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Chapter 1

Introduction and Overview

1.1 Purpose

a3 (pronounced a-cube) is an acronym for AbsInt Advanced Analyzer. It is a framework combining
various analyzers and mechanisms for reporting their results textually and graphically. The ana-
lyzers typically operate on code snippets in fully linked executables. This manual describes the
following features of a3:

1. a3 can compute the call graph of an application and the control-flow graphs of its routines.
These graphs are visualized by a3 and can be interactively explored. The visualization pro-
vides three levels of details: routines and their calling relationships, basic blocks and the
control flow in-between, and individual assembly instructions (see section 7.1).

2. a3 can calculate information about the values in registers and memory cells (value analysis).
This information can be interactively explored (see section 7.2), and can be used to prove the
absence of illegal memory accesses: the user specifies which memory accesses are admissi-
ble for a particular instruction, and a3 tries to decide, based on its analysis results, whether
this specification is met.

3. a3 can determine upper bounds for the size(s) of the stack(s) in single routines and in the
whole program (stack analysis, see section 7.3). These upper bounds can be used to verify
the absence of stack overflow for a given setting of stack parameters, or to derive a parameter
setting that avoids overflow and does not reserve too much memory for the stacks.

4. a3 can determine upper bounds for the Worst-Case Execution Time (WCET) of code snippets
in the application (timing analysis, see section 7.4). These upper bounds can be used to verify
that real-time tasks meet their deadlines, and as inputs for an overall schedulability analysis.

All these analyses require separate licenses. Depending on your licenses, it is possible that some
analysis is available and some other analysis is not, or all analyses are available.

The results of the analyses are written into a report file and added to the visualization as annotations
to the routines, basic blocks, and instructions.
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1.2 Availability

This documentation describes a3 for TriCore, a member of the a3 family. a3 for TriCore can
analyze and visualize fully statically linked executables for TriCore 1.3 processors that have been
produced from C source code by the Tasking C Compiler or the GNU C compiler (GCC). (All
examples in this manual refer to Tasking executables.) Your license does not necessarily support
all these possibilities. While stack analysis is possible for all TriCore 1.3 executables, timing
analysis is restricted to TriCore 1766, 1796, and 1797 chips.

There are a3 versions for x86/Windows (Windows 2000 and later) and x86/Linux platforms. This
documentation covers both operating systems.

This manual only describes a3 for TriCore. Nevertheless, a3 for TriCore will usually be abbreviated
to a3 in this document.

1.3 License Key

a3 needs a license key to run properly. A license key enables you to use certain a3 features on
certain computers for a limited period of time (evaluation license) or for ever (commercial license).
The a3 features that are not supported by your license key are present in the menus of the graphical
user interface, but cannot be activated. This includes such basic functionality as stack and timing
analysis. The validity of the license key is also checked by certain components of a3 so that it may
happen that a3 starts running without complaining, but refuses to complete certain operations.

The license key for a3 is stored in a license file. License files are created and distributed by AbsInt.
In order to obtain a license file, please contact support@absint.com. Information about the current
license and support for handling license files can be found in the a3 GUI under the menu entry
Help→License.

1.4 Legal Issues

Since a3 runs a disassembler, you must be equipped with a disassembling license for the executa-
bles that you wish to be analyzed and visualized by a3.

1.5 Location of Temporary Files

When a3 is running, it puts temporary files into a directory. If the checkbox Keep temporary
files in project directory in the Files view is on (see section 3.4.1), the temporary
files are put into the project directory, which resides in the same directory as the project file and is
named P.apd if the project file is P.apx. If the checkbox is off, the files are put into a standard
directory of which the name is determined as follows:

1. If the environment variable TEMP is defined and its value is the name of a directory, this
directory is used for storing temporary files.
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2. If not, a3 considers the environment variable TMP in the same way.

3. If this is not successful either, variable Temp is considered.

4. If none of these variables yields a directory name, a3 puts its temporary files into directory
/tmp (Linux) or C:\ (MS Windows).

If the directory determined in this way does not exist or does not permit the creation of files, a3

will not work.

Remark for MS Windows users: Environment variables like TEMP can be examined and mod-
ified via the Advanced tab of the System Properties dialog box, which is accessed by
right-clicking on the My Computer icon and selecting Properties from the resulting menu
(Windows 2000).

1.6 Overview of Documentation

Chapter 2 describes the invocation of a3.

Chapter 3 provides a detailed description of the user interface of a3 in combination with a sys-
tematic explanation of all possible commands.

Chapter 4 presents some background information about the internal representation of loops (4.1),
the origin and naming of routines (4.2), calling contexts of routines (4.3), phases of timing and
stack analysis (4.4), and locating source files (4.5).

Chapter 5 introduces a kind of specification files, called AIS files. They may contain declarations
that help the analyzer to understand the executable, thus providing information necessary to get
analysis results at all, or to improve their precision. Besides declarations, the AIS language also
comprises so-called assertions for value analysis. They assert requirements, for example, that a
certain instruction must not access a particular memory area; based on the results of value analysis,
these requirements might be possibly verified or disproven.

Chapter 6 lists some restrictions on the target configuration and the code to be analyzed.

Chapter 7 explains the combined call graphs and control-flow graphs produced by a3, including
the annotations produced by the various analyses. This comprises an introduction to the meaning
of the features of the visual representations of graphs (meaning of boxes and arrows of various
colors). Furthermore, section 7.2 illustrates how the results obtained by value analysis can be
interactively retrieved for single instructions. Section 7.5 explains the combined cache and pipeline
states displayed by a3 upon request.

Chapter 8 contains a basic introduction to the graph viewer aiSee: how to navigate in graphs, how
to access all the information contained in the combined call graph and control-flow graph, and how
to switch between various hierarchy levels and their visual representations. For more details, see
the separate aiSee manual.

Chapter 9 describes some patterns for working with a3 to obtain useful information or to react to
reported problems.
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Chapter 2

Invocation of a3

Section 2.1 shows how a3 can be invoked leading to different operation modes. Configuration files
are introduced in section 2.2.

2.1 Operation Modes

a3 can be started in several ways, leading to different operation modes.

1. There is a generic a3 launcher called a3. When started, it shows a list of available (i.e.
installed) a3 versions, from which a3 for TriCore can be invoked. The launcher also shows
a list of recently opened projects. Since the target architecture is encoded in the projects, a3

for TriCore can also be started by clicking on a project set up for TriCore.

2. The launcher can also be restricted to a specific target. The command a3 -l tricore
shows a list of available (i.e. installed) a3 for TriCore versions, from which one can be
selected.

3. A specific a3 for TriCore version can be started with the command a3 tricore build
where build is the build number of the desired version.

4. The most recent a3 for TriCore version can also be started directly by writing a3 tricore
on a command line or by other standard means like clicking on the appropriate icon. Since
no project file is given, the options in the user interface of a3 for TriCore have empty or
default values. In this situation, you may either set the options manually, or load a project
file that contains option values saved in an earlier session.

5. Alternatively, you may supply a3 for TriCore with a project file right from the start by calling
one of

a3 project
a3 build project

from a command line, or by double-clicking the project file, or by dragging the project file
with the mouse to the icon of a3 for TriCore on the desktop. The target tricore need not
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be specified since it is encoded in the project file, but can be added for clarity. After the call,
the graphical user interface of a3 for TriCore is started for interactive working. The contents
of the given project file become the values of the options of a3 for TriCore. Provided that the
project file contains a complete and consistent set of option values, you may immediately
start an analysis or visualization for this project.

6. a3 runs in batch mode if it is called with parameter -b

a3 project -b
a3 build project -b

from a command line. Then a3 performs all analyses specified in the project file without
starting or showing a graphical user interface. The results of the analyses can later be found
in the project files generated by a3.

A batch mode call may be given a timeout by adding the command line option
--timeout seconds.

7. a3 runs in interactive batch mode if it is called with parameter -B

a3 project -B
a3 build project -B

from a command line. Then a3 performs all analyses specified in the project file like in batch
mode. The graphical user interface is started with its window minimized. This means there
is no open window on the desk top, only an entry in the control bar. The window can be
opened by clicking on this entry.

If the analysis started automatically terminates successfully, a3 exits automatically. In this
case, it runs without any user interaction. If the automatic analysis must be aborted because
of errors, a3 does not terminate, but displays a window to allow for human inspection.

An interactive batch mode call may be given a timeout by adding the command line option
--timeout seconds.

8. The above calls in batch mode (-b or -B) cause all analyses specified in the project file to
be executed. Specific analyses can be executed by adding -i ID where ID is the ID of the
analysis to be executed. Analysis IDs can be specified in the analysis views (section 3.5.2)
and are shown in the Overview view (section 3.5.4).

Several different -i options are possible to cause the execution of several different analyses.
Note that no -i option does not mean no analysis, but all analyses.

2.2 Configuration Files

In any mode, a3 can be instructed to read a configuration file by writing an additional option

-c FileName
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on a command line. Calling a3 with an explicit configuration file is particularly useful if a3 is run
in batch mode. The following is an example of a minimal configuration file containing only path
names to locations in the file system (with Linux file names):

[General]
BinDir=/scratch/a3tests/linux64/a3_tricore/libexec
ShareDir=/scratch/a3tests/linux64/a3_tricore/share
DocDir=/scratch/a3tests/linux64/a3_tricore/doc
LicenseFile=/scratch/a3tests/share/license.dat

• BinDir is the directory containing the ancillary executables of a3 (decoder, various analyz-
ers, viewer etc.).

• ShareDir is a directory containing data files controlling the operation of a3.

• DocDir is a directory containing online manuals.

• LicenseFile is the full path name of the license file to be used by a3 (see also section 1.3).

If the configuration file is writable, it is written when a3 terminates its execution. It will then
contain information on the shape, size, and position of the window of the graphical user interface,
and various “preferences” set in the user interface.
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Chapter 3

The User Interface of a3

The user interface of a3 is centered around various views with different purposes. Figure 3.1
shows an example. The white box on the left lists the available views (Welcome, Files, etc.),
structured into sections such as a3 TriCore, Configuration, etc. Here you can select a
view, which is then displayed in the main part of the GUI window. In Figure 3.1, the Files view
in the Configuration section is selected (indicated by highlighting in the list of views), and
consequently displayed in the main part of the GUI (indicated by the heading Configuration
- Files above the main part).

Navigation through the list of views is possible with the arrow keys in connection with the Alt
key. Alt+↑ moves the selection one up in the list and Alt+↓ moves the selection one down.
There is also a history of visited views like in typical web browsers. Alt+← moves backward in
history, i.e. switches to the previously selected view, and Alt+→ moves forward in history.

The list of available views is not static, but extensible. It can be extended by the user by specifying
analyses, and it is extended by a3 itself: when analyses are run, new views are created for display-
ing analysis results. These additional views can be removed again by the user. Figure 3.1 shows a
minimal list of views, which appears when a3 is started without a project file.

The top of the a3 GUI shows a list of menus as usual. Below this list, there are some tool bars
with buttons that correspond to the most important menu items, offering direct access to them.
Figure 3.1 shows two menus, Project and Help, and the Project tool bar exhibiting some
entries from the Project menu. This is the minimal number of menus. Some views come with
additional menus and tool bars to trigger operations special to those views. In any view, some of
the available tool bars can be hidden by changing the settings in a context menu invoked by a right
mouse click into the areas containing the menus and the tool bars. The tool bars can also be moved
around by mouse dragging.

The title bar of the a3 window displays the target architecture and the full path name of the project
file that is currently being processed. The project file name is missing if no project file has been
specified. When some option setting is modified, an asterisk * is appended to the text in the title
bar. The asterisk disappears when the current option settings are saved in a project file.

In the sequel, we present the Welcome view (section 3.1), the two pervasive menus Help (sec-
tion 3.2) and Project (section 3.3), and then the remaining views with their associated menus
and tool bars – see section 3.4 for views under the heading Configuration, section 3.5 for
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Figure 3.1: The user interface of a3

views under the heading Analyses, and section 3.6 for views under the heading Information.

3.1 The Welcome View

The Welcome view offers quick access to various functionalities:

• Open a3 projects;

• View documentation on a3;

• View examples;

• Contact AbsInt.

The Welcome view can be closed by clicking on the button in its upper right corner. This
operation removes the Welcome view from the list of available views. It can be reopened by the
Help→Welcome command (see section 3.2).
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3.2 Help Menu

The Help menu gives access to information about a3.

• Welcome
adds the Welcome view to the list of available views and lets a3 switch to this view (see
section 3.1).

• Manual
opens the online version of the manual describing a3 for TriCore.

• AIS Quick Reference
opens an online version of the AIS Quick Reference. AIS is the annotation language of a3.
A detailed description of AIS is given in chapter 5 of the a3 manual (the one you are reading
now).

• aiSee Manual
opens the online version of the manual describing AbsInt’s graph viewer aiSee, which is
used to display the graph pictures generated by a3. A short aiSee description specialized to
the graph pictures of a3 is provided in chapter 8 of the a3 manual.

• License...
opens a dialog box with information about the current license and support for handling li-
cense files.

• Version...
opens a window containing version information about a3 and all its ancillary tools.

• About...
opens a window containing version information about a3 itself, and contact information
about AbsInt.

3.3 Project Menu and Project Tool Bar

The Project menu offers the following commands:

• New project
puts a3 into the state without current project file. This is the same state as the initial state of
a3 when it has been started without project file. All options have their default values; for the
text fields containing file names this means they are empty.

• Open project... or Ctrl+O or in the project tool bar
opens a file selection box where you can select a project file that is loaded when the Open
button of the selection box is clicked. The contents of this project file replace the current
option settings. The file becomes the new current project file whose name is displayed in the
title bar.
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• Open file
lets you select between three kinds of files: AIS files, GDL files, and Text files.

AIS files are parameter files with additional information for a3 (see chapter 5). Opening an
AIS file with this command means opening a new view with an editor for this AIS file. It
does not mean that the AIS file becomes part of the project. For that purpose, AIS file names
must be specified in the Files view or in an analysis view. Editing these project AIS files
can be initiated by clicking buttons in those views. Thus, the main purpose of the Open
file command is to open AIS files from other projects to compare them with the project
AIS files, or to copy their contents into the project AIS files.

GDL files contain graph pictures like those generated by a3. Opening a GDL file with this
command means opening a new view with a graph browser. It does not mean that the GDL
file becomes part of the project. For that purpose, GDL file names must be specified in
an analysis view. Whenever a3 generates a graph during its work, it automatically opens a
graph-browser view for it. Thus, the main purpose of the Open file command is to open
GDL files from other projects to compare their contents with the graphs generated from the
project.

• Recent Projects
provides access to a list of recently opened project files. When you select a file from this list,
its contents replace the current option settings. The file becomes the new current project file
whose name is displayed in the title bar.

• Save project or in the project tool bar
saves the current option settings in the current project file whose name is displayed in the
title bar. This operation is disabled if the option settings in the GUI have not been changed
since the last project file loading or New project operation.

• Save project as...
opens a file selection box where you can select the name of an existing project file, or type in
a new project file name. When the Save button of the selection box is clicked, the current
option settings are stored in a file with the chosen name. This file becomes the new current
project file whose name is displayed in the title bar.

• Export
causes a3 to export its input files (project file, executables, and AIS files) to a specific place.
Export leads to a submenu with two choices, To directory and To archive. In the
first case, a3 asks for a directory where it places the files. In the second case, it asks for
the name of a .zip file into which the files are put. Within the .zip archive, the files are
placed in a directory with the same name as the .zip file (minus the suffix .zip).

• XTC
provides access to XTC (XML Timing Cookies), an interface to tools of partner companies
of AbsInt (see www.absint.com/xtc/). Currently, only the interface to the T1 tool of Gliwa
GmbH is built in the a3 GUI. The T1 tool can determine loop bounds by measurements. After
running a timing analysis that complains about missing loop bounds, the submenu entry
Export T1 request becomes active and can be used to write an .xtc file requesting
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the missing loop bounds. This .xtc request file causes the T1 tool to measure the missing
loop bounds and to produce an .xtc response file, which can be imported into a3 by the
submeny entry Import T1 response.

Export T1 request is not active before a timing analysis is performed, or after
a timing analysis with known loop bounds, or after a timing analysis whose unbound
loops all have multiple entries or exists; such loops cannot be handled by the T1 con-
nection.

• Start all analyses or F6 or in the project tool bar
starts all analyses in the current project. The same happens without a user command when
a3 is started in batch mode (with option -b or -B, see section 2.1). Section 3.5 describes the
definition and management of analyses.

• Stop analysis or Ctrl+Esc or in the project tool bar
stops the currently running analyses. This applies to the bunch of analyses started by the
Start all command described above, and to single analyses started from analysis views
(see section 3.5.3).

