technische universitat fakultat fur I 2 computer

dortmund informatik science 12
lea.schoenberger [®] tu-dortmund.de Exercises for
christian.erdmann [®] tu-dortmund.de Embedded Systems
nils.hoelscher [©] tu-dortmund.de Wintersemester 19/20

jan.pham [®] tu-dortmund.de

Exercise Sheet 10 (Practice)

(10 Points)

Please note: Submitting written solutions to this exercise sheet is not necessary. Discussion: 06.-10.01.2020.

Open a terminal and execute the command ssh -X youraccount@Is12pc5.cs.tu-dortmund.de, whereat you need to
substitute youraccount with your user name. Download the archive wcet2 from the course website using wget. If you
are not familiar with the command line, please ask Google for help.

Preparation

Whenever you start a new session, you have to re-register some components. For this reason, enter the following
command into a terminal window:

cd wcet
Jenv.sh

m+ tricore-gcc
m+ ait

1 Step 3: Scratchpad Allocation and Function Outlining (5 Points)

Execute the command cd ~/wcet/step3 to open the directory used for this assignment. In the file test.c, some
preparations have been made to transform the inner loops of the functions Initialize and Sum into separate func-
tions via function outlining. In this manner, it is possible to swap out the inner functions to the scratchpad memory
(SPM) individually.

Perform the function outlining of the inner loops of the aforementioned both functions.

Thereon, compile the program by executing the command tricore-gcc -o test.elf -g -T ../tc1796.lds test.c and load it
into the a3tricore analyzer as explained in the previous exercise sheet. If you start an aiT analysis, some errors will
be reported.

Correct the errors in the file a. ais, so that the analysis can be performed properly.
How did the WCET change compared to the previous version (complete functions in the SPM)?

Hint: For the previous version, a WCET of 85117 cycles was computed.

2 Step 4: Integer Linear Programming (5 Points)

aiT performs the WCET analysis by analyzing each basic block of a program separately, constructing an ILP (integer
linear program) based on these results and solving it.

In the directory step4, more precisely, in the file example. 1p, an exemplary formulation of an ILP can be found. Open
this file with a text editor of your choice and solve it with an ILP solver via 1p_solve example.lp.

Another example is given in the file example?2. 1p, where the control flow graph of a simple program is modeled. Solve
this problem via 1p_solve example2.lp.

technische universitat fakultat fur I 2 computer
dortmund informatik science 12

Explain the resulit.
How can we model a certain basic block with execution time of more than one cycle in the ILP?

Here, the following program containing a loop is given:

int main()

{
inti,j=0;

_Pragma("loopbound min
100 max 100");

for (i=0;i<100;i++) { |—L2|‘M
l

if (i<50)
j+=1 Block | Cycles
else l main 21
j+=(i*13) % 42; L1 27
} L2 20
L3 2
return j; - L4 2
} L5 20
L6 13

Abbildung 1: Example program with loop.

The basic structure of this program is already modeled in the file ipet. 1p.
Add the number of cycles for each basic block.

If you try to solve the ILP via 1p_solve ipet.lp, the solver will abort with the error message This problem is un-
bounded.

Why is it impossible for the ILP solver to find a solution?
Add the missing constraint for edge h.

If you try again to solve the corrected file with Ip_solve, you should obtain a result.
Why does the solver compute a solution in which L4 is never executed?

General information: Further information about the exercises, exercise sheets, and the exam admission can be found at

https://1sl2-www.cs.tu-dortmund.de/daes/de/lehre/lehrveranstaltungen/wintersemester-2019/es-1819.html.html.

https://ls12-www.cs.tu-dortmund.de/daes/de/lehre/lehrveranstaltungen/wintersemester-2019/es-1819.html.html

	Step 3: Scratchpad Allocation and Function Outlining (5 Points)
	Step 4: Integer Linear Programming (5 Points)

