Tj
+Um∗ ≤

Cj

Tj
(1− 1

M
) +

j∑
i=1

Ci/Ti

M
≤
(

4

3
− 1

3M

)
Uopt ≤

(
4

3
− 1

3M

)
.
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Algorithm LUF+: Resource Augmentation on Processors

Input: T;
1: re-index (sort) tasks such that Ci

Ti
≥ Cj

Tj
for i < j ;

2: T1 ← ∅,U1 ← 0, M̂ ← 1;
3: for i = 1 to N, where N = |T| do
4: find a processor m∗ with Um∗ + Ci

Ti
≤ 1;

5: if no such a processor exists then
6: M̂ ← M̂ + 1,TM̂ ← ∅,UM̂ ← 0;

7: m∗ ← M̂;
8: assign task τi onto processor m∗, where

Ui ← Ui + Ci

Ti
,Ti ← Ti ∪ {τi};

9: return task assignment T1,T2, . . . ,TM̂ ;

Properties

• The time complexity is O(N logN) or O(N2), depending on
the fitting approaches.

• The resulting solution is feasible on M̂ processors.
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Different Fitting Approaches

4: find a processor m∗ with Um∗ + Ci

Ti
≤ 1;

Fitting Strategies

• First-Fit: choose the feasible one with the smallest index

• Last-Fit: choose the feasible one with the largest index

• Best-Fit: choose the feasible one with the maximal utilization

• Worst-Fit: choose the feasible one with the minimal utilization

Suppose that we want to assign a task with utilization equal to 0.1.

P1 P2 P3 P4

0.6 0.7
0.5 0.65

First Fit Last FitBest Fit
Worst Fit
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Algorithm LUF+: How Many Processors?

• Suppose that the processor used by Algorithm LUF+ is M̂ ≥ 2.

• Let m∗ be the processor with the minimum utilization.

• By the fitting algorithm, we know that Um + Um∗ > 1 and Um ≥ Um∗ for
all the other processors ms.

• If Um∗ ≤ 0.5, by Um > 1− Um∗ , we know that

∑
τi∈T

Ci

Ti
≥ Um∗+

M̂∑
m=1,m 6=m∗

Um ≥ M̂−1−(M̂−2)Um∗ ≤ (M̂−2)(1−Um∗)+1 ≥ M̂

2
.

• If Um∗ > 0.5, by Um ≥ Um∗ , we know that

∑
τi∈T

Ci

Ti
≥ Um∗ +

M̂∑
m=1,m 6=m∗

Um ≥
M̂

2
.

Theorem

Algorithm LUF+ is a 2-approximation algorithm (with respect to
allocating more processors).
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Largest-Utilization-First (LUF+) - for RM Scheduling

Input: T;
1: re-index (sort) tasks such that Ci

Ti
≥ Cj

Tj
for i < j ;

2: T1 ← ∅,U1 ← 0, n1 ← 0; M̂ ← 1;
3: for i = 1 to N, where N = |T| do
4: find a processor m∗ with Um∗ + Ci

Ti
≤ (nm∗ + 1)

(
2

1
nm∗+1 − 1

)
;

5: if no such a processor exists then
6: M̂ ← M̂ + 1,TM̂ ← ∅,UM̂ ← 0, nM̂ ← 0;

7: m∗ ← M̂;
8: assign task τi onto processor m∗, where

Um∗ ← Um∗ + Ci

Ti
,Tm∗ ← Tm∗ ∪ {τi} , nm∗ ← nm∗ + 1;

9: return task assignment T1,T2, . . . ,TM̂ ;

Properties

• The time complexity is O((N + M) log(N + M))

• If a solution is derived, the task assignment is feasible by using RM.
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A Simple Analysis

• The schedulability test Um∗ + Ci
Ti
≤ (nm∗ + 1)

(
2

1
nm∗+1 − 1

)
is

upper bounded by 69.3%.

• According to the above analysis for EDF, we can also

conclude that the utilization is at least 0.693M̂
2 .

• Therefore, the approximation factor of LUF+ is 2
0.693 ≈ 2.887.
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Remarks (Augmenting the Number of Processors)

Survey by Davis and Burns (ACM Computing Surveys, 2011):
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Results for Constrained- and Arbitrary-Deadline Systems

implicit deadlines constrained deadlines arbitrary deadlines

partitioned with EDF
4
3
− 1

3M
(Graham

1969)
3− 1

M
(Baruah/Fisher 2006) 4− 2

M
(Baruah/Fisher 2005)

(1 + ε)
(Hochbaum/Shmoys
1987)

2.6322 − 1
M

(Chen/Chakraborty 2011)
3− 1

M
(Chen/Chakraborty 2011)

partitioned with DM
(bin-packing) 7

4
(Bur-

chard et al. 1995)
3 − 1

M
(Baker/Fisher/Baruah

2009)
4− 2

M
(Baker/Fisher/Baruah 2009)

(bin-packing) 1.5
(Rothvoß2009)

2.84306 (Chen 2016) 3− 1
M

(Chen 2016)

The above factors are for speed-up factors, except the two results in partitioned
RM scheduling.

Jian-Jia Chen, Georg von der Brüggen, Wen-Hung Huang, Robert I. Davis: On the
Pitfalls of Resource Augmentation Factors and Utilization Bounds in Real-Time
Scheduling. ECRTS 2017: 9:1-9:25
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Global Scheduling

• We will only focus on identical multiprocessors in this module.
• The system has a global queue.
• A job can be migrated to any processor.
• Priority-based global scheduling:

• Among the jobs in the global queue, the M highest priority
jobs are chosen to be executed on M processors.

• Task migration here is assumed no overhead.
• Global-EDF: When a job finishes or arrives to the global queue,

the M jobs in the queue with the shortest absolute deadlines
are chosen to be executed on M processors.