• Preferences... or Ctrl+,
opens the Preferences dialog box. This box offers several views for setting preferences:

– Messages View defines preferences for the messages produced by a3, including col-
ors to distinguish between errors, warnings, etc.

– Text Editor influences the text editor of a3, which is used for editing AIS files
(chapter 5) and displaying source code (font, auto completion).

– Disassembly influences the presentation of disassembly code (font, colors, relative
addresses – see section 3.5.6).

– Rendering refers to the rendering of graphs in the graph browsers of a3 (anti-
aliasing).

– Interface refers to the user interface in general (tool bars, tool tips).

– Shortcuts can be used to define and modify key-code shortcuts for operations in the
graph browsers of a3 (chapter 8).

The Preferences dialog box is also accessible from the context menus of the views it
refers to (messages views, AIS editors, source-code views, disassembly-code views, graph-
browser views).

• Quit or Ctrl+Q
causes a3 to terminate. Another way to terminate a3 is to click on the close button of its
window frame.

3.4 The Configuration Views

This section describes the various views under the heading Configuration.
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Figure 3.2: The Files view of a3

3.4.1 The Files View

Global files to be used in all analyses can be specified in the Files view of the Configuration
section. (Local files specific to an analysis can be specified in the analysis views, see section 3.5.2.)
The Files view is depicted in Figure 3.2.

• The Executable text fields show the full path names of the executables that contain
the code to be analyzed. Initially, there is only one Executable text field. Additional
Executable text fields can be created by clicking on the button. An executable is
selected by typing its name in the text field, or by using the button to the right of the text
field, which opens a file selection dialog box.

• AIS file:
Here you may provide the full path name of an AIS file that is used by all analyses. AIS files
may contain various kinds of specifications that help a3 in its work (see chapter 5). The
button opens a view with a text editor on the AIS file.

• Report file:
Here you may enter the full path name of a report file. If the panel specifies a file, then
a3 writes a report with messages and analysis results into this file whenever an analysis is
performed. The report file is also written during the batch mode analyses performed when
a3 is started with the command line option -b or -B (see chapter 2.1).

The contents of the report file are deleted before a new report is written.

The button opens a view with a text browser on the report file.

• XML stylesheet:
In this panel, you can specify an XML stylesheet to be used when displaying the local XML
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report files produced by specific analyses (see section 3.5.2). (The stylesheet is not used for
the display of the XML result file.)

• XML result file:
If this panel specifies a file, then a3 writes the main analysis results in XML format into that
file whenever an analysis is performed. The remarks about the textual report file apply to the
XML result file as well. The button opens a view with a text browser on the XML result
file.

The XML result file is much shorter than the local XML report files produced by specific
analyses (see section 3.5.2). It only contains the main analysis results, which refer to the
entire analyzed code. The local XML report files contain in addition partial results, warnings
and error messages, and user settings (but only for a single analysis).

• Show MD5 sums:
If this check box is on, a3 displays the MD5 sums of the executable and the AIS file below
the corresponding text fields. The MD5 sums can be selected with the mouse for copying.

• Keep temporary files in project directory:
If this check box is off, temporary files are stored in some standard place as described in
section 1.5. If the check box is on and there is a current project file (displayed in the title
bar), a3 puts the temporary files in a project directory with suffix .apd, which it creates
as a subdirectory of the directory in which the project file resides. In any case, the current
directory for temporary files is displayed in the lower part of the Files view.

3.4.2 The TriCore View

The TriCore view contains target-specific options. It consists of two main parts entitled
Analyzer and Machine Settings. Most options are relevant for timing analysis only. We
start with the description of the Analyzer part.

3.4.2.1 TriCore Analyzer Options

The Analyzer part features the following options:

• Stack address:
This field is for specifying the value of the stack pointer (register A10) at the beginning of
the analyzed piece of code. The value can be provided as a decimal or hexadecimal number.
Hexadecimal numbers must be prefixed by 0x.

The knowledge of the initial stack pointer value improves the precision of the value analysis.
For, value analysis can follow the relative changes of the stack pointer when values are
pushed or popped. Thus, it can calculate the addresses of memory accesses via the stack.
Knowledge of these addresses improves the precision of timing analysis if there are several
memory areas with different timing behavior.

Knowledge of the initial stack pointer value can also improve the precision of stack analysis.
It is important for tracking the stack pointer when its value is saved on the stack and restored
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later. It is particularly important if the code contains a software test for stack overflow that
compares the current stack pointer value with a fixed threshold. Nevertheless, a successful
stack analysis is often possible even if no stack pointer value is supplied.

If no stack pointer is written in this field, a3 tries to guess an appropriate stack pointer value.
The guessing is based on symbol and section names. If no stack-related symbols or sections
exist, a3 looks for a memory area that is appropriate for a stack.

• SDA base:
Here you can specify the decimal or hexadecimal value of register a0, a global pointer to
the Small Data Area SDA.

• SDA2 base:
Here you can specify the decimal or hexadecimal value of register a1, a global pointer to
the Small const Area.

• Auto:
If you activate the Auto check boxes to the right of SDA base and SDA2 base, a3 ex-
tracts the values of SDA base and SDA2 base from the executable. The value of SDA
base is given by the symbol _SMALL_DATA_ and the value of SDA2 base by the symbol
_SMALL_DATA2_.

Further SDA bases (SDA3 = register a8 given by symbol _SMALL_DATA3_ or _A8_DATA_
and SDA4 = register a9 given by symbol _SMALL_DATA4_ or _A9_DATA_) and other known
register values can be specified in the Registers view (see section 3.4.4).

• Number of CSAs:
This field is deactivated since the number of Context Save Areas is currently not used by a3.

• First free CSA:
Here two fields are provided, the left one for specifying the segment of the first free CSA,
and the right one for its offset within the segment (in units of CSA size). Segment and
offset must be provided as hexadecimal numbers starting with 0x. The admissible values
are 0x0–0xd for the segment, and 0x0–0xffff for the offset. The segment corresponds
to bits 19–16 and the offset to bits 15–0 of the FCX register.

Like the stack pointer, the initial value of the FCX register is guessed by a3 if no explicit
information is given. Again, the guess is based on symbol names, section names, and prop-
erties of memory areas.

Knowledge of the FCX register is of minor importance for stack analysis. It is only important
for tracking the stack pointer when its value is saved as part of the upper context and restored
later. In many cases, a successful stack analysis is possible even if no FCX value is supplied.

• Disable writes via LMI:
This flag tells a3 that the analyzed part of the executable does not contain any writes via the
Local Memory Interface LMI. Therefore, the possibility of such a write is not considered if
the target address of a write access is not known. If the flag is on and a3 finds an access that
definitely writes via LMI, it issues an error message that no memory area for that access was
found, and that the user should consider to change the setting of the flag.
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• Disable data accesses to PMI:
This flag tells a3 that the analyzed part of the executable does not contain any data accesses
to the Program Memory Interface PMI. Therefore, the possibility of such a data access is not
considered if the target address of a data access is not known. If the flag is on and a3 finds a
data access that definitely accesses the PMI, it issues an error message that no memory area
for that access was found, and that the user should consider to change the setting of the flag.

3.4.2.2 Exporting, Importing, and Loading Machine Settings

The options in the Machine Settings part of the TriCore view allow for specifying the
setting of various hardware properties (see below). As usual, these settings are stored in the project
file, but because of the huge amount of possible settings, mechanisms for reading the settings from
files are provided.

The current values of the machine settings may be exported to a machine settings file (.msf file)
using the Export command in the Target menu or the corresponding tool-bar button. Such
an .msf file may be imported into another project using the Import command or button. The
imported settings appear in the fields of the TriCore view and may be modified as if they had
been entered manually.

Alternatively, an .msf file may be loaded into the project by selecting Load from machine
settings file in the TriCore view. The text field to the right of this radio button is then
activated for entering the name of the .msf file. Alternatively, you may click the button
to the right of the text field to obtain a file-selection dialog box. When Load from machine
settings file is selected, the lower part of the TriCore view is deactivated, i.e. the loaded
settings cannot be modified manually (this is the main difference between Load and Import).
Indeed, they are not even written into the fields of the view; the settings are taken directly from the
.msf file when an analysis is performed.

3.4.2.3 Configuration via Hardware Registers

Apart from importing or loading a machine settings file, a3 offers two ways to configure the ma-
chine settings explicitly: either you can specify the contents of the hardware control registers as a
single number per register, or you can define the various parts of the machine configuration in the
a3 GUI. The latter is described in the subsequent sections; in this section we concentrate on the
former.

Clicking on the button opens a dialog box for entering the contents of the hardware control
registers. When the box is closed by clicking OK, the machine configuration is derived from the
contents of the control registers and put into the machine configuration fields of the a3 GUI (de-
scribed in the subsequent sections).

The dialog box for the hardware control registers consists of several tabs.

• The Flash tab contains the registers FCON and BFCON.

• The EBU tab contains EBU_ADDRSEL, EBU_BUSRAP, EBU_BUSWAP, and
EBU_BUSRCON.
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The following sections describe the tabs of the TriCore view of the a3 GUI (not the tabs of the
dialog box for hardware registers).

3.4.2.4 The General Tab of the TriCore View

This tab allows for specifying the exact machine type, the sizes of the caches and of the local
memory accessible via LMI.

• Machine Type - Target:
Here you should specify the target architecture. There are three choices: Infineon
TriCore 1766, Infineon TriCore 1796, and Infineon TriCore 1797.

• Instruction Cache - Cache size:
This option indicates the size of the instruction cache. The instruction cache size is fixed to
8 KB for TriCore 1766 and to 16 KB for TriCore 1796. The TriCore 1797 can be configured
to have no instruction cache, or to have an instruction cache of size 2, 4, 8, or 16 KB.

• Data Cache - Cache size:
This option indicates the size of the data cache (if any). TriCore 1766 and 1796 do not have
a data cache. The TriCore 1797 can be configured to have no data cache, or to have a data
cache of size 2 or 4 KB.

• Instruction Cache - Memory size:
This option indicates the size of the local program memory accessible via LMI. The size is
fixed to 24 KB for TriCore 1766 and to 64 KB for TriCore 1796. The TriCore 1797 can be
configured to have a local program memory of size 0, 4, 8, . . . , 36, or 40 KB.

• Data Cache - Memory size:
This option indicates the size of the local data memory accessible via LMI. The size is
fixed to 56 KB for TriCore 1766 and to 64 KB for TriCore 1796. The TriCore 1797 can be
configured to have a local data memory of size 0, 4, 8, . . . , 124, or 128 KB.

3.4.2.5 The Flash Tab (Timing Analysis)

This tab consists of two sections entitled BFCON and FCON corresponding to various parts of the
control registers of the same names. Most of the BFCON section is currently deactivated since only
the default settings (visible in the gray text fields) are implemented. The following options are
activated:

• Frequency of external clock at pin BFCLK0
refers to the burst-mode flash clock output and has four possible values, 1:1, 1:2, 1:3,
and 1:4.

• Wait states for read accesses to PFlash
defines the number of wait states that are used for an initial read access to the Program Flash
memory area. Possible values are 1–7.
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• Wait states for error correction of PFlash
defines the number of additional wait states for error correction during read access to the
Program Flash (0 or 1).

• Wait states for PFlash accesses with wordline hit
defines the number of wait states that are used for an initial read access to the same wordline
(512 bytes) of Program Flash memory as the last PFlash access. Possible values are 1–6.

• Wait states for read accesses to DFlash
defines the number of wait states that are used for an initial read access to the Data Flash
memory area. Possible values are 1–7.

• Wait states for error correction of DFlash
defines the number of additional wait states for error correction during read access to the
Data Flash (0 or 1).

• Disable any data fetch from flash
disables generally any data read access to internal Flash memory (Program Flash and Data
Flash). Possible values are Off and On.

3.4.2.6 The EBU Tab (Timing Analysis)

This tab defines the attributes of the four External Bus Unit banks. It consists of 4 sheets, one for
each of Memory bank 0 through 3. To enter the attributes for a specific bank, select the name of
the bank at the top. The attribute settings for each bank are remembered separately. Therefore, the
attribute values displayed in the window change accordingly when you change the selection at the
top.

Each bank can be enabled separately using the Enabled flag. Once enabled, several attributes
can be defined:

• Start address and End address define the address range of the bank. The End
address should be the last address within the bank (not the first address after the bank).

When a bank is enabled for the first time in a project, the address range is set to 0x0–
0x0, which is invalid. Therefore, you should always supply a valid range first.

Valid address ranges are either in the area 0x80800000..0x8fdfffff or in the area
0xa0800000..0xafdfffff.

Now some attributes follow that correspond to parts of the Bus Access Parameter Registers
BUSAP0–BUSAP3, which are – under some conditions – multiplied by the CMULT field of
BUSCON0–BUSCON3. The values to be specified in the a3 view are the results of this conditional
multiplication.

• Recovery cycles between different regions
specifies the minimum number of cycles between consecutive accesses if the accesses are
to different regions. Since the values 0–15 may appear in the corresponding field of the
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BUSAP registers, and the multiplier CMULT is between 1 and 32, this a3 field admits values
from 0 till 480 (which is 15∗32).

• Recovery cycles between read and write accesses
specifies the minimum number of cycles between a read and write access, and vice versa.
Possible values are again 0–480.

• Recovery cycles after write accesses
admits the values 0–224 (which is 7∗32) since the factor from BUSAP is at most 7.

• Recovery cycles after read accesses also has possible values 0–224.

• Data hold cycles for write accesses has values 0–96 (which is 3∗32).

• Data cycles during burst accesses with values 0–224.

• Programmed wait states for write accesses with values 1–224.

• Programmed wait states for read accesses (1–224).

• Programmed command delay cycles (0–224).

• Address cycles (1–96).

The remaining attributes correspond to parts of the Bus Configuration Registers BUSCON0–
BUSCON3. The multiplier map and the cycle multiplier control CMULT need not be specified
because their effects are already incorporated in the values given to the a3 attributes listed above.

• Port width: Possible values are 16bit and 32bit.

• Address generation control has three possible values: Demultiplexed,
Burst Flash Type 0, and Burst Flash Type 1.

• Weak prefetch specifies whether a code prefetch can be aborted by an interrupting data
access.

• Address alignment means that the EBU aligns the address according to the specified
port width (16 bit or 32 bit). If Address alignment is off, the EBU always issues a byte
address when performing an external bus access via this chip select.

• Code prefetch means that code access always uses the prefetch buffer mechanism. If
Code prefetch is off, the prefetch buffer mechanism is never used.

3.4.3 The Analyses View

This section describes the Analyses view in the Configuration section. The options in this
view configure the behavior of the analyses triggered by a3. They are relatively independent from
the target architecture.

The Analyses view is structured into tabs. Within each tab, the options are grouped into sections.
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3.4.3.1 Reporting (General Tab)

The Reporting section in the General tab concerns the textual output produced by a3.

• Report file verbosity level
is a slide ruler defining verbosity levels for messages written to the textual report files. A
tooltip at the ruler indicates which messages are written at the selected verbosity level.

This verbosity selector does not affect the XML report files.

• Project messages verbosity level
is a slide ruler defining verbosity levels for messages written to the Messages view in
the Information section and the messages subviews in the Overview view (see sec-
tion 3.5.4). A tooltip at the ruler indicates which messages are displayed at the selected
verbosity level.

• Dump AIS files to report
If this check box is enabled, then the contents of all AIS files used during an analysis are
dumped into the report files. This holds for the global textual report file specified in the
Files view (see section 3.4.1) and for the local textual and XML report files produced by
specific analyses (see section 3.5.2).

3.4.3.2 XML Reporting (General Tab)

The XML Reporting section in the General tab concerns the XML files written by a3.

• Show per context info in XML report
This option influences the contents of the XML report files. If enabled, context-specific
information is included, if not, only a summary over all contexts is shown. This distinction
does not matter for stack analysis whose results are not context-specific.

• Output worst-case execution path in XML report (Timing analysis)
When this flag is set, a timing analysis will write the worst-case execution path into the XML
report.

Since the worst-case execution path is context-specific, this only works if Show per
context info in XML report is also set.

3.4.3.3 Source Code (General Tab)

The Source Code section in the General tab concerns issues in relation with source files.

• Extract annotations from source files
If this check box is activated, a3 scans all source files mentioned in the executable and all
files included by such files for AIS source-code annotations as described in section 5.31
(provided that this feature is included in your license).

29



• Strip compilation path mentioned in the executable
This flag causes a3 to ignore the compile directory mentioned in the executable (if any). The
exact meaning of the flag is described in section 4.5.

3.4.3.4 All Analyses (General Tab)

The All Analyses section in the General tab contains options with effects on several different
ancillary analyses.

• Use only safe patterns
This flag restricts the automatic resolution of computed calls and branches and the automatic
loop-bound analysis to code patterns that can be trusted in all situations (see section 4.4.1
for more details).

