Real-Time Communications and Internet of Things

Prof. Dr. Jian-Jia Chen

LS 12, TU Dortmund

21, Jan., 2020
Random Access

- no access control; requires low medium utilization

\[\text{probability that a slot is not taken by others: } (1 - p)^{n-1} \]

\[\text{probability to send successfully: } p \cdot (1 - p)^{n-1} \]

the maximum probability with respect to \(p \) happens when

\[\frac{d}{dp}(p \cdot (1 - p)^{n-1}) = 0, \text{ i.e., } p = \frac{1}{n}. \]
Random Access

- no access control; requires low medium utilization

- improved variant: slotted random access

Station 1
Station 2
Station 3

access conflict

Station 1
Station 2
Station 3

What is the optimal sending rate \(p \) in case of \(n \) stations?

- probability that a slot is not taken by others: \((1 - p)^{n-1} \)

- probability to send successfully: \(p \cdot (1 - p)^{n-1} \)

- the maximum probability with respect to \(p \) happens when \(\frac{d}{dp} \left(p \cdot (1 - p)^{n-1} \right) = 0 \), i.e., \(p = \frac{1}{n} \).
Random Access

- no access control; requires low medium utilization

- improved variant: slotted random access

- What is the optimal sending rate p in case of n stations?
 - probability that a slot is not taken by others: $(1 - p)^{n-1}$
 - probability to send successfully: $p \cdot (1 - p)^{n-1}$
 - the maximum probability with respect to p happens when $d(p \cdot (1 - p)^{n-1})/dp = 0$, i.e., $p = 1/n$.
TDMA (Time Division Multiple Access)

- Communication in statically allocated time slots
- Synchronization among all nodes necessary:
 - periodic repetition of communication frame or
 - master node sends out a synchronization frame
- Examples: TTP, static portion of FlexRay, satellite networks
CSMA/CD

- CSMA/CD (Carrier Sense Multiple Access / Collision Detection)
- Try to avoid and detect collisions:
 - before starting to transmit, check whether the channel is idle
 - if a collision is detected (several nodes started almost simultaneously), wait for some time (backoff timer)
 - repeated collisions result in increasing backoff times
- Examples: Ethernet, IEEE 802.3
- Stochastic behavior, and problematic in general for real-time systems without any treatments
CSMA/CA

- **Carrier Sense Multiple Access / Collision Avoidance**
- **Operation:**
 - reserve s slots for n nodes; note: slots are normally idle they are (short) time intervals, not signals; if slot is used it becomes a slice.
 - nodes keep track of global communication state by sensing
 - nodes start transmitting a message only during the assigned slot
 - If $s = n$, no collisions; if $s < n$, statistical collision avoidance
- **Examples:** 802.11, part of FlexRay
CSMA/CR

- Carrier Sense Multiple Access / Collision Resolution
- Operation:
 - Before any message transmission, there is a global arbitration
 - Each node (or each message type) is assigned a unique identification number
 - All nodes wishing to transmit compete by transmitting a binary signal based on their identification value
 - A node drops out the competition if it detects a dominant state while transmitting a passive state
 - Thus, the node with the lowest identification value wins
- Example: CAN Bus
Outline

Analysis of TDMA

CAN (Controller Area Network)

Flexray

Summary of Other Busses
Recall: TDMA Resource in Real-Time Calculus

- Consider a real-time system consisting of \(n \) applications that are executed on a resource with bandwidth \(B \) that controls resource access using a TDMA (Time Division Multiple Access) policy.
- Analogously, we could consider a distributed system with \(n \) communicating nodes, that communicate via a shared bus with bandwidth \(B \), with a bus arbitrator that implements a TDMA policy.
- TDMA policy: In every TDMA cycle of length \(\bar{c} \), one single resource slot of length \(s_i \) is assigned to application \(i \).
TDMA Resource

\[\beta^u_{TDMA}(\Delta) = B \min \left\{ s_i, \Delta - \left\lfloor \frac{\Delta}{\bar{c}} \right\rfloor (\bar{c} - s_i) \right\} \]

\[\beta^l_{TDMA}(\Delta) = B \max \left\{ s_i, \Delta - \left\lceil \frac{\Delta}{\bar{c}} \right\rceil (\bar{c} - s_i) \right\} \]
Arrival Curve Served by TDMA

\[D = \sup_{t \geq 0} \{ \inf \{ \tau \geq 0 : R(t) \leq R'(t + \tau) \} \} \]

\[= \sup_{ \Delta \geq 0} \{ \inf \{ \tau \geq 0 : \alpha^u(\Delta) \leq \beta^l(\Delta + \tau) \} \} \]
Why is TDMA interesting?

- Integrated Modular Avionics (IMA) exactly partitions the functions by using a *flexible* TDMA, and uses fixed-priority preemptive scheduling within each partition.
- Partitions are scheduled according Time Division Multiple Access (TDMA).
- Execution times, number of partitions windows and offsets are defined in the Major Cycle.