• Global-FP, Global-DM, Global-RM: When a job finishes or
arrives to the global queue, the M jobs in the queue with the
highest priorities (defined by fixed-priority ordering,
deadline-monotonic strategy, or rate-monotonic strategy) are
chosen to be executed on M processors.

• Pfair scheduling, and the variances (not discussed in this
lecture).
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Good News for Global Scheduling

• McNaughton’s wrap-around rule for P|pmtn|Cmax on M
processors (historically, task migration is also called task
preemption in the literature)

• Compute Cmax as max{maxτi∈T Ci ,
∑

τi∈T
Ci

M }
• Assign the tasks according to any order from time 0 to Cmax

• If a task’s processing exceeds Cmax, the task is migrated to a
new processor from time 0

• Repeat the assignment of tasks until all the tasks are assigned

• The resulting schedule minimizes Cmax

R. McNaughton. Scheduling with deadlines and loss functions. Management Science,
6:1-12, 1959.
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McNaughton’s Algorithm: Example

D

split tasks

unsplit tasks
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Weakness of Partitioned Scheduling

• Restricting a task on a processor reduces the schedulability
• Restricting a task on a processor makes the problem NP-hard
• The NP-completeness does no hold any more if the migration

has no overhead.
• Proportionate Fair (pfair) algorithm introduced by Baruah et

al. provides an optimal utilization bound for schedulibility
• A task set with implicit deadlines is schedulable on M identical

processors if the total utilization of the task set is no more
than M.

• The idea is to divide the time line into quanta, and execute
tasks proportionally in each quanta.

• It has very high overhead.
• There are several variances to reduce the overhead.

Sanjoy K. Baruah, N. K. Cohen, C. Greg Plaxton, Donald A. Varvel: Proportionate
Progress: A Notion of Fairness in Resource Allocation. Algorithmica 15(6): 600-625
(1996)
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Bad News for Global Scheduling

For Global-EDF or Global-RM, the least upper bound for
schedulability analysis is at most 1.

Input:

M + 1 tasks:

• One heavy task τk : Dk = Tk = Ck

• M light tasks τi s: Ci = ε and Di = Ti = Ck − ε, in which ε is
a positive number, very close to 0.

Result:

The M light tasks (with higher priority than the heavy task) will be
scheduled on M processors. The heavy task misses the deadline
even when the utilization is 1 + Mε.

Sudarshan K. Dhall, C. L. Liu, On a Real-Time Scheduling Problem, OPERATIONS
RESEARCH Vol. 26, No. 1, January-February 1978, pp. 127-140.
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Gold Approach: Resource Augmentation

• The bad news on the least upper bound was very important in
80’s, since the research in this direction suffered from the so
called “Dhall effect”.

• With resource augmentation, by Phillips et al., the “Dhall
effect” disappears
• For Global-EDF, the resource augmentation factor by

“speeding up” is 2− 1
M .

• That is, if a feasible schedule exists on M processors, applying
Global-EDF is also feasible on M processors by speeding up
the execution speed with 2− 1

M .
• We will focus on schedulability test here first (for the first two

parts) and the resource augmentation at the end.

Cynthia A. Phillips, Clifford Stein, Eric Torng, Joel Wein: Optimal Time-Critical
Scheduling via Resource Augmentation. STOC 1997: 140-149
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Critical Instants?

• The analysis for uniprocessor scheduling is based on the gold
critical instant theorem.

• Synchronous release of higher-priority tasks and as early as
possible for the following jobs do not lead to the critical
instant for global multiprocessor scheduling
• Suppose that there two identical processors and 3 tasks:

(Ci ,Di ,Ti ) are τ1 = (1, 2, 2), τ2 = (1, 3, 3), τ3 = (5, 6, 6)

Feasible for τ3. Infeasible for τ3.
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Identifying Interference

ak dk

τi τi τi τi

head body tail

• Problem window (interval) is defined in [ak , dk).
• The jobs of task τi in the problem window can be categorized

into three types:
• Head job (at most one): some computation demand is carried

in to the problem window for a job arrival before ak .
• Body jobs: the computation demand has to be done in the

problem window.
• Tail job (at most one): some computation demand can be

carried out from the problem window.
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Necessary Condition for Deadline Misses

ak dk

τk τk τk

• If τk misses the deadline at dk , there must be at least Dk − Ck units
of time in which all M processors are executing other higher-priority
jobs.

• Definition: demand W (∆) in a time interval with length ∆ is the
total amount of computation that needs to be completed within the
interval.

• If τk misses its deadline at time dk , then

W (Dk) > M(Dk − Ck) + Ck
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Summary of Existing Results

Regarding to speedup factors

implicit deadlines constrained deadlines arbitrary deadlines

Global EDF 2− 1
M

(Bonifaci et al. 2008)

Global DM
3− 1

M
(Bertogna et al.

2005)
3− 1

M
(Baruah et al. 2010) 3 (Chen et al. 2018)

3+
√

7
2
≈ 2.823 (Chen

et al. 2015)
3 (Chen et al. 2015)
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Biondi and Sun’s Effect?

• The state-of-the-art schedulability analysis have issues for
global fixed-priority schedulability and EDF analyses

• For example, if the task set is deemed schedulable under
global RM (by using the above schedulability test), there is a
partitioned schedule which meets all deadlines

• Youcheng Sun, Marco Di Natale: Assessing the pessimism of current multicore
global fixed-priority schedulability analysis. SAC 2018: 575-583

• Alessandro Biondi, Youcheng Sun: On the ineffectiveness of 1/m-based
interference bounds in the analysis of global EDF and FIFO scheduling.
Real-Time Systems 54(3): 515-536 (2018)
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