• Assume aligned data accesses
This flag tells a3 that all (unknown) data accesses are properly aligned. A memory access of
width 2k is aligned if the lowest k bits of the accessed memory address are 0. Such aligned
accesses need less time than unaligned ones. If the flag is off, a3 must be pessimistic about
accesses to unknown addresses, i.e. it has to assume that they are not aligned to get a correct
worst-case execution time. If you are sure that (almost) all data accesses in the analyzed part
of the application are aligned, you may switch this flag on to get a more precise execution
time bound. More exactly, the flag provides a global default that can be overwritten by AIS
annotations referring to specific instructions (see section 5.9.5).

The exact procedure of a3 is as follows: if an access is assumed to be aligned (by the global
default or a local AIS annotation), the set of possible addresses of the access as computed by
the value analysis of a3 is diminished by removing all non-aligned addresses from it. If the
resulting set is non-empty, it is taken as the set of possible addresses. Yet if the resulting set
is empty, which means that the access is definitely not aligned according to the knowledge of
a3, a warning is issued and the original set is taken, i.e. the alignment assumption is ignored.
Thus, a3’s own knowledge has highest priority, followed by the AIS annotations described
in section 5.9.5, followed finally by the flag described here, which has least priority.

An incorrect setting of the alignment flag may lead to incorrect WCET bounds.

• Exceptions never occur
This option has no effect on a3 for TriCore.

• Reduce number of identical messages
This option reduces the number of repeated warnings in the messages views and the textual
report files. Repeated warnings are for instance warnings about accesses to illegal memory
areas (even if the address of the access varies).

3.4.3.5 Cache Analysis (General Tab)

This part is only relevant for timing analysis.
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Usually, a3 performs a cache analysis that classifies some accesses as cache hits and some as
cache misses, while others remain unclassified and thus have an unknown status w.r.t. the cache.
Such unclassified accesses cause pipeline analysis to duplicate the current pipeline state: one copy
proceeds as if there was a cache hit and the other one proceeds assuming a cache miss.

The Cache Analysis section in the General tab specifies whether a cache analysis is per-
formed at all, and if so how pipeline analysis interprets its results. There are two options, one for
the instruction cache and one for the data cache. They have the same set of possible option values:

• Normal means that a3 performs a cache analysis, and pipeline analysis interprets its re-
sults in the standard way (hit as hit, miss as miss, and unclassified as unclassified).

• Hit if unknown
means that pipeline analysis considers unclassified accesses as cache hits.

• Miss if unknown
means that pipeline analysis considers unclassified accesses as cache misses.

• Always hit means that all cached memory accesses are considered as cache hits with-
out performing a cache analysis.

• Always miss means that all cached memory accesses are considered as cache misses
without performing a cache analysis.

• Always unknown means that all cached memory accesses are considered as unclassi-
fied without performing a cache analysis.

These cache modes apply analogously to those variants of cache analysis that are not able to predict
cache misses and thus produce only the two classifications “hit” and “unclassified”.

The purpose of these cache modes is to allow you to get an impression about the influence of the
caches on the calculated WCET results.

Except for Normal, the resulting calculated WCETs should not be considered as correct
upper bounds for the real WCETs.

The cache modes also affect the efficiency of a3. The selections Hit if unknown and Miss if
unknown avoid the costs of pipeline-state duplication due to unclassified accesses. The choices
Always hit and Always miss additionally save the costs of cache analysis. The selection
Always unknown also disables cache analysis, but the resulting gain in efficiency is by far
outweighed by the need to split the current pipeline state for every cached memory access.

Always unknown often leads to an explosion in the number of pipeline states, resulting in
huge analysis times and memory requirements.

3.4.3.6 Pipeline Analysis (General Tab)

This part is only relevant for timing analysis.
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The Pipeline Analysis section in the General tab contains an option WCET
computation mode, which tells a3 what to do when the abstract cache and pipeline state is
about to split into two or more successor states because of imprecise information. This happens
for instance when a memory access cannot be classified as cache hit or cache miss.

The option has three possible values: Global worst-case, Local worst-case, and
Local best-case. If Global worst-case is selected, a3 creates all successor states and
follows their further evolution. This guarantees that the state sequence leading to the worst-case
execution time is found by the analysis. In contrast, Local worst-case means that a3 imme-
diately decides which successor is likely to be the worst (leading to the greatest execution time),
and only follows the evolution of this single state. Splits may still occur; they are triggered by sit-
uations in which it is not clear which is the locally worst successor state. Local best-case is
similar, but a3 immediately decides which successor is likely to be the best (leading to the smallest
execution time). These distinctions mainly affect the determination of the run times of the basic
blocks. In all cases (including Local best-case), the results for routines and the entire task
are found by maximizing over all paths. So even with Local best-case, a kind of highest
execution time is computed, but under the assumption that locally everything works in the best
possible way.

Usually, the suppression of splits leads to a massive reduction of the runtime of the analyzer, but
there is a risk that the successor state that seems to be worst from a local point of view does not
really lead to the worst-case execution time.

If Local worst-case is selected, the WCET prediction of a3 may be wrong, i.e. it
may be smaller than the actual worst-case execution time.

Therefore, Local worst-case should only be used to get quick and rough WCET estimates.
For a really reliable WCET prediction, Global worst-case must be selected.

3.4.3.7 Path Analysis (General Tab)

This part is only relevant for timing analysis.

The options in this section specify how a overall WCET is derived from the results of cache and
pipeline analysis.

• Path analysis variant
This selector combines choices along two different dimensions: usage of a global state graph
for the entire analyzed code vs. usage of local state graphs for basic blocks, and finding the
worst-case path by a graph algorithm vs. by setting up and solving an integer linear problem
(ILP).

State graphs encode the cyclewise evolution of the combined cache and pipeline states. If
local state graphs for basic blocks are used, then the information is lost how the end states
of one block are connected with the start states of the next block. This leads to a loss of
precision, i.e. an overestimation of the WCET, compared with a global state graph.

The graph algorithm is more efficient than the ILP method, but cannot take into account flow
constraints (section 5.22) and only works if the graph is acyclic, which is the case if each loop
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iteration and each incarnation of a recursive routine has a separate calling context, i.e. if the
parameters max-length and max-unroll in the context specification (see section 5.4)
are infinite (or at least sufficiently big).

There are three path analysis variants:

1. ILP based means that local state graphs for basic blocks are used, resulting in higher
overestimation of the WCET, and an ILP is solved for finding the worst-case path. The
advantage of this method is that it also works if different loop iterations share the same
context.

2. Prediction file based means that a global state graph is computed, and a
graph algorithm is used for finding the worst-case path. While this is more efficient
than the ILP method, it cannot take into account flow constraints as described in sec-
tion 5.22.

3. Prediction file based (ILP) means a global state graph is computed and
the ILP method is used for finding the worst-case path. This method also works if
different loop iterations share the same context.

The three methods can be compared according to their precision and their efficiency (time
and space needed for the analysis). Without flow constraints, methods 2 and 3 are equally
precise, while method 1 is less precise. Flow constraints may improve the precision, but can
only be evaluated by the ILP methods 1 and 3 so that method 3 has greatest precision. If the
same context specification method with maximum unrolling is used for all three, method 2
is the most efficient since the graph algorithm is more efficient than the ILP method, fol-
lowed by method 1, and method 3 is the least efficient since its ILP is larger than the ILP of
method 1. The efficiency of methods 1 and 3 can be improved by reducing the number of
contexts, which is not possible for method 2.

• ILP solver
During timing analysis, a3 sets up an integer linear problem whose “optimal” solution yields
the worst-case execution counts of the basic blocks and the overall WCET (unless path anal-
ysis is Prediction file based, see above). The solution is computed by invoking an
external ILP solver. a3 can interface with several such solvers, including CPLEX. While
CPLEX is generally faster than the other solvers, it requires a separate license. This license
has to be distinguished from the license for the interface between a3 and CPLEX. If the inter-
face license is missing, there is no selection CPLEX in this combo box. If an interface license
exists, but not a CPLEX license, then the selection exists, but CPLEX cannot be executed.

3.4.3.8 The Advanced Tab

The Advanced tab of the Analyses view contains some options of more advanced nature.

• Generate pipeline basic block statistics
Setting this check box causes the pipeline analysis of a3 to write statistics on the number of
pipeline states, their copying and deletion etc.
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• Maximum memory usage
Possible values are 1% – 100%. The selection 100% means that a3 may claim as much
memory as is available on the machine, which is problematic if more than one instance of
a3 is running on a single machine. The other choices restrict the initial memory usage to
the given percentage of available memory. Yet note that the memory allocated initially is
extended when required by the analysis.

• Enable widening for cache states
Cache and pipeline analysis together compute a set of combined cache/time-pipeline-states
for every program point and execution context. Each cache/time-pipeline-state is a pair
consisting of an abstract cache/time state and a pipeline state. The abstract cache/time state
comprises information on the cache contents, the cycle count, and the current jitter. To save
space and analysis time, widening can be enabled, which means that compatible cache/time-
pipeline-states are joined into one when an instruction retires from the completion queue.
Here, two cache/time-pipeline-states are compatible if their two pipeline states are equal,
i.e. their difference lies in the cache/time states. Compatible states are joined by taking the
maximum cycle count, abstracting the jitter, and joining their cache states. Abstract cache
states are joined by retaining only the memory blocks that are in all of the joined states, and
giving them the maximum of the ages they have in the various states.

Disabling widening reduces the overestimation caused by the joining of abstract cache/time
states, at the expense of vastly increased memory consumption and analysis time.

The increased memory consumption caused by disabling widening often makes timing
analysis practically infeasible. Therefore widening should always be enabled except in
special circumstances.

• Disable extended feasibility analysis
A program part is infeasible if it can never be executed. Basic infeasibility information is
obtained from value analysis when it finds out that a condition always evaluates to true or
always to false, and from never-executed annotations as described in section 5.17. Basic
infeasibility is propagated forward: if a program point is infeasible, then any point only
reachable through it is infeasible, too. Extended feasibility analysis in addition propagates
infeasibility backward: if a program point is necessarily followed by an infeasible program
point, then it is infeasible, too.

Example: Consider the following code:

void R() { R1(); R2(); R3(); R4(); }

and assume that R1 and R4 are only called here, but R3 is also called elsewhere. If R2 is
declared as infeasible, then basic feasibility analysis (active if the flag is on) finds that R4
is infeasible. In contrast, extended feasibility analysis (active if the flag is off) concludes
that R4, R1, and R itself are infeasible. (Routine R3 is not infeasible since it is also called
elsewhere.)

Since infeasible routines need not be considered in timing and stack analysis, extended fea-
sibility analysis usually leads to faster timing and stack analysis requiring less memory. Dis-
abling extended feasibility analysis is useful if you want to find the origin of the infeasibility.
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In the example above, the origin was the assumed declaration that R2 is infeasible, which
stands out more clearly with basic feasibility analysis (only R2 and R4 infeasible) than with
extended feasibility analysis (all of R, R1, R2, and R4 infeasible).

• Do not analyze values of memory cells (Stack Analysis)
Value analysis can analyze the values of registers and memory cells. The latter are not very
important for stack analysis, which mainly needs the values of the stack pointer register and
of the registers where the stack pointer is saved. Switching on this flag can greatly reduce
the time needed for stack analysis, but may lead to less precise analysis results.

3.4.3.9 The Support Tab

The Support tab of the Analyses view contains some options intended to be used by specialists
from the AbsInt support team. The field for additional GUI AIS annotations at the bottom should
be left empty by ordinary users.

The Command Lines section at the top offers text fields to specify additional command line
options for some ancillary tools called by a3. Normally, a3 calls these tools with appropriate
command line options so that no additional options are required.

3.4.4 The Registers View

The Registers view in the Configuration section allows for specifying register values
valid at the start point of the analyzed piece of code. This is rarely needed for stack analysis,
which is usually successful without knowing any initial register values.

The view contains fields for the various processor registers, which can be filled with the desired
register values. The value of the free CSA list head pointer FCX can be specified in the TriCore
view (see section 3.4.2). The value of the stack pointer a10 should also be specified there.

Register values specified in this view refer to the situation at the start point. Register values at
arbitrary positions (including the start point) can be specified in the AIS file (see section 5.10) or
in source code annotations (section 5.31).

3.4.5 The Source files View

The Source files view in the Configuration section allows for specifying information
that helps a3 in locating source files. Details about the process of locating source files can be found
in section 4.5. The Source files provides a panel for naming include paths (section 3.4.5.1), a
panel for specifying path replacements (3.4.5.2), and a mechanism to let a3 compute proposals for
include paths and replacements (3.4.5.3).

3.4.5.1 The Includes Panel

The Includes panel in the Source files view offers the possibility to set up a list of include
paths, i.e. full path names of directories that are searched for source files.
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The panel contains a list of include paths. A click on the button adds a new path with a dummy
name to the list. A path name in the list can be selected by clicking on it. The selection can
be moved up or down with the corresponding arrow keys. The selected path name can be edited
textually, or replaced by a path name from a selection box that appears when the folder icon
is clicked. Clicking or moves the selected path up or down, respectively. The order of the
path names matters since the include directories are searched in the order in which they are listed.
When you click on the button, the path currently selected is removed.

3.4.5.2 The Replacements Panel

The Replacements panel in the Source files view allows for specifying replacements for
paths that are part of source file names. Details about the purpose and the exact meaning of the
specified replacements can be found in section 4.5. Here, we concentrate on the handling of the
graphical user interface.

The panel contains a list of replacement pairs consisting of a Path field containing the original
path and a Replacement field containing its replacement. A click on the button adds a
replacement pair with dummy contents to the list. A field of a pair in the list can be selected by
clicking on it. The selection can be moved around with the arrow keys. The selected field can be
edited textually, or replaced by a path name from a selection box that appears when the folder icon

is clicked. Clicking or moves the selected pair up or down, respectively. The order of
the pairs matters since the replacements are tried in the order they appear in the list until the first
match (see section 4.5). When you click on the button, the currently selected pair is removed.

3.4.5.3 Proposals for Includes and Replacements

Clicking on the button Compute Proposals near the bottom of the Source files view
causes a3 to compute a list of proposals for include paths and replacements. This only works if a3

already has performed an analysis whereby some source files could not be located.

The proposals are obtained by searching in the directory containing the current project file and
all its subdirectories, and searching in all directories already listed in the Includes panel and
all their subdirectories. Therefore, it can be useful to enter paths in the Includes panel before
clicking Compute Proposals. These paths should be directories that presumably contain one
or several source files in some subdirectory.

On the other hand, searching through large directories with many subdirectories may take quite
some time. Therefore there is a button Stop Computation for stopping a running computation
of proposals. When a computation has been stopped by clicking on this button, all proposals found
so far are listed.

The proposal computation can yield proposals for Includes and for Replacements. A double
click on a proposal or a single click on the green plus symbol to the right of a proposal instructs
a3 to move this proposal to the Includes or Replacements panel where it takes effect in the
next analysis.
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3.4.6 The Visualization View

The Visualization view consists of two halves. The left half offers several options influencing
the GDL graph descriptions generated by a3 to visualize the combined call graph and control-flow
graph of the executable and the analysis results. The GDL graph descriptions in turn determine the
information in the graphs and their initial visualization. The graph descriptions in chapter 7 and
the graph browser description in chapter 8 refer to the situation in which all check boxes except
the one for Manhattan edges are disabled, and the Color scheme is default.

The combined call graphs and control-flow graphs generated by a3 represent the input program
down to the level of individual assembly instructions. The graphs are structured into three hierar-
chical levels: routines and their calling relationships, basic blocks and the control flow in-between,
and individual assembly instructions. Many visualization options control this hierarchical structure
and its visualization.

The right half of the view serves as a preview. It shows a picture of a typical output graph illustrat-
ing the effect of the option settings. Whenever an option is changed, the preview is automatically
redrawn to reflect this change. The preview picture is displayed via the graph browser aiSee and
thus accepts the aiSee commands described in chapter 8 (except for menu and tool-bar commands).

• Normal layout
This flag enables you to choose between two different algorithms for computing the layout
of the graph images. In “normal layout”, basic blocks are displayed in the same order as in
the executable. Without “normal layout”, the positions of the nodes are derived from their
sizes and their connectivities.

Note that the normal layout property is only guaranteed for basic block graphs in the boxed
representation. The clustered and unfolded representations may destroy the normal layout
property. (See section 8.2.2 for a description of the various representations of subgraphs.)

• Manhattan edges
Usually – meaning when this flag is disabled – call-graph edges are built from line segments
of any orientation. When this flag is enabled, only horizontal and vertical line segments
are used to build edges. (Basic block edges are always displayed in Manhattan style if the
basic block graph is in the boxed representation.) Manhattan layout can also be enabled and
disabled during graph viewing (see the aiSee manual).