Outline

Analysis of TDMA

CAN (Controller Area Network)

Flexray

Summary of Other Busses
CAN (Controller Area Network)

- Initiated in the late 70’s to connect a number of processors over a cheaper shared serial bus
- From Bosch (mid 80’s) for automotive applications
- De facto standard for in-vehicle communications.
- Fair cost
- Shared broadcast bus (one sender/many receivers) (CSMA/CR)
- CAN bus is a twisted wire
- Medium speed:
 - Max: 1Mbit/sec; typically used from 35 Kbit/sec up to 500Kbit/sec
- Highly robust (error mechanisms to overcome disturbance on the bus) and
- Real-time guarantees can be made about CAN performance
Bit Transmission on CAN

- Fundamental requirement: Everyone on the bus sees the current bit before the next bit is sent
 - This permits a very clever arbitration scheme (later)

- Global time is assumed and maintained

- Bits per second (depending on the length of CAN bus):
 - 1 Mbps CAN bus \(\rightarrow\) 1 micro sec per bit: a bit can travel 100 m per 1000ns (thus max bus length 40~50 m)
 - 40 Kbps CAN bus \(\rightarrow\) 25000 ns per bit: A bit can travel 2500 m per 25000 ns (thus max bus length 1000~1250 m)

- Bandwidth
 - 1 Mbps up to 40~50 m (normal)
 - 0.5 Mbps upto 80~100 m
 - 40 Kbps up to \~1000 m
 - 5 Kbps up to \~10,000 m (maximum)
CAN Frame

- Small sized frames (messages): 0 to 8 bytes:
 - perfect for many embedded control applications
- Relatively high overhead: a frame size of more than 100 bits to send 64 data bits
 - do not use this for bulk data transfer
- Interrupt only after an entire message is received
CAN Addressing

- CAN bus can have an arbitrary number of nodes
 - Nodes do not have proper addresses
 - Each message has an 11-bit “field identifier”
 - Everyone interested in a message type listens to it
 - Works like this: “I’m passing a ball”
 - Not like this: “I’m passing a ball to Reus”

- Designer should allocate the message identifiers to the stations (different nodes send different messages!)

- Each node has a queue for messages ordered by priorities/identifiers
The CAN Arbitration Mechanism

- Shared broadcast bus
- Bus behaves like a large AND-gate - if all nodes send 1 the bus becomes 1, otherwise 0.
 - 0: dominant bit (in fact, sending 0 by high voltage)
 - 1: recessive bit
- A frame is tagged by an identifier
 - indicates contents of frame
 - most importantly, it is used for arbitration as priority
- Bit-wise arbitration
 - Each message has unique priority \(\rightarrow \) node with message with lowest id wins arbitration
- Lowest id = highest priority!
- The CAN bus is a fixed-priority-based scheduled resource
- What happens if a CAN node goes crazy/haywire and transmits too many high priority frames?
 - This can make the bus useless
 - Assumed not to happen
CAN Message Scheduling and Analysis

- Each frame should be non-preemptive
- This is a non-preemptive fixed-priority scheduling
- The maximum bits per frame is 135 bits (by considering all the overheads and bitstuffing)
- This results in a maximum blocking time due to a frame of 135 bits in CAN
- For a CAN with 1Mbit/s, the blocking time is up to 135 μs

Theorem

A system T of periodic, independent, preemptable, and constrained-deadline message-passing tasks is schedulable on a CAN bus if

$$\forall \tau_i \in T \ \exists t \text{ with } 0 < t \leq D_i \text{ and } B_i + C_i + \sum_{j=1}^{i-1} \left\lceil \frac{t}{T_j} \right\rceil C_j \leq t,$$

where the higher-priority message types have lower indexes and B_i is the blocking time of message type i.

Prof. Dr. Jian-Jia Chen
(LS 12, TU Dortmund)
Outline

Analysis of TDMA

CAN (Controller Area Network)

Flexray

Summary of Other Busses
Flexray

- Developed by the FlexRay consortium (BMW, Ford, Bosch, DaimlerChrysler, ...)
- Meets requirements with transfer rates \gg CAN standard
 - High data rate can be achieved:
 - initially targeted for ~ 10Mbit/sec;
- Design allows much higher data rates
- Improved error tolerance and time-determinism
- Flexible TDMA protocol
- Cycle subdivided into a static and a dynamic segment.
 - Static segment is based on a fixed allocation of time slots to nodes.
 - Dynamic segment for transmission of ad-hoc communication with variable bandwidth requirements.
Flexray

- Use of two independent channels to eliminate single-point failures and to allow flexibility of different channel configurations
- Bandwidth in the dynamic segment is used only when it is actually needed.

http://www.ixxat.de/introduction_flexray_de.html?markierung=flexray
FlexRay Message Cycle
Static Segment

TDMA messages, most likely used for critical messages

- All static slots are the same length
- All static slots are repeated in order every communication cycle
- All static slot times are expended in cycle whether used or not
Dynamic Segment

- Each minislot is an opportunity to send a message
- If message isn’t sent, minislot elapses unused (short idle period)
- All nodes watch whether a message is sent so they can count minislots

transmission may only start within the first $p_{LatestTx}$ minislots of the dynamic segment
Outline

Analysis of TDMA

CAN (Controller Area Network)

Flexray

Summary of Other Busses
Other Busses

- IEEE 488: Designed for laboratory equipment.
- LIN: low cost bus for interfacing sensors/actuators in the automotive domain
- MOST: Multimedia bus for the automotive domain (not a field bus)
- MAP: bus designed for car factories.
- Process Field Bus (Profibus): used in smart buildings
- The European Installation Bus (EIB): bus designed for smart buildings; CSMA/CA; low data rate. Upgrade: KNX-Bus
- Attempts to use Ethernet. Timing predictability an issue.
Wireless Communication: Examples

- IEEE 802.11 a/b/g/n
- UMTS; HSPA; LTE
- Bluetooth
- WirelessHART
- ZigBee
Summary

- Communication in embedded systems
- Timing analysis
 - TDMA
 - CAN bus
- Flexray architecture