• Comma as decimal sign
When it outputs the results of timing analysis, a3 normally uses a dot as separator between
integral and fractional part, e.g., 2.875us. If the Comma flag is activated, a comma is used
instead, e.g., 2,875us. This applies to times occurring in the graph visualization as well
as times listed in the report file.

Activation of the Comma flag also has two side effects: all times are output in microsec-
onds (us), and the fractional part is extended to at least 3 digits by appending 0 digits.
For instance, 2.8us becomes 2,800us, and 0.458ms becomes 457,200us. (Here,
0.458ms has been rounded from 0.4572ms.)

• Boxed routines
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When this flag is enabled, graph browsing starts with a picture of the call graph in which all
routine nodes are shown in boxed representation so that basic block graphs are visible. This
also means that the Edit→Reload command of the graph browser (cf. section 8.1.6) puts
the graph into this state.

• Boxed basic blocks
When this flag is enabled, graph browsing starts with a picture in which basic blocks are
in boxed representation exposing the instruction sequences contained. This is not visible
in the initial image if Boxed routines is disabled, since all basic blocks are hidden,
however the instruction sequences become visible when basic block graphs are exposed. If
Boxed routines and Boxed basic blocks are enabled, all instructions are visible in
the initial picture.

• Inline loop routines
If this flag is activated, loops in loop-transformed graphs are not displayed as separate rou-
tines, but as part of the routines from which they have been extracted (see section 4.1 for the
loop transformation and section 7.1 for pictures).

• Trace-like pipeline state visualization
If this flag is disabled, the visualization of the cache and pipeline states as described in
section 7.5 is structured according to the instruction about to leave the pipeline. For each
such instruction, the visualization shows the evolution of the cache and pipeline states while
it is at the end of the pipeline. The final states for one instruction are not visually connected
to the initial states of the next instruction. If the flag is enabled, the visualization is structured
according to the current basic block. Thus, the final states for one instruction are connected
to the initial states of the next, and there are no borders separating the instructions.

• Font
Here you can select the font for the labels of the nodes in the graphs generated by a3. The
selected font is shown in the preview, but note that the scaling within the preview may vary
so that it may seem that font size changes are not handled correctly. To set the scaling in the
preview to 100%, click into the preview window and type 0 (zero).

• Display WCET profiles
If this flag is activated, graphs with timing analysis results contain an additional WCET
profile in every routine box.

• Display source code
This flag influences the labels in the nodes representing basic blocks. When the flag is
disabled, basic block nodes are labeled by their hexadecimal start address, e.g., 0x10a.
If Display source code is enabled, basic block nodes are labeled by C source code
(provided that this feature is included in your license). See section 7.1.5 for a more detailed
description of this feature.

• Color scheme
There are three possible values: Default, Black & white, and User defined. If
Default is selected, a3 uses the standard set of colors described in section 7.1. With
Black & white, only black and white elements are used in graph visualization. With
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User defined, the standard set of colors is replaced by the set defined in the dialog box
that is activated by clicking on the button. This dialog box enables you to define your
own colors and to associate them with the various features of graphs generated by a3. Color
sets defined in this way are not active unless User defined is selected.

• Disable visualization for batch mode (at the bottom of the view)
This option only has effect on batch-mode runs of a3, i.e. runs started with the option -b
(see section 2.1). Runs in interactive batch mode (option -B) and interactive a3 sessions are
not affected.

When visualization is disabled for batch mode, then batch runs of a3 do not create the textual
descriptions of the annotated call graphs and control-flow graphs, so that the report files are
the only output of the analyses. Details are more complex, however.

For timing analysis only: If Disable visualization is set, batch runs of a3 do
not write the table of routine WCET contributions into the report file. The report file
thus carries less information than in presence of visualization. This remark only applies
to batch mode runs started with -b.

• Set as default
The Visualization options are stored in the project file. When a new project is started by
opening a3 without a project file or by the New operation from the Project menu, the
Visualization options are initialized to some default values. These defaults are set to the
current values when the Set as default button is clicked. This allows for propagating
the current Visualization options to a new project, but does not affect any existing projects.

3.5 The Analyses Views

The Analyses section in the list of available views allows you to define and manage analyses.
It contains at least the Create view (section 3.5.1) and the Overview view (section 3.5.4).
The Create view offers commands for creating new analyses, and the Overview view lists the
existing analyses, offers commands for managing them, and summarizes their results. These two
views cannot be closed.

Each new analysis obtains its own view, in which the parameters of the analysis can be set. Analy-
ses that cannot be executed because of an incomplete parameter set or invalid settings are marked
in the list of available views by an exclamation point, which carries a tool tip indicating the reason
why the analysis cannot be executed.

3.5.1 The Create View

The Create view allows you to create new analyses. It lists the kinds of analyses that are available
for TriCore target processors and enabled in your license. To create a new analysis, you can either
click on an analysis in the list or issue the corresponding command from the New Analysis
menu or tool bar. It is possible to create more than one analysis of the same kind. The present
manual describes the following analyses:
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• Control-Flow Graph
creates a visualization of the combined call graph and control-flow graph of the application
without specific analysis results (see section 7.1).

• ValueAnalyzer
creates a value analysis allowing to explore the effects of individual instructions on registers
and memory cells (see section 7.2).

• StackAnalyzer
creates a stack analysis computing the maximum stack usage of a task (see section 7.3).

• aiT
creates a timing analysis (see 7.4) computing a safe upper bound of the worst-case execution
time (WCET) of a task.

• Difference Analysis creates a difference analysis that when started runs two specified
timing analyses with the same entry points and produces a combined result graph highlight-
ing the differences between the results of the two analyses.

3.5.2 The Analysis Views

Whenever a new analysis is created, it is given a view for setting its parameters. Closing this view
via its button removes the analysis from the project.

The views for the various kinds of analyses are quite similar and thus described all at once. They
contain the following fields:

• ID
gives an ID (identifier) to the analysis. This identifier appears in the list of analyses in the
Overview view (section 3.5.4), and also will be the name of the analysis view. When a
new analysis is created, it is given a dummy identifier that can be modified by editing the ID
text field.

• Comment
provides space for an optional comment text.

• Analysis start
defines the start point of the analysis. You may type a routine name, a label name from the
AIS file (see section 5.25), or a code address into this field, or select a routine name (but not
a label name) from the selection box that pops up when the button at the right side of the
text field is clicked. The start-point selection is described in section 3.5.5.

A code address need not be a routine entry. If the symbol table does not contain a name for
start address A, the decoder creates an anonymous routine :Anon_A.

• AIS file
specifies an AIS file with annotations specific for this analysis. This AIS file is read after the
global AIS file named in the AIS file field of the Files view (see section 3.4.1).
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Clicking on the edit button to the right of the text field opens a new view with a text editor
on the file whose name is displayed there. If the field is empty when the button is clicked, a
file name is generated automatically.

• Report file
is a panel for entering the name of a local textual report file. This panel does not exist for
Control-Flow Graph “analyses”. If the panel specifies a file, then a3 writes a report with
messages and analysis results into this file whenever the analysis is performed. The report
file is also written during the batch mode analyses performed when a3 is started with the
command line option -b or -B (see chapter 2.1).

The contents of the report file are deleted before a new report is written.

The button opens a view with a text browser on the report file.

• XML report file
is a panel for entering the name of a local XML report file. This panel does not exist for
Control-Flow Graph “analyses”. If the panel specifies a file, then a3 writes a report in XML
format into that file whenever the analysis is performed. The remarks about the textual report
file apply to the XML report file as well.

This text field is only visible if XML reporting is included in your license.

The button opens a view with an XML browser on the XML report file.

• GDL output
names a file in which the result of the analysis is written in GDL format, i.e. as a combined
call graph and control-flow graph annotated with analysis results. If the button to the
right of the text field is clicked while the text field is empty, a file name is generated auto-
matically. If the text field is not empty and the analysis has been run successfully, the
button opens a view with a graph browser on the specified GDL file. Note that a view with
the generated graph is opened anyway automatically in case of a control-flow graph “anal-
ysis” or an interactive analysis after it has run successfully. In other cases, it can be opened
via the Overview view (see section 3.5.4) or the button (see section 3.5.3) even if no
name for the GDL output is specified.

3.5.3 Commands for Analyses

The Project menu and tool bar contains commands for running analyses, and each analysis
view is associated with an Analysis menu and tool bar for issuing commands special for this
analysis. We start with the description of the latter ones.

• Analysis→Start or F7 or in the Analysis tool bar
starts the analysis in the current view. The analysis can be prematurely stopped with
Project→Stop analysis or Ctrl+Esc or in the project tool bar. If the analysis
was successful, its result is listed in the Overview view (see section 3.5.4), from which
a view with the graph containing the analysis results can be opened. Control-flow graph
“analyses” form an exception; they immediately open a view with the resulting graph.
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The features of the generated graphs are described in sections 7.1 (control-flow graphs), 7.2
(value analysis), 7.3 (stack analysis), 7.4 (timing analysis).

• Analysis→Interactive or in the Analysis tool bar (Timing and value analysis)
starts the analysis in the current view. The analysis can be prematurely stopped with
Project→Stop analysis or Ctrl+Esc or in the project tool bar. If the anal-
ysis was successful, a view with the graph containing the analysis results is opened. The
difference to the Start operation lies in the fact that the generated graph provides access
to the cache and pipeline states of the analyzer (see section 7.5) in case of timing analysis,
and to the results of value analysis (see section 7.2) in case of timing and value analysis.

• Analysis→Control-Flow Graph or in the Analysis tool bar
opens a view with the call graph and control-flow graph of the analyzed code without running
the analysis. The elements of the generated graphs are described in section 7.1. The purpose
of this operation is to get a quick overview of the structure of the code to be analyzed without
the need to wait for the termination of the actual analysis.

• Analysis→Disassembly or in the Analysis tool bar
opens a view with a disassembly listing of the analyzed code, i.e. the part of the executable
reachable from the start point of the analysis (see section 3.5.6).

• Analysis→Display analysis results or in the Analysis tool bar
opens a view with the graph containing the analysis results, or switches to that view if it is
already open.

• Analysis→Display analysis messages or in the Analysis tool bar
switches to the Overview view and shows there the messages generated while running the
analysis (see section 3.5.4).

The Project menu and tool bar contains the following commands relevant for performing anal-
yses:

• Start all analyses or F6 or in the project tool bar
starts all active analyses in the current project (those with a checked check box in the list of
defined analyses, see section 3.5.4). The same happens without a user command when a3 is
started in batch mode (with option -b).

• Stop analysis or Ctrl+Esc or in the project tool bar
stops the currently running analyses. This applies to the bunch of analyses started by the
Start all command or button described above, and to single analyses started from
analysis views with the Start command or button, or with the Interactive com-
mand or button.

3.5.4 The Overview View

The Overview view consists of two parts. The upper part shows the list of currently defined
analyses. The lower part shows the messages that have been generated while running the analysis
selected in the upper part.
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The upper part is organized as a table with three columns. The first column contains the ID
(identifier) of the analysis as defined in the corresponding analysis view (see section 3.5.2), the
second column its Type, and the third its Result. The result is only shown for analyses that
have successfully been executed since the start of the a3 session. The following types and results
exist:

• Value-Analysis with result Passed or Failed.

• Stack-Analysis with a result

User=U bytes, System=S bytes

giving an upper bound for the stack usage.

• aiT with a result giving the WCET in processor cycles and in real time units if a clock rate
has been specified as described in section 5.2.

Lines corresponding to analyses whose run has generated warnings are displayed with an orange
background, and those with errors with a red background. The warnings and errors can be in-
spected in the messages displayed in the lower part of the view when the line is selected.

The currently selected analysis can be deleted via the button. (Another way to delete an analysis
is closing its view.) The analyses in the list can be reordered by means of the and buttons. A
double click on an analysis with a result lets a3 open a graph browser showing the detailed analysis
results attached to the combined call graph and control-flow graph as described in chapter 7.

Each analysis in the list comes with a check box for activating or deactivating it. When Start
all analyses is invoked from the Project menu or by clicking , or when a3 is started in
batch mode (with -b), all active analyses are performed (the inactive ones are skipped). There are
buttons to activate or deactivate all analyses at once.

The Overview view is associated with an Analyses menu and tool bar. When no analysis is
selected, this menu contains a single command Clear analysis results and the tool bar
a corresponding button . This command clears all analysis results including the messages in
the lower part. When an analysis is selected, the Analyses menu and tool bar is extended by
the commands and buttons belonging to the kind of the selected analysis, e.g., Start . These
commands and buttons are the same as those induced by the corresponding analysis view. They
are described in section 3.5.3.

Even if an analysis is selected, the command Clear analysis results and the corre-
sponding button delete all analysis results, not only the result of the selected analysis.

3.5.5 Start-Point Selection

As described in section 3.5.2, each analysis view features an Analysis start text field con-
taining the start point of the analysis, which may be entered by text editing or via a selection box
opened by clicking on the button.

The selection box mainly consists of a table listing all routine names and labels in the executable
with their start address and end address (the latter may be unknown, in particular for labels). It
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does not contain the labels defined in the AIS file (section 5.25) although such labels work when
typed into the Analysis start text field.

The listed information is extracted from the symbol table and debug information in the executable.
If the list is initially empty, click on the button to initiate the extraction of the necessary infor-
mation from the executable. The button should also be used after changing the executable.

After selecting a list element by a mouse click, clicking on the OK button writes the selected name
into the Analysis start text field.

To simplify the search for a particular list entry, the selection box features a text field at the top
whose contents are used for filtering the list. If the check box Regular expression is off, the
contents of the text field are handled as plain text, and the list is reduced to those lines matched
by the text, i.e. containing the text as a substring (not necessarily at the beginning of the Name
field, but somewhere in the interior of the Name field, the Start field, or the End field so
that you can search for fragments of names and fragments of addresses). For instance, main
matches routine main, but also other routines with names like main_trim, __init_main, or
domain_check, and 0x matches all lines because of the 0x in the start address. The filtering of
the list proceeds as you type; each character typed may lead to some shortening of the list. The
button clears the text field and consequently restores the original list of all names.

If the check box Regular expression is on, the contents of the text field are considered as a
regular expression, and the list is reduced to those lines matched by the expression. The simplest
regular expressions are strings consisting of letters, digits, underscores, and spaces. Such a string
matches all text containing it as a substring (like in the plain-text case described above). Thus
most characters in a regular expression stand for themselves, yet there are some special characters
implementing the following features:

. matches any character.
ˆ matches the beginning of the Name, Start, or End field.
$ matches the end of the Name, Start, or End field.
a* matches a sequence of zero or more a’s.
a+ matches a sequence of one or more a’s.
a? matches an optional a.
\s matches a white space character.
\d matches a digit.
[abs] matches a single character that is a, b, or s.
[ˆabs] matches a single character that is not a, b, or s.
[a-s] matches a single character that is in the range from a to s.
[ˆa-s] matches a single character that is not in the range from a to s.

For instance, v[ei] matches all lines containing ve or vi, in particular even and divides.
To match only the line with routine main and nothing else, write ˆmain$. The symbols ˆ and
$ are needed to prevent the regular expression from matching routines like main_protocol or
run_main.

Regular expressions may be combined by ‘|’, meaning or, and grouped by parentheses ‘(’ and ‘)’.
So if you want to retain only routines prime and swap in the filtered list, you should use the
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Figure 3.3: Preferences dialog box for the disassembly view

regular expression ˆ(prime|swap)$.

3.5.6 The Disassembly View

Upon request, a3 can present the disassembly of the analyzed part of the executable. This is
initiated by calling Analysis→Disassembly or clicking on in the Analysis tool bar
while an analysis view is active (see section 3.5.3), or an analysis is selected in the Overview
view (section 3.5.4). The information then refers to the part of the executable reachable from the
start point of the analysis.

The disassembly view is marked by the icon and named like the start point of the analyzed part
of the executable, e.g., main.

What exactly is shown in the disassembly view depends on the settings in the Disassembly
part of the Preferences dialog box (see Figure 3.3) that can be invoked by
Edit→Preferences, , or from the context menu of the disassembly view.

The disassembly view always shows code (assembly instructions) and code addresses. The dis-
playing of source code and operation codes (as hex numbers) can be enabled or suppressed by the
respective check boxes in the Preferences dialog box. Source code can only be displayed if
this feature is enabled in your license. It is taken from the source files whose names are extracted
from the debug information in the executable. Section 4.5 describes how these files are found in
the file system. a3 uses the line information in the executable to merge the source lines into the
assembly code.
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Figure 3.4: A disassembly view

The various features such as code, addresses, etc. are displayed using the colors shown on the
buttons in the Preferences dialog box. Clicking on these color buttons activates color selection
boxes where you can choose your own colors for code, addresses, etc. The term Addresses
refers to the addresses of instructions (not the target addresses occurring as part of the instructions).
These addresses can be shown absolutely or relative to function entries. If disassembly is produced
from a WCET analysis after running the analysis, then the color WCET is used for addresses on
the WCET path, and Infeasible for addresses on paths that are never executed (according to
the knowledge of a3). To activate this feature for disassembly produced before running the WCET
analysis, it is sufficient to click on the reload button of the disassembly view after running the
analysis. Click the Restore Defaults button to reset all colors to the system defaults.

Figure 3.4 shows a disassembly view filled with some disassembled code, using the preferences
shown in Figure 3.3, i.e. interspersed with source code. This example is generic, i.e. not specific
to the TriCore architecture.

The code in the disassembly view is not influenced by the loop transformation (see sec-
tion 4.1), i.e. loops are shown as part of the routines where they occur, not as separate loop
routines.

Basic blocks are separated by blank lines and indicated by varying the background color. The
targets of calls and branches are active links. When the mouse points to such a target, a blue arrow
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appears in the left margin pointing to the target instruction (see Figure 3.4). When you click on the
target, the Disassembly view scrolls so that the target instruction becomes visible. The arrow
remains visible after the click until the mouse pointer is moved. You can return to the original
position by selecting Return to last caller from the context menu of the Disassembly
window or by pressing the Backspace key.

The bottom of the disassembly view features four text fields entitled Hexadecimal, Decimal,
Octal, and Binary. When the mouse points to a number in the disassembly view, these fields are
filled with the various representations of that number. In the example of Figure 3.4, this happened
with the target address 0xb4. (This does not work for all numbers appearing in the view.)

The context menu also offers Find and Go to operations. The Find operation can be used
for text search, which applies uniformly to all text displayed in the window, be it source code,
assembly code, or code addresses. The Go to operation implements search for the start points of
routines that can be selected from a menu and for code addresses that can be typed in.

The disassembly view shows only the part of the executable that is reachable from the current
start point. In particular, the list of functions among which you may choose in the Go to
operation usually does not contain all functions in the executable.

3.6 The Information Views

The views in the section Information present some information extracted from the executable
without running an analysis. These views are created once an executable has been specified.

3.6.1 The Messages View

The Messages view in the Information section displays only the messages generated while
creating the other Information views. The messages resulting from running an analysis are
presented in the Overview view (see section 3.5.4).

3.6.2 The Symbols View

The Symbols view displays the symbol table of the executable. It contains the following columns
for each symbol found:

• Routine indicates whether the symbol is a routine name. There are three possibilities:
yes, also marked by a green flag, perhaps with a yellow flag, and no with a red flag.

• Symbol is the name of the symbol.

• Start address and End address, where the latter is not always known.

• Section (if known).
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Like the start-point selection, the Symbols view contains a search function with analogous prop-
erties (see section 3.5.5 for a description of this search function). The search function is ap-
plied to the column Symbol with the symbol name and the columns Start address and End
address, but not to the column Section with the section name.

3.6.3 The Source files View

Here we talk about the Source files view in the Information section. It should not be
confused with the Source files view in the Configuration section (described in sec-
tion 3.4.5).

The Source files view shows the list of source files, as far as it can be determined from the
executable. (Section 4.5 describes how source files are located by a3.) Source files that could be
located successfully are displayed in black, the other ones in gray. A double click on a successfully
located source file opens a view with a text browser showing the contents of the source file.

3.6.4 Variables and Functions Views

The views entitled Variables and Functions display the Dwarf debug information contained
in the executable, which of course only works if the executable contains such information.

Variables and Functions views do not appear if the executable does not contain debug
information.

The Variables view displays information on the global and local variables of the program. The
Functions view lists the functions of the program with their parameters. For variables and
parameters, the following information is displayed:

• The Name of the variable or parameter.

• Its Type, e.g., int, unsigned int, char[128], struct, or struct*. Structs or
pointers to structs can be opened to get access to information on the struct components.

• Type Modifiers such as const or volatile.

• The Size in bytes, e.g., 4 for int. The size of an array is displayed as m/n where m is the
total size of the array and n is the size of one component, e.g., the size of int[5] is shown
as 20/4. Note that a struct may be larger than the sum of its component sizes because of
alignment.

• The Absolute address, which can be a hexadecimal number, a register such as
reg(7), or a register with offset such as reg(1)+8. The registers are usually not named
as in the target architecture, but numbered sequentially as in the Dwarf debug information.
The correspondence between the Dwarf register numbers and the actual register names is
part of the processor API.

48



• The Relative address, which only appears for components of structs and means the
address of the component relative to the address of the struct.

• Some optional Remarks.

3.6.5 The Sections View

The Sections view displays the section table of the executable. It contains the following
columns for each section found:

• Address is the start address of the section.

• Size is the size of the section.

• Name is the name of the section.

• Type is code or data.

• Byte order is lbf (low byte first) or hbf (high byte first).

• Relocate, Allocated, Readable, Writable, and Executable are possible
properties of a section. They can be either satisfied (yes and green flag) or not (no and
red flag).

Like the start-point selection, the Sections view contains a search function with analogous
properties (see section 3.5.5 for a description of this search function). The search function is
applied to the columns Address, Size, Name, Type, and Byte order.

49



Chapter 4

Background Information

This section presents some background information about internal representation of loops (4.1),
origin and naming of routines (4.2), calling contexts of routines (4.3), analysis phases (4.4), and
locating source files (4.5).

4.1 Loop Transformation

a3 works on an internal representation of the input program as a combined call graph and control-
flow graph. When reading an executable, it first builds a graph whose structure closely reflects
the control structure of the executable. This original graph is then modified by the so-called loop
transformation, which turns loops into separate routines that call themselves recursively. The
purpose of this loop transformation is to enhance the precision of the analyses in presence of loops.
All graphs shown by a3 are loop-transformed, and the output of a3 refers to the loop-transformed
graphs. Thus it is important to explain the effect of loop transformation before describing the
parameter files of a3 and the visualization of graphs.

Note that loop transformation only concerns the graphs used as internal representation; the
executable itself is not affected. Consequently, the loop transformation is not visible in the
Disassembly view.

4.1.1 Simple Loops

Figure 4.1 shows the effect of loop transformation on a simple loop. The picture on the left shows
the control-flow graph of routine F that contains such a simple loop. In a kind of pseudo source
code, this routine could be specified as

routine F {
b0;
while (b1) b2;
b3;

}
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Figure 4.1: Loop transformation: simple loop

The black arrows represent normal control flow, green arrows lead from a condition to its “true”
successor, and red arrows to its “false” successor. The routine is entered at b0 and left at the
special exit node end. A possible trace of routine F is b0→b1→b2→b1→b3. This corresponds
to a possible path through the graph of Figure 4.1, left.

The picture on the right hand side of Figure 4.1 shows the result of loop transformation. The loop
has been turned into a separate loop routine named F.L1 that is called from F at loop call
F.L1; the calling relationship is indicated by the dark blue arrow from routine F to routine F.L1.

In pseudo source code, the transformed program could be specified as

routine F {
b0;
loop_call_F.L1: call F.L1;
b3;

}
routine F.L1 {

if (b1) {
b2;
loop_call_rec_F.L1: call F.L1;

}
}

Thus, iteration has been replaced by recursion: the loop routine calls itself at loop call rec
F.L1, indicated by the dark blue arrow from loop call rec F.L1 to b1. The loop routine is
left if b1 is false, which is depicted by the red arrow from b1 to end.

A trace such as b0→b1→b2→b1→b3 still corresponds to a path through the graph, but this path
is not that obvious. In constructing this path, two rules must be observed:
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1. Whenever a loop call block is reached (loop call F.L1 or loop call rec F.L1 in
this example), control continues at the entry block of the corresponding loop routine (b1 in
this example; entry blocks are green in contrast to non-entry blocks, which are blue).

2. Whenever control reaches the exit node end of the loop, it is passed back to the loop call
node in the routine the loop was extracted from (loop call F.L1 in this example).

Example: The trace b0→b1→b2→b1→b3 corresponds to the path

b0 → loop call F.L1 →
b1 → b2 → loop call rec F.L1 →

b1 → end of F.L1 →
loop call F.L1 →b3.

4.1.2 Numbering of Loop Routines

If routine F contains several loops, the extracted loop routines are counted from 1: F.L1, F.L2,
etc. This includes nested loops: Two nested loops are extracted as F.L1 and F.L2; there are no
loop routines such as F.L1.L1.

Loop routines are numbered according to the address of their entry point. If two nested loops
are entered by fall-through from the code before the loop, the entry of the outer loop is before
the entry of the inner loop, and so the number of the outer loop is smaller than the number of
the inner loop. Yet if two nested loops are entered by jumps to their last basic blocks, then
the entry of the outer loop lies behind the entry of the inner loop, and so the inner loop has
the smaller number.

4.1.3 Loops with Several Exits

Loops with additional exits in the manner of C’s break statement lead to similar results; the
break statements cause additional arrows pointing to the loop exit node. Yet loops with exits
in the manner of C’s return statement are more difficult because they usually cause the loop
routine to have several exit points with different return targets. Consider for instance the left
picture in Figure 4.2. The loop consisting of b1 and b2 has two exits: b1→ b4 and b2→ b3. In
pseudo source code, routine F could be specified as

routine F {
b0;
while (b1) {

if (b2) return b3;
}
return b4;

}
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Figure 4.2: Loop transformation: loop with two exits

Although expression b3 syntactically occurs within the braces of the loop, its evaluation does not
belong to the loop. It is evaluated when the loop is being left as shown in Figure 4.2, left. The loop
consists of b1 and b2 only. Expression b4 more obviously does not belong to the loop. There are
two ways to leave the loop: If b1 is false, the loop is left normally, and the code after the loop is
executed, i.e. b4 is evaluated. If b2 is true, the loop is left via return b3, i.e. b3 is evaluated.
Thus the two loop exits lead to two different successors: b4 and b3.

The picture on the right hand side of Figure 4.2 shows the result of loop transformation. Again,
the loop has been turned into a separate routine named F.L1 that is called from F at loop call
F.L1, and the loop routine calls itself at loop call rec F.L1, indicated by the dark blue arrow
from loop call rec F.L1 to b1. The two loop exits are represented by the paths

b1 → end → loop call F.L1 → b4 and
b2 → end → loop call F.L1 → b3.

Since both loop exits are channeled through the same loop exit node, the loop-transformed graph
also admits the mixed paths

b1 → end → loop call F.L1 → b3 and
b2 → end → loop call F.L1 → b4,

which do not correspond to any valid control flow; the original graph has no direct link from b1 to
b3, nor from b2 to b4.

The additional paths are introduced by the loop transformation. They are taken into account by
the last step of WCET analysis when the worst-case path is searched. Hence, it may happen that
the calculated worst-case path includes one of these invalid paths. This still results in a correct
approximation of the real WCET, i.e. the calculated WCET is larger than or equal to the real
WCET. It only may make the calculated WCET less precise, i.e. higher above the real WCET.

In stack analysis, the additional paths do not necessarily cause imprecision. Even if they do, they
cannot induce wrong analysis results.
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Figure 4.3: Loop with two entries

4.1.4 Loops with Several Entries

Executables may also contain loops with several different entry points (multi-entry loops or irre-
ducible loops). Such loops are unlikely to occur in object code resulting from compiling C source
code, yet may be found in library routines.

Figure 4.3 shows an example for a loop with two entries. The loop consists of the blocks b3 and
b4, and the two entries are b0→ b3 and b1→ b4.

Loop transformation is not able to transform loops with several entry points into loop rou-
tines because routines have to have a single entry point. Thus, loops with several entry
points are hard to find; you need to look closely at the control-flow graph or watch out for
info messages of a3 about irreducible loops.

Loops with several entry points are not endowed with special loop contexts, are not considered
by automatic loop bound analysis as described in section 4.4.1, and cannot be bounded by user
annotations as described in section 5.20.

4.2 Routines

The code in an executable is partitioned into routines, i.e., assembly procedures, which have several
different origins:

• A C source function is translated into a routine unless the compiler decides to inline its code.
The assembly name of such a routine is usually the name of the original C function. For
instance, the main function of the C source is translated into routine main .

Of course, the routine names in the executable are the compiler’s choice. The remarks
above describe a convention that seems to be obeyed by the compiler, but there is no
guarantee that the compiler always does so.

• In general, the executable also contains routines resulting from the translation of functions
in the C library. Usually, the names of these routines are derived from the corresponding
source functions using the conventions outlined above. Often, the names of internal library
functions start with an underscore, so that the corresponding routines can be recognized by
a leading underscore.
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• An executable may also contain hand-written assembly routines implementing special func-
tions, with usually quite special names.

• In addition, there are virtual loop routines that are created by loop transformation (see sec-
tion 4.1). The loops in routine R lead to loop routines named R.L1, R.L2, etc.

• There may also be anonymous routines :Anon_A where A is the start address of the routine.
A routine with start address A is anonymous if the symbol table does not contain a routine
name associated with A. Thus all routines are anonymous if the executable is stripped.

Even if the executable is not stripped, there may be anonymous routines. There are two rea-
sons: First, a3 creates a routine with start address A when it starts the analysis at A, or when it
finds a call to address A or an ENTRY A specification in the AIS file (see section 5.6). Second,
a3 resolves code sharing between routines by turning a shared code snippet into a routine of
its own. Consider the following example: Routine R1 extends from address 0x1000 to
0x2FFF. Another routine R2 starts at 0x4000 and contains a branch to 0x2000, which is
in the code area of R1. Such a branch may be the result of some compiler optimization. a3

then resolves the question whether 0x2000 belongs to R1 or R2 by creating a new routine
:Anon_2000 with start address 0x2000. The branch from R2 to 0x2000 is then con-
sidered as a call of :Anon_2000. Furthermore, R1 now ends just in front of 0x2000. If
control can flow from the instruction before 0x2000 to 0x2000, a3 introduces a dummy
call before 0x2000 that calls :Anon_2000.

In the call graphs of a3, routines are visualized as yellow or orange boxes labeled by the routine
name. Loop routines are further marked by the string (loop) put after the routine name. In
general, a yellow routine contains source code, while an orange routine does not; see section 7.1.1
for details.

4.3 Calling Contexts

In an over-simplified view, a static program analysis computes some abstract information for every
program point p. The abstract information for p has to be a correct approximation of the concrete
program state at p whenever control reaches p (no matter what happened before). Thus, the abstract
information for a program point p in a routine R must approximate all program states at p in all
calls of R.

To be more concrete, consider a value analysis that computes an interval of possible values for
every register r. The interval for r is a correct approximation of a concrete program state if it
contains the value of r in this program state. Suppose now a routine R is called twice, once with
parameter 0 and once with parameter 3. Then the best abstract information that can be obtained for
the parameter register is the interval [0,3], which indicates that the value of the register might be 0,
or 1, or 2, or 3. The precision of the analysis can be improved considerably if the analysis does not
compute a single abstract value for each program point in R, but two different ones, one for each
call of R. In the example considered above, these are the intervals [0,0] for the call with parameter
0 and [3,3] for the call with parameter 3. The values 1 and 2 are thus excluded successfully.

To be more general again, most of AbsInt’s analyzers compute an abstract information for every
pair of a program point p and a possible calling context of p. All program points in a given routine
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Figure 4.4: Call graph of an example program

R have the same set of calling contexts. Each calling context indicates a particular way of calling
R.

Contexts are of particular importance for timing and value analysis. In contrast, stack analysis is
initially performed with a single context for every routine. Only if this lack of context distinction
prevents the calculation of the stack usage, a second round of stack analysis is started in which
each loop iteration gets its own context. These stack analysis contexts are fixed and cannot be
influenced by user annotations. The following description of contexts therefore applies – strictly
speaking – to timing and value analysis only.

The following two subsections describe the exact structure of contexts, for programs without loops
(4.3.1) and then for programs with loops (4.3.2).

4.3.1 Contexts of Routines (without Loops and Recursion)

This section introduces contexts in a simple program without loops. As an example, consider a
program consisting of routines R1–R6 whose call graph is depicted in Figure 4.4. One may expect
that R4 has two contexts since it apparently has two calls, one in R2 and one in R3. But is this
distinction inherited by R6, which is called by R4? The answer is yes, unless there is an artificial
upper bound on the size of contexts. And what about R5 if it is called twice in R3? (The fact that
R5 is called twice in R3 cannot be seen from the call graph because there is at most one call edge
between any two routines.) The answer is that R5 has two contexts, too, because not the calling
routine, but the address of the calling instruction is noted in the contexts. Thus, these addresses
must be included in the example before we can present the contexts.

Example with call addresses:

R1 { 0x120: call R2; ...
0x130: call R3; ... }

R2 { 0x240: call R4; ... }
R3 { 0x340: call R4; ...

0x350: call R5; ...
0x358: call R5; ... }

R4 { 0x460: call R6; ... }
R5 { ... }
R6 { ... }
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Then the routines of the example have the following contexts:

R1: no-history

R2: 0x120 → "R2"

R3: 0x130 → "R3"

R4: 0x120 → "R2", 0x240 → "R4"
0x130 → "R3", 0x340 → "R4"

R5: 0x130 → "R3", 0x350 → "R5"
0x130 → "R3", 0x358 → "R5"

R6: 0x120 → "R2", 0x240 → "R4", 0x460 → "R6"
0x130 → "R3", 0x340 → "R4", 0x460 → "R6"

Here, each line shows one context, so R3 has one context, but R4 has two. In all routines but the
entry routine (R1), the contexts are call strings indicating a sequence of calls starting from a call in
the entry routine. Call strings consist of components of the form A→ "R", where A is the address
of a call to routine R.

Actually, A is not the address of the call instruction, but of the first instruction of the basic
block ending with the call. The examples in this section are however based on the addresses
of the call instructions.

If a routine R is “called” by a jump instruction (dummy call – see section 7.1.4), then the
address A in A→ "R" is not the address of the basic block containing the jump instruction,
but the address of the “called” routine.

In this scheme, the entry routine would have an empty call string. This empty call string is denoted
by the word no-history because the entry routine is not called by another routine and thus has
no call history. (Actually, this context may also appear as any-history, and there may be three
dots ... in front of the other contexts.)

In programs with a complicated calling structure, the number of contexts may be too large for
an efficient analysis. Therefore, a3 offers a way to restrict the number of contexts by restricting
the lengths of the call strings. An upper bound for these lengths is provided by the interproc
parameter max-length in the AIS file (see section 5.4). If a call string grows longer than this
parameter, it is shortened by omitting its first element. This may lead to an identification of contexts
and thus to a loss of precision in the analysis. The example above was obtained with max-length
= inf, which stands for an infinite bound, i.e. no restriction on the lengths of contexts.

A prefix ... is used to indicate that some calls may be omitted at the beginning.

This prefix even appears if there is actually no omission since the call strings are too short.
Thus it always appears if max-length is different from inf.

By these conventions, the context of the entry routine would appear as ..., no-history. This
string is replaced by any-history.

Examples:
The above example with max-length = 2 leads to the following restricted contexts:
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R1: any-history

R2: ..., 0x120 → "R2"

R3: ..., 0x130 → "R3"

R4: ..., 0x120 → "R2", 0x240 → "R4"
..., 0x130 → "R3", 0x340 → "R4"

R5: ..., 0x130 → "R3", 0x350 → "R5"
..., 0x130 → "R3", 0x358 → "R5"

R6: ..., 0x240 → "R4", 0x460 → "R6"
..., 0x340 → "R4", 0x460 → "R6"

The restriction max-length = 1 leads to the following list of contexts:

R1: any-history

R2: ..., 0x120 → "R2"

R3: ..., 0x130 → "R3"

R4: ..., 0x240 → "R4"
..., 0x340 → "R4"

R5: ..., 0x350 → "R5"
..., 0x358 → "R5"

R6: ..., 0x460 → "R6"

Here, R6 has merely one context; the two contexts that exist if the call string length is not restricted
have been identified.

4.3.2 Contexts of Routines (with Loops and Recursion)

This section introduces the contexts in a program with loops (including direct recursion). Consider
the following example:

R1 { 0x120: call R2; ...
0x128: ... ...
0x130: call R3; ...
0x138: goto 0x128; }

R2 { 0x230: call R3; ... }
R3 { 0x340: call R4; ... }
R4 { ... }

It consists of routines R1–R4, with a loop in R1, which is extracted as loop routine R1.L1 by the
loop transformation (see section 4.1). The resulting call graph is depicted in Figure 4.5.

In principle, the contexts as described in section 4.3.1 could be used for loop routines, too. But
then the context representing, say, the third iteration of R1.L1 would be

0x128 → "R1.L1", 0x138 → "R1.L1", 0x138 → "R1.L1"
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Figure 4.5: Call graph of an example program with a loop

which would cause rather long context strings that would be cut down soon under the
max-length regime. Therefore, the initial call of the loop routine and the subsequent recur-
sive calls are summarized into one call endowed with an iteration counter, namely [1] for the
first iteration, [2] for the second, etc. The sample context from above is thus replaced by the
shorter context 0x128→ "R1.L1"[3]. (Actually, the total number of contexts is also shown,
see below.)

The value of the iteration counter must be bounded to avoid an infinite number of contexts. By
default, the number of iteration contexts equals the number of iterations of the loop as determined
by automatic loop bound analysis or given by AIS annotations (section 5.20). If this number is for
instance 5, the resulting 5 contexts are denoted as [1/5], [2/5], [3/5], [4/5], and [5/5].

The number of iteration contexts can be reduced by the interproc parameter max-unroll in
the AIS file (see section 5.4). For the following, we assume a bound of 3 for the number of loop
contexts. Then the contexts [1/5] and [2/5] are renamed to [1/3..] and [2/3..], and
the contexts [3/5], [4/5], and [5/5] are mapped into a single context [3/3..]. Hence the
routines of the example have the following contexts:

R1: no-history

R2: 0x120 → "R2"

R1.L1: 0x128 → "R1.L1"[1/3..]
0x128 → "R1.L1"[2/3..]
0x128 → "R1.L1"[3/3..]

R3: 0x120 → "R2", 0x230 → "R3"
0x128 → "R1.L1"[1/3..], 0x130 → "R3"
0x128 → "R1.L1"[2/3..], 0x130 → "R3"
0x128 → "R1.L1"[3/3..], 0x130 → "R3"

R4: 0x120 → "R2", 0x230 → "R3", 0x340 → "R4"
0x128 → "R1.L1"[1/3..], 0x130 → "R3", 0x340 → "R4"
0x128 → "R1.L1"[2/3..], 0x130 → "R3", 0x340 → "R4"
0x128 → "R1.L1"[3/3..], 0x130 → "R3", 0x340 → "R4"

If the number of loop iterations equals 3, the labels [n/3..] appear as [n/3] since there is no
4th, 5th, etc. iteration. Otherwise, i.e. if the number of iterations is higher than 3, but the number
of contexts is restricted to 3 by setting max-unroll, the two dots show up to indicate that the
last context [3/3..] corresponds not only to the third, but also to all subsequent iterations.

59



A directly recursive routine, i.e. a routine calling itself, is handled in the same way as a loop. If
RA calls RR at address A1 and RR calls itself at address A2, then the contexts of RR end in A1 →
"RR"[1/m], A1 → "RR"[2/m], etc. Note that the address A2 of the recursive call does not
occur in these contexts.

Independently from the restriction of the loop contexts, the lengths of the call strings can be re-
stricted by the interproc parameter max-length in the AIS file (see section 5.4) as explained
in section 4.3.1. For instance, the above example with max-length = 2 leads to the following
contexts:

R1: any-history

R2: ..., 0x120 → "R2"

R1.L1: ..., 0x128 → "R1.L1"[1/3..]
..., 0x128 → "R1.L1"[2/3..]
..., 0x128 → "R1.L1"[3/3..]

R3: ..., 0x120 → "R2", 0x230 → "R3"
..., 0x128 → "R1.L1"[1/3..], 0x130 → "R3"
..., 0x128 → "R1.L1"[2/3..], 0x130 → "R3"
..., 0x128 → "R1.L1"[3/3..], 0x130 → "R3"

R4: ..., 0x230 → "R3", 0x340 → "R4"
..., 0x130 → "R3", 0x340 → "R4"

Here, R4 has only two contexts because the different loop iterations are no longer distinguished in
this routine.

With max-length = 1, the amount of contexts is reduced further:

R1: any-history

R2: ..., 0x120 → "R2"

R1.L1: ..., 0x128 → "R1.L1"[1/3..]
..., 0x128 → "R1.L1"[2/3..]
..., 0x128 → "R1.L1"[3/3..]

R3: ..., 0x230 → "R3"
..., 0x130 → "R3"

R4: ..., 0x340 → "R4"

4.4 Analysis Phases

a3 supports several “top-level” analyses: stack analysis, value analysis, and timing analysis. Each
of these analyses consists of several phases.

In timing analysis, exec2crl reads the executable and constructs its call graph and control-
flow graph, loop bound analysis tries to determine bounds on the number of loop iterations (sec-
tion 4.4.1), then the actual value analysis tries to statically determine the values stored in registers
and memory cells (section 4.4.2), a combined cache and pipeline analysis computes the WCETs
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of the basic blocks (4.4.3), and path analysis derives the overall WCET from the block WCETs
(4.4.4).

Value analysis uses similar steps as timing analysis: it starts with exec2crl, runs loop bound
analysis, and finally carries out the actual value analysis to compute the address ranges for memory
accesses; cache and pipeline analysis as well as path analysis are not executed. The results of the
actual value analysis can be interactively explored.

Calculation of the stack usage also starts with exec2crl reading the executable and constructing
its call graph and control-flow graph. Then a simple stack analysis is tried in which all routines
(including loop routines) have a single context. Only if this simple analysis fails because there
are loops that increase or decrease the stack in every iteration, loop bound analysis as described in
section 4.4.1 tries to determine bounds on the number of loop iterations. This knowledge together
with user specified loop bounds is then used in a more sophisticated second run of stack analysis
to obtain stack usage results even in presence of stack-modifying loops. More details can be found
in section 7.3.

4.4.1 Loop Bound Analysis

Loop Bound Analysis is an optional feature of a3; it may or may not be activated in the license file.

Timing analysis requires that upper bounds for the iteration numbers of all loops be known. Stack
analysis requires upper bounds for loops that increase or decrease the stack in every iteration.
Knowing upper bounds for the iteration numbers of loops can improve the precision of value anal-
ysis, e.g., if the loop iterates through an array. a3 tries to determine the number of loop iterations
by loop bound analysis, but succeeds in doing so for simple loops only. Bounds for the iteration
numbers of the remaining loops must be provided by the user in the AIS file (see sections 5.20
and 5.22) or as source code annotations (section 5.31).

The results of loop bound analysis can be found in the report file whose name is provided in the
Files view (see section 3.4.1), and in the first info fields of the loop call nodes (see section 7.4.4).
User annotations in AIS format can be absolute or by default; the former supersede any results of
the automatic loop bound detection. This means the automatic method comes into effect only for
loops without absolute AIS annotations. User annotations marked by default are different; they
have less priority than the automatic results.

Loop bound analysis itself is run with restricted contexts that do not distinguish between the various
iterations of a loop. It consists of some pattern matching with the goal to identify the loop variable,
and an analysis to predict its values.

If the executable has been compiled with -O0, then the code for even the simplest loops is so
diverse that loop bounds are unlikely to be found automatically. Optimization leads to more
uniform and more concise loop code, which simplifies the task of automated loop analysis.

The patterns used for loop bound analysis are partitioned into safe and unsafe loop patterns. The
latter are used only if the flag Use only safe patterns in the General tab of the Analyses
view is switched off (see section 3.4.3.4). Examples for unsafe loop patterns include linear search
in an array for a particular element. The bounds derived from this pattern are only valid under the
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assumption that the element searched is really part of the array. The usage of unsafe loop patterns
is marked by a message in the message view and noted in the report file. Loop bounds obtained
using unsafe loop patterns should be verified and overwritten by annotations if necessary (recall
that there are annotations taking precedence over automatic loop bound analysis).

After loop bound analysis, the contexts are expanded to distinguish between loop iterations ac-
cording to the parameters in the AIS file (see section 5.4). In doing so, the results of loop bound
analysis and the user-specified loop bounds are taken into account, where the user specifications
take priority over the analysis results in case of conflict except for those marked as default.

4.4.2 The Actual Value Analysis

The actual value analysis tries to statically determine the contents of the registers and memory cells
at each program point for each context. Value analysis of memory cells is of minor importance for
stack analysis. It can be suppressed by the flag Do not analyze values of memory cells
in the Advanced tab of the Analyses view (see section 3.4.3.8).

The results of value analysis are used to predict the addresses of data accesses and to find infeasible
paths caused by conditions that always evaluate to true or always evaluate to false (in a specific
context). The knowledge of infeasible paths improves the efficiency and the precision of WCET
analysis since the execution times along infeasible paths do not contribute to the true WCET and
thus need not be considered in the calculation of an estimated WCET by a3.

The distinction of contexts greatly improves the precision of value analysis. Consider for instance a
routine F with an integer parameter x and two calls: F(0) and F(y) where y cannot be statically
determined. Without contexts, the parameter x would be completely unknown. With contexts, x
is known to be 0 in the context of the first call and unknown only in the context of the second call.
Suppose further F contains an if statement with condition x!=0 whose body needs 100 cycles
to execute. Then the body of the if statement is infeasible in the context of the first call, which
reduces the estimated WCET by 100 cycles compared to an analysis without context distinction or
to a WCET analysis without value analysis.

4.4.3 Cache and Pipeline Analysis

The next phase of WCET analysis is a combined cache and pipeline analysis, which computes a
WCET for every basic block. More exactly, it computes an estimated WCET for each basic block
graph edge and each context. The estimated WCET for the edge from block B to block B′ provides
an upper bound for the execution time of block B provided that it is left via the edge to B′. Here,
the execution time of B means the time needed to execute the instructions contained in B; it does
not include the time needed to execute routines called from B. Consequently, loop call blocks –
that do not contain code by themselves – have 0 execution time; thus edges starting from loop call
blocks are not endowed with WCET annotations in the graph pictures generated by a3.

To be more concrete, consider the graph in Figure 4.6 and assume that F has a single context,
while the loop routine F.L1 has 2 contexts: [1/2..] for the first iteration, and [2/2..] for
all other iterations. Then the analysis computes one estimated WCET for the edge from b0 to
loop call F.L1, but two estimated WCETs for the edge from b1 to b2, one for each context,
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Figure 4.6: Examples for basic block graphs

and two estimated WCETs for the edge from b1 to end. The estimated WCETs at the two edges
leaving b1 may be different because the execution time of the branch instruction at the end of b1
may depend on whether the branch is taken (“true” edge to b2) or not taken (“false” edge to end).

Letting the estimated WCETs depend on the context may improve the precision of the analysis.
Consider for instance the edge e from b1 to b2. The estimated WCET for e in context [1/2..]
is an upper bound of the execution time of b1 in the first iteration, while the estimated WCET
in context [2/2..] is an upper bound of the execution time in all other iterations. If there are
10 iterations and b1 takes 20 cycles in the first iteration and 5 cycles in all other ones because
of cache effects, then the total estimated WCET for b1 is 1 · 20+ 9 · 5 = 65 cycles thanks to the
distinction between context [1/2..] and context [2/2..]. If there were no context distinction,
the estimated WCET would be 20 for all iterations, giving a total estimated WCET of 10 ·20= 200,
which is quite a big overestimation.

4.4.4 Path Analysis

Path analysis uses the results of pipeline analysis, i.e. the estimated WCETs at the control-flow
edges for all contexts, to compute a WCET estimation for the entire code that is currently analyzed.

Let T (e,c) be the estimated WCET for edge e and context c as determined by the combined cache
and pipeline analysis (see section 4.4.3 above). Furthermore, let C(e,c) be the execution count,
which indicates how often control passes along edge e in context c. If one knows for a specific
run of the code the execution counts C(e,c) for each edge e in each context c, then one can get an
upper bound for the time of this run by taking the sum of C(e,c) ·T (e,c) over all edge-context pairs
(e,c). Thus, the task of obtaining a global WCET estimation can be solved by finding a feasible
assignment of execution counts C(e,c) to edge-context pairs that maximizes ∑ C(e,c) · T (e,c).
The value of this sum is then the desired global WCET estimate.

Therefore, path analysis is implemented by integer linear programming: The path analyzer
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pathan2 sets up a system of linear constraints over the integer variables C(e,c). Then an LP
solver looks for a solution of this constraint system that maximizes ∑ C(e,c) ·T (e,c). The con-
straints of the constraint system are derived from the control structure and from the loop bounds
and flow constraints in the AIS file or in source code annotations (sections 5.20 and 5.22). Con-
straints derived from the control structure are for instance those that assert that the sum of the
execution counts of the incoming edges of a block equals the sum of the execution counts of the
outgoing edges.

The method sketched above explains some possible error messages of a3:

• This problem is unbounded.
This message indicates that there are not enough constraints so that for some edge and con-
text, an arbitrarily high execution count can be chosen. This is usually caused by missing
loop bounds, i.e. the analyzed code contains loops for which no maximum iteration number
has been found by a3 or has been specified by the user (see sections 5.20 and 5.22). In this
case, watch out for messages of the form “Loop bound missing at start node A” to find the
addresses of the loops without loop bound. (Yet notice that there is no “loop bound missing”
message for loops with several entries that are not extracted by the loop transformation as
described in section 4.1.4).

• This problem is infeasible.
This message indicates that there are too many constraints, in particular constraints that
contradict each other so that there is no choice of execution counts that would satisfy all
constraints. This may happen if value analysis is able to find the true iteration count of a
loop, and some user specification is inconsistent with the true iteration count. In this case,
check your specifications and extend the range of possible iteration numbers. In particular,
lower bounds do matter here although they are not important for the WCET.

“This problem is infeasible” may also be caused by a non-terminating loop at the end of
the application. Such a loop may for instance consist of an unconditional branch instruction
branching to itself. The WCET problem is then infeasible because there is no path leaving
the analyzed code snippet and thus path analysis cannot find a WCET path. Specifying a
loop bound does not help in this case. A possible solution is to exclude the loop from the
analyzed code by means of an end specification in the AIS file (see section 5.7).

• Some LP solvers do not always distinguish between these two cases. In this case, a3 issues
the following combined message:
This problem is infeasible or unbounded.

4.5 Locating Source Files

Although the timing and stack analysis of a3 are based on an executable, a3 also reads the source
files of the executable for various reasons. Source code may be displayed in special source-code
views, as annotations in disassembly views (3.5.6), and as basic-block labels in the graph pictures
of a3 (7.1.5). If the flag Extract annotations from source files is activated in the
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General tab of the Analyses view (see section 3.4.3.3), a3 is scanning the source files for
source code annotations, which are described in section 5.31. The algorithm for finding the source
files is described in the following. It depends on various parameters:

• The setting of the flag Strip compilation path mentioned in the executable
in the General tab of the Analyses view (see section 3.4.3.3);

• The include directories listed in the Includes panel of the Source files view (see
section 3.4.5.1);

• The path replacement pairs listed in the Replacements panel of the Source files
view (see section 3.4.5.2).

The algorithm for locating the source files is applied to all source file names listed in the debug
information of the executable. For each source file name, the following steps are performed:

1. Some executable formats offer a field for specifying the compilation path of the application,
but compilers do not always use this field. If a compilation path is specified in the executable
and Strip compilation path is off and the file name is not already an absolute path
name, the compilation path is added to the file name. Otherwise, i.e. if no compilation path
is available or if the Strip option is on or if the file name is already an absolute path name,
it is not modified in this step.

2. Now the path replacements specified by the replacement pairs are performed. The purpose of
these pairs is to specify path prefixes and their replacements. The replacement pairs are tried
from top to bottom. The first one that matches is executed; the remaining ones are not tried
after a successful match. If no replacement pair matches, the file name is left unmodified.

Normally, a path prefix is considered as complete directory name, i.e. there is an implicit
separator / (Linux) or \ (MS Windows) at the end. In contrast, a path prefix followed by a
wild card symbol * matches arbitrary prefixes of directory names.

Example (Linux notation):
If there is a replacement pair /compile → /test, then /compile/source.c is
replaced by /test/source.c, but /compile_dir/source.c is not replaced by
/test_dir/source.c. Yet if the replacement pair is /compile* → /test, then
both replacements are performed.

3. If the file name resulting from Step 2 is absolute, it is not modified further. If it is a relative
name R, the corresponding file is searched first in the directory where the executable resides,
then in the specified include directories. The include directories are searched from top to
bottom. The search in directory D is successful if the file R exists in D and is readable. The
name of the first directory where the search is successful is prefixed to R, and the search
stops. If the search is not successful in any of the considered directories, the resulting file
name remains R, and a3 will complain that this source file could not be found.
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Chapter 5

AIS Annotations

a3 may be supplied with various kinds of specifications and annotations that control its work and
help it to do its job and to improve the precision of the results. The format of these specifications
and annotations is called AIS format.

AIS information can be specified in the global AIS file named in the Files view (see sec-
tion 3.4.1), or in the local AIS files named in the analysis views (see section 3.5.2). These AIS
files may include further AIS files (see section 5.27). If enabled in the license file, AIS information
may also be provided as source code comments (see section 5.31).

Declarations versus Assertions. AIS specifications come in two different flavors. Most speci-
fications declare facts, e.g., this instruction accesses that memory area. a3 can verify such decla-
rations to some extent using its analysis results, but in general it cannot and does not perform this
sort of verification; the idea of specifying declarations is to compensate for missing or imprecise
analysis results, and the specified declarations always replace the results of automatic analysis.
Some specifications declare assertions, e.g., this instruction should not access that memory area.
Assertions are only used if value analysis is invoked as a separate analysis (see section 3.5.1). If a
value analysis is started, a3 tries to verify these assertions using its analysis results and complains
if they are not satisfied; the idea of specifying assertions is to cause a3 to verify that the software
really meets its specifications. Declarations and assertions should be carefully distinguished; in
particular, it is useless to specify declarations that logically imply assertions because a3 then as-
sumes the declarations as true and the assertions will thus be satisfied from the point of view of a3

even if the software violates them.

Assertions are not used for timing and stack analysis.

If the information based on AIS declarations is not correct, the results of a3 may become
incorrect. Most declarations given by AIS specifications cannot be checked by a3 for cor-
rectness.

General Structure. Possible contents of AIS files and AIS source annotations are specifications
and directives. All specifications and directives are terminated by a semicolon ‘;’. AIS infor-
mation has a free format: specifications and directives may extend over several lines, and several
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specifications may be written into a single line (although this rarely is a good idea). The words and
symbols of a specification or directive may be separated by arbitrary space, including empty lines.

There is one exception to the rule that line breaks do not matter: Comments are introduced by the
character # and extend till the end of the line. If however # occurs in a quoted string ("..." or
’...’), it is considered as part of that string, not as comment marker.

Specifications often refer to program points. In the simplest cases, program points are described
by an address or a routine name. More complicated descriptions are also possible, e.g., the third
computed call in a particular routine, or the loop beginning in a specific source code line. Such
descriptions consist of more atomic elements like numbers, addresses, or names for routines or
files. The following description is top down: It starts by describing complete specifications and
directives in the following sections, using in examples only the simplest forms of program points.
Then AIS expressions and their evaluation are described in section 5.28. Afterwards program
points are described in full detail (section 5.29). Then the exact description of the atomic elements
follows (section 5.30). Finally, AIS source-code annotations are introduced in section 5.31.

A remark about routine names in advance: Routine names must be written as in the executable,
not as in the source code, i.e. with the leading underscore added by some compilers.

5.1 Overview

Below, we enumerate the subsections that describe the various specifications and directives possi-
ble in AIS files and as source code annotations.

• Subsections marked by S are relevant for stack analysis. Those marked by s describe
annotations of minor importance for stack analysis; they are rarely needed, but maybe useful
in special situations.

• Subsections marked by V are relevant for value analysis.

• Subsections marked by T are relevant for timing analysis.

• Subsections marked by *** are relevant for all analyses in a uniform way.

5.2 T the clock rate of the processor;
5.3 *** naming the compiler;
5.4 VT specification of contexts;
5.5 T declaring additional start points for timing analysis;
5.6 *** declaring that addresses are routine entries;
5.7 *** end specifications telling exec2crl to stop decoding;
5.8 *** control-flow: targets of computed branches, never-returning routines, etc.;
5.9 VT addresses of memory accesses;
5.10 sVT specification of register values and definition of user registers;
5.11 *** assertions, e.g., about register values;
5.12 *** properties of memory areas;
5.13 T additional execution time;
5.14 T requesting the WCET contribution of non-routine snippets;
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5.15 *** code snippets that should not be analyzed and their properties;
5.16 *** violation of the calling conventions;
5.17 *** infeasible code, i.e. code that is never executed;
5.18 *** values of conditions;
5.19 SVT recursion depth and number of calls of recursive routines;
5.20 sVT iteration counts of ordinary loops;
5.21 T timing specification for loops;
5.22 T iteration counts of multi-entry loops – and more;
5.23 V commands that cause value analysis to produce certain output;
5.24 T commands that cause timing analysis to produce certain output;
5.25 *** introduction of symbolic names for program points and areas;
5.26 *** avoiding problems with unreachable program points;
5.27 *** include mechanism for AIS files.

Then AIS expressions and their evaluation are described in section 5.28. Thereafter, program
points are described in full detail (section 5.29), followed by the exact description of the atomic
elements of AIS specifications (section 5.30). Finally, AIS source-code annotations are introduced
in section 5.31.

5.2 Clock Rate (Timing Analysis)

The clock rate is irrelevant for stack and value analysis.

a3 is informed about the clock rate of the microprocessor by a clock specification, which has one
of the following forms:

CLOCK EXACTLY n unit;
CLOCK MIN n1 unit1 MAX n2 unit2 ;

where unit is Hz, kHz, or MHz. If unit1 equals unit2 in the second form, it may be omitted.
The numbers n, n1, and n2 may be integers, floats, or fractions.

Examples:

clock exactly 40 MHz;
clock min 39.950 max 40.050 MHz;
clock exactly 120/3 MHz;

(Keywords can be written in lower case or upper case.)

Remarks:

• There must be at most one clock specification. Multiple clock specifications are forbidden
even if they specify the same clock rate.

• A clock specification enables you to talk about real time in later specifications. If there is no
clock specification, you can only talk about cycles.
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• If there is a clock specification, WCET results are displayed in cycles and in real time.
Without a clock specification, only cycles are computed.

The AIS file from the Files view is read before any source-code files. Thus it is recommended
to place a single clock specification at the beginning of the AIS file, which then also applies to all
source-code files.

5.3 Naming the Compiler

The executable reader exec2crl works better if it knows the compiler that has produced the
executable. Thus one of the following declarations should always be present:

COMPILER "tricore-tasking-v1";

COMPILER "tricore-tasking-v2";

COMPILER "tricore-gcc";

Here, the identifiers "tricore-tasking-v1" and "tricore-tasking-v2" refer to the
Tasking C compiler for TriCore 1.3 processors, depending on which version of the compiler is
used, and "tricore-gcc" to the GNU C compiler gcc. Depending on your license, some of
these possibilities may not be supported.

5.4 Context Specification (Timing Analysis, Value Analysis)

Context specifications take effect in timing and value analysis only. They are irrelevant for stack
analysis, which uses its own fixed context system.

Calling contexts have been introduced in section 4.3. Recall that a routine is analyzed for each
of its contexts separately. Therefore, the time complexity of timing and value analysis increases
with the number of contexts. On the other hand, the precision may increase if more contexts are
distinguished. Therefore the AIS format admits specifications of parameters that influence the
number of contexts.

There are global context specifications for defining global parameter settings and local context
specifications for overwriting the global settings at individual loops.

The general form of a global context specification is as follows:

interproc flexible,
max-length = n, max-unroll = m, default-unroll = l ;

All three parameters are optional. They carry the following meanings:

• max-length = n with n≥ 1 restricts the lengths of call strings to n. Examples for the effect
of this restriction have been presented in section 4.3. To specify that the call string length
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is unbounded (potentially infinite), write max-length = inf or omit the max-length
parameter (inf is default).

The chosen value of max-length holds for the entire analysis; local modifications are not
possible.

• max-unroll = m with m ≥ 1 provides an upper bound for the number of loop con-
texts. To specify that the number of loop contexts is unbounded (potentially infinite), write
max-unroll = inf or omit the max-unroll parameter (inf is default).

If max-unroll is inf, the number of loop contexts equals the maximum number of ex-
ecutions of the loop header, which is derived from AIS specifications (see section 5.20) or
found by the automatic loop bound detection. Yet if a user-specified loop bound is too large
and this is noticed by a3, the number of contexts is derived from the real loop bound.

The purpose of the max-unroll parameter is to limit the number of loop contexts to m,
i.e. if the number of contexts as derived from the loop bound is greater than m, it is replaced
by m. This is useful if there are loops with big iteration numbers.

The max-unroll parameter can be modified for individual loops by local context specifi-
cations (see below). Thus the max-unroll parameter from a global context specification
applies to all loops without a local specification.

• A declaration default-unroll = l defines a number of contexts for those loops whose
maximum number of executions is not known to a3. This number is still limited by
max-unroll, i.e. the effective number of contexts is the minimum of m and l.

The value inf is not allowed here. The default-unroll parameter can be omitted; the
default value is 2.

The chosen value of default-unroll holds for the entire analysis; local modifications
for individual loops are not possible.

The default values for missing parameters given above imply that an interproc specification

interproc flexible;

without any parameters is equivalent to

interproc flexible,
max-length = inf, default-unroll = inf, max-unroll = 2;

If the interproc specification is missing altogether (no interproc in the AIS files),
the behavior is quite different; a3 assumes as default the specification

interproc flexible,
max-length = 2, default-unroll = 2, max-unroll = 2;

Note that it is allowed to supply more than one global context specification. If the same file (either
a global or a local AIS file) contains several such specifications (possibly via included AIS files)
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only the one that is encountered by exec2crl at last takes effect; all previous declarations are
ignored. If both the global and the local AIS file contain a context specification the declaration
from the local file has precedence. This is useful if you have defined several analyses and a general
context specification in the global AIS file but want to run some analyses with a different context
setting.

Using local context specifications the max-unroll parameter from the global interproc
specification can be overwritten at individual loops by writing

LOOP ProgramPoint max-unroll = m;

This annotation can be combined with a loop-bound specification as described in section 5.20.1 by
means of AND:

LOOP ProgramPoint LoopBound
AND max-unroll = m;

The general format of ProgramPoints is described in section 5.29. Section 5.20.1 presents the
ProgramPoints that are most useful in referring to loops.

Neither default-unroll nor max-unroll affect the number of loop iterations taken
into account in analyses. They only affect the number of different loop contexts. If there are
less iterations than contexts, the loop is not executed in some contexts, which therefore do not
contribute to the analysis results. If there are more iterations than contexts, e.g., 8 iterations
and 3 contexts, the loop is executed once in each of the specific contexts [1/3..] and
[2/3..], and 6 times in the summary context [3/3..].

The limits described above apply to single loops. Nested loops may cause an explosion of
the number of contexts. With max-unroll = 10 for instance and loops that iterate more
than 10 times, the innermost loop in a loop nest of 3 loops has at least 1000 contexts (unless
the call string length is limited to 2 or 1 by max-length).

The usage of a graph algorithm in path analysis (Path analysis variant set to
Prediction file based in the General tab of the Analyses view, see sec-
tion 3.4.3.7) is only successful if max-length and max-unroll are inf (or at least
sufficiently high) so that each loop iteration and each incarnation of a recursive routine has
a separate context.

5.5 Additional Start Points for Timing Analysis

It is possible to define additional start points for a timing analysis. These additional start points
must be reachable from the main start point specified in the Analysis start text field of the
analysis view defining the timing analysis (see section 3.5.2). There are several syntactic forms:

• ROUTINE R IS ADDITIONAL START;
defines routine R itself as an additional start point.
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• ROUTINE R DESCENDANTS TILL LEVEL 0 ARE ADDITIONAL STARTS;
defines the routines directly called by R as additional start points (not R itself).

• ROUTINE R DESCENDANTS TILL LEVEL 1 ARE ADDITIONAL STARTS;
defines the routines directly called by R and the routines directly called by these as additional
start points (not R itself).

• ROUTINE R DESCENDANTS TILL LEVEL n ARE ADDITIONAL STARTS;
is the general case: the routines reachable from R via at most n intermediate routines are
additional starts.

• ROUTINE R DESCENDANTS ARE ADDITIONAL STARTS;
causes all routines reachable from R (excluding R itself) to be additional starts.

Here, R may be a routine name, an AIS label, or an address. Additional start points can only
be entries of non-recursive routines (ordinary routines, not loop routines). Loop routines are not
counted as intermediate routines when the descendants till a certain level are determined.

When a timing analysis with additional entry points is started, a3 first decodes the entire code
reachable from the main start point specified in the Analysis start text field and then performs
a value analysis on this entire code (see section 4.4 for the phases of a WCET analysis). Then
it performs for each start point (main start point plus additional start points) its own cache and
pipeline analyses followed by path analysis and result visualization. Each of these specialized
analyses uses the value information computed from the main start point. The results of all these
analyses are added to the report files.

Summarizing, we have one decoding, one value analysis, but multiple cache and pipeline analyses,
path analyses, and result graphs. The result graphs for the additional start points can be opened
by double clicks in the Overview view (section 3.5.4). They appear as subentries of the entry
corresponding to the main start point and the entire analysis. The graph for the main start point
carries the heading

Computed Worst-Case Execution Times
while the graph for the additional entry point R has heading

Computed Worst-Case Execution Times for entry R.

The result for an additional start point A includes the execution times for all routines reachable
from A. It is thus similar to the cumulative WCET contribution of A in the analysis for the main
start point M (section 7.4.2). The main difference is that the result for additional start point A
is the WCET for one invocation of A, while the cumulative WCET of A in M is the sum of the
estimated WCETs of all invocations of A along the WCET path of M. Thus the cumulative WCET
contribution is about n times as high as the WCET for one invocation if A is called n times on
the WCET path of M. In particular, the cumulative WCET contribution is 0 if A is not on the
WCET path of M. Even if n is 1, the WCET for one invocation is in general higher than the WCET
contribution since cache and pipeline analysis starts anew at the beginning of the analysis for an
additional entry point.
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5.6 Declaring Routine Entries

These specifications influence the combined call graph and control-flow graph underlying all anal-
yses.

Usually, routine entries are found automatically by the executable reader exec2crl: if it encoun-
ters a call to an address A, it marks A as the beginning of a routine. The name of this routine is
taken from the symbol table. If the symbol table does not contain a routine with address A, the
routine is called :Anon_A.

The purpose of entry specifications is to declare more addresses as routine entries. The general
form of entry specifications is as follows:

ENTRY ProgramPoint;

It declares that the ProgramPoint is the beginning of a routine. The general format of
ProgramPoints is described in section 5.29. The simplest special case of this general format is

ENTRY A;

where A is an address given as a number (see section 5.30.3 for the possible formats of numbers).

5.7 Stop Decoding

These specifications influence the combined call graph and control-flow graph underlying all anal-
yses.

Decoding a routine normally ends when the routine is left. End specifications instruct the decoder
exec2crl to stop reading a routine prematurely at a certain program point. The general format
of an end specification is

END ProgramPoint;

The simplest special case of this general format is

END A;

where A is an address given as a number (see section 5.30.3 for the possible formats of num-
bers). The exact effect of this specification is that exec2crl stops decoding when the currently
considered code address is exactly A – before trying to decode the instruction at address A. The
current basic block is ended prematurely, and a new basic block with address A is created that does
not contain any instructions. For the analyses, this block is treated as leaving the analyzed code
snippet.

Example: This example is generic, i.e. not specific to the TriCore architecture.

Figure 5.1 (left) shows the basic block graph of a routine called even. It consists of two basic
blocks, the first starting at address 0x50 with 6 instructions, and the second starting at address
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Figure 5.1: Effect of an end specification

0x68with 5 instructions. The box labeled by end signifies the routine exit. The second instruction
of the first block has address 0x54. Figure 5.1 (right) shows the basic block graph resulting from
the specification

END 0x54;

Now, the first basic block ends after the first instruction and a new block with address 0x54 has
been formed that does not contain any instructions (the mfspr instruction at address 0x54 and
all further instructions of even are no longer decoded). There is no arrow from this block to the
routine exit end. The parts of the executable behind the call to even are decoded, but considered
as unreachable since a3 assumes that even does not return because of the end annotation.

Therefore, an end annotation at the first instruction of a routine R yields a result very differ-
ent from declaring R as not-analyzed (see section 5.15). Both annotations prevent a3 from
decoding R. The difference is that a not-analyzed routine may return as usual, while an end
annotation that cuts off all paths from entry to exit of R makes a3 believe that R does not
return.

For the purposes of WCET analysis, blocks created by end annotations are considered as addi-
tional exit points of the analyzed part of the executable. This means that a3 looks for the WCET
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path among the paths leading from the start point of the analysis to either the end of the routine
containing the start point or to any of the blocks created by end annotations.

In contrast to the example specification above, the specification END 0x52 has no effect since
the currently considered code address never is exactly 0x52: it is 0x50 before decoding the stw
instruction and 0x54 afterward.

End specifications are particularly useful if the analyzed code snippet contains a loop without exit,
i.e. a loop formed by an unconditional branch.

While non-terminating loops can be handled by stack analysis without special user annotations,
they require an annotation for timing analysis. Since there is no path leaving the loop, path analysis
cannot find a WCET path, and thus a3 states “This problem is infeasible”. Specifying a loop bound
for the non-terminating loop does not help. A possible solution is to remove the loop from the
analyzed code by means of the end specification

END Address;

where Address is the address of the loop.

5.8 Control-Flow Specifications

These specifications influence the combined call graph and control-flow graph underlying all anal-
yses.

The task of the ancillary program exec2crl is to read the executable and to reconstruct the
control flow of the application from it. exec2crl can find the target addresses of absolute and
pc-relative calls and branches, but has difficulties with target addresses computed from register
contents. It usually can recognize branches to a previously stored return address, and knows some
typical compiler-generated patterns of branches via switch tables. Yet non-trivial applications
usually contain some computed calls and branches that cannot be resolved by exec2crl; these
unresolved computed calls and branches are documented by appropriate messages. In the graph
pictures of a3, routines and basic blocks containing unresolved computed calls can be recognized
easily because the border of their boxes is red.

The AIS specification language offers various means to help exec2crl in performing its task.
Section 5.8.1 explains exec2crl’s classification of instructions and ways to override it. Sec-
tion 5.8.2 describes specifications listing the possible targets of computed calls and branches.
Section 5.8.3 describes indirect target specifications telling exec2crl where to find the target
addresses in the executable, e.g., in an array of function pointers or in a switch table. Section 5.8.5
shows how to specify additional properties of call instructions, e.g., this call never returns. Sec-
tion 5.8.6 describes analogous specifications for routines, e.g., any call to this routine never returns.
All these specifications are declarations, not assertions (see the discussion near the beginning of
chapter 5).

5.8.1 Instruction Classes

exec2crl distinguishes two main classes of instructions: so-called boring instructions that can-
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not alter the control flow, and control-relevant instructions that may perform control-flow alter-
ations. The latter are classified further into branches, calls, and returns. A branch lets control
jump to a different position, usually in the same routine. A call records a return address some-
where and then lets control jump to a different position, usually the entry point of a routine. A
return instruction lets control return to a return address stored by a previous call instruction. Note
that these classes are not disjoint; they provide “may” information, i.e. there are instructions clas-
sified as branch-or-call without exec2crl being able to decide between these two possibilities.
The distinction between conditional and unconditional is orthogonal to the classification described
above; for instance, a branch may be conditional or unconditional.

exec2crl’s classification may be overridden by AIS specifications as follows:

INSTRUCTION ProgramPoint IS A CALL;

INSTRUCTION ProgramPoint IS A TAIL CALL;

INSTRUCTION ProgramPoint IS A BRANCH;

INSTRUCTION ProgramPoint IS A RETURN;

INSTRUCTION ProgramPoint IS BORING;

CALL, TAIL CALL, BRANCH, and RETURN specifications take effect only for instructions already
classified as control-relevant. They introduce a new classification that completely replaces the
original exec2crl classification; only boring remains boring. A TAIL CALL introduces the
same classification as a CALL, but adds the information that this call does not return to the place
after the tail call, but immediately to the place where the routine containing the tail call returns,
i.e. IS A TAIL CALL is equivalent to IS A CALL AND IMMEDIATELY RETURNS (see
section 5.8.5 for IMMEDIATELY RETURNS).

BORING specifications take always effect; they replace the original exec2crl classification
whatever it was, and remove any control-flow alteration originally assumed by exec2crl.

BORING specifications are discouraged. They may confuse the analyzers, leading to wrong
analysis results, or failure to produce any results at all.

5.8.2 Targets of Computed Calls and Branches

Targets of computed control-flow changes can be specified in the following forms:

INSTRUCTION ProgramPoint CALLS TargetList;

INSTRUCTION ProgramPoint BRANCHES TO TargetList;

INSTRUCTION ProgramPoint IS A RETURN;

The first form specifies call targets for a computed call, while the second form lists branch targets
for a computed branch. The third form specifies that a computed branch is in fact a return in-
struction since the branch target is the return address of the present routine (see also section 5.8.1).
These annotations are only necessary for those computed calls and branches that cannot be resolved
automatically (these are listed in the message window and in the report file).
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The application of these annotations to non-computed calls and branches is discouraged.
They may confuse the analyzers, leading to wrong analysis results.

Here are some simple examples:

instruction 0xc0f8 calls "disable";
instruction 0x9024 calls 0xa4, "go", "munch";
instruction 0x46c8 branches to 0x4710, 0x49a6;
instruction 0x37a0 is a return;

Several targets are separated by commas. Empty target lists are possible, yet note that they make
the call or branch instruction infeasible. Targets may be addresses and routine names – and more,
see below.

Routine names must be surrounded by double quotes (like all names).

Program points are not restricted to simple addresses (see section 5.29 for a full description of
program points). A program point description particularly suited for calls and branches
specifications is

"R" + n COMPUTED

which refers to the nth computed call or branch in routine R – counted statically in the sense of
increasing addresses, not dynamically following the control flow. (This feature is subject to some
restrictions – see section 5.29.) In a similar way, targets can be specified relative to a routine entry
in the form

"R" + n bytes

Example: Assume routine MC contains 2 computed branches whose branch targets are specific
instructions within MC. They can be specified as follows:

instruction "MC" + 1 computed
branches to "MC" + 0x5C bytes,

"MC" + 0x6C bytes,
"MC" + 0x7C bytes;

instruction "MC" + 2 computed
branches to "MC" + 0xA0 bytes,

"MC" + 0xB0 bytes;

Alternatively, branch targets can be expressed relative to the address of the computed branch in-
struction, which is denoted by pc:

instruction "MC" + 1 computed
branches to pc + 0x04 bytes, pc + 0x14 bytes, pc + 0x24 bytes;

instruction "MC" + 2 computed
branches to pc + 0x10 bytes, pc + 0x20 bytes;
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The advantage of such relative specifications is that they work no matter what the absolute address
of MC is.

Such descriptions refer to the original extension of the routines before loop transformation
(see section 4.1).

Specify targets of computed branches in-order, i.e. starting from the first. There is a high
risk that exec2crl does not understand the specification for the second computed branch
if the first computed branch has not been annotated before (see the gap problem at the end
of section 5.29).

Program points of the kind R + n computed lead to an error if routine R is not reachable
from the start point of the analysis. This error can be avoided by adding a TRY directive (see
section 5.26).

5.8.3 Indirect Calls or Branches via Arrays of Function Pointers or Switch
Tables

If the application contains an array P of function pointers, then a call P[i](x) may branch to any
address contained in P. a3 tries to obtain the list of these addresses automatically: If the array access
and the computed call in the executable are part of a small code pattern as it is typically generated
by the compiler, a3 notices that the computed call is performed via this array. If furthermore the
array contents are defined in a data segment so that they are statically available, and the array is
situated in a ROM area so that its contents cannot be modified, then a3 considers the addresses in
the array as possible targets of the computed call (except for NULL, which is not considered as a
call target).

If array access and computed call are too far apart or realized in an untypical way, a3 cannot
recognize that they belong together. Similar remarks apply to computed branches via switch tables.
In both cases, the array or table belonging to the computed call or branch can be declared in the
AIS file.

Sometimes, the situation is more complex because there are some steps of indirection: there is
a master table containing not the function pointers themselves, but pointers to some other tables
containing the function pointers, or pointers to yet other tables etc. The AIS declaration language
can describe all these cases.

A declaration of calls or branches via tables starts like the ones presented in section 5.8.2. It has
one of the two following forms:

INSTRUCTION ProgramPoint CALLS VIA Arrays;

INSTRUCTION ProgramPoint BRANCHES VIA Arrays;

A ProgramPoint may be an absolute address such as 0x8090, a relative address such as
"main" + 8 bytes, or a symbolic description such as "main" + 2 computed; more examples
have been provided in section 5.8.2. A full account of all possible program-point descriptions is
given in section 5.29.
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The simplest case is that all function pointers are in a single table. The Arrays part then looks
like

Start Layout1

where Start describes the location of this table and Layout1 its layout.

The next case is that there is a master table containing pointers to tables containing the function
pointers. The Arrays part then looks like

Start Layout1 -> Layout2

where Start describes the location of the master table, Layout1 its layout, and Layout2 the
layout of the tables containing the function pointers.

If there are two indirections, the Arrays part looks like

Start Layout1 -> Layout2 -> Layout3

The AIS language also supports three and more indirections.

The Start part identifies the location of the master table by its name or start address. The start
address may be an absolute address such as 0x9000 or an address relative to a routine or relative
to the address of the computed call or branch, which is denoted by pc.

The layout descriptions Layout1, Layout2, . . . consist of several attributes, some of which are
optional. These attributes must be provided in the same order as in the following list.

• The first information describes how many and/or which elements of the array should be
considered. There are several possibilities to provide this information.

– [ n ]
specifies the number of array elements. All these elements are considered by a3.

– terminated by null
tells a3 to continue looking at elements until a null pointer is found.

– indices i1, i2, . . .
instructs a3 to look specifically at the given indices, which may be positive or negative.
Index 0 corresponds to the start address of the array.

– This information is optional. If none of the above is specified, a3 tries to extract the
number of array elements from the symbol table in the executable and looks at all those
elements.

Examples:
indices 2, 3, 11 tells a3 to look at the array elements with index 2, 3, and 11.
[4] tells a3 that there are 4 array elements and instructs it to look at all of these. It is
therefore equivalent to indices 0, 1, 2, 3 .
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• struct Number bytes
specifies the size of a single array element in bytes. This information is optional. If it is
missing, a3 tries to extract the information from the symbol table in the executable.

• offset Number bytes
specifies the offset of the address information inside the array elements. An offset of 0 bytes
may be omitted together with the keyword offset.

• access Number bytes
specifies the number of bytes to be extracted from each array element, starting from the
specified offset. This information is optional. If it is missing, a3 assumes the standard
address width of the processor.

• little endian or low byte first or lbf
means the information to be extracted is stored with low byte first (lbf).

big endian or high byte first or hbf
means the information to be extracted is stored with high byte first (hbf).

This attribute is optional and only needed if the endianness is not specified in the executable.

• mask M
means the extracted information is filtered through the bit mask M by means of bitwise AND.
Here, M is a number that can be written in binary notation as 0b . . . .

This information is optional. The default bit mask is 0b1 . . .1, i.e. all of the extracted
information is processed further.

• scale S
indicates that the number derived from the array element must be multiplied by the scaling
factor S to become a target. The factor S = 1 is default and may be omitted together with the
keyword scale.

• absolute
means the extracted information yields an absolute address. Absolute addresses are default;
so the keyword absolute may be omitted.

relative to ProgramPoint
relative to ProgramPoint signed
both mean that the extracted information is an address relative to the given
ProgramPoint. In this case, the final address results from adding the extracted num-
ber (after an optional sign extension) to the address of the ProgramPoint. The
ProgramPoint may – among other things – be pc meaning the address of the computed
call or branch instruction whose targets are being described.

• The last attribute of an ArrayDescriptor is the NullFlag, which is either null or
not null. The NullFlag is optional; default is not null. Selection null means that
NULL addresses found in the array are not considered as target addresses, but ignored as
in the cases that can be handled automatically. Selection not null means that NULL is
considered as an ordinary call target.
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To obtain the same behavior as in the case where a3 recognizes the array by itself, the
NullFlag must have value null.

The struct, offset, and access attributes must be specified in bytes. Other units such
as words are not allowed at these syntactic positions.

Example 1: The first computed call or branch in main is a call via array A with 10 elements.
Each array element is a target address of 4 bytes. The number and size of the array elements can
be read off from the symbol table. There are no NULL entries in this array.

instruction "main" + 1 computed calls via "A";

This specification is of minimum size; all optional information has been omitted.

Example 2: The computed branch at relative address 0x120 in R is performed via a switch
table located 4 bytes after the branch instruction. The table consists of 6 relative addresses of
1 byte size. These addresses are relative to the position just after the table, i.e. 4 + 6 bytes after the
branch instruction.

instruction "R" + 0x120 bytes
branches via pc + 4 bytes [6] struct 1 byte

access 1 byte relative to pc + 10 bytes;

Example 3: The call at address 0x9000 is via array B with 17 elements. Each array element
is a record of 12 bytes. The number and size of the array elements is not specified in the symbol
table. The size of the target addresses is 4 bytes. The addresses start at byte 4 of the records, i.e.
occupy bytes 4–7 of the records. NULL entries should be ignored.

instruction 0x9000 calls via "B" [17]
struct 12 bytes
offset 4 bytes access 4 bytes
null;

Example 4: The call at address 0x9500 is via a master table T with 4 elements that are pointers
to null-terminated arrays of function pointers.

instruction 0x9500 calls via
"T" [4] -> terminated by null;

Example 5:

instruction "handleMessage" + 1 computed calls via
# array of pointers to structs, possibly containing NULL

"inputMessagesArray" struct 4 bytes null ->
# struct, where the first element points to another struct

struct 16 bytes access 4 bytes ->
# the second entry of the struct contains the function pointer

struct 50 bytes offset 8 bytes access 4 bytes;
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An indirect target declaration via arrays or tables takes effect only if all involved arrays or
tables are situated in ROM areas.

a3 can read off the ROM property from the executable, but the compiler does not mark all ROM
areas as such. If a ROM area is not marked in the executable, you can specify the ROM property
in the AIS file (see section 5.12).

The ROM area specification must be written before the indirect target declaration it belongs
to.

5.8.4 Target Check

Normally, a3 performs a target check: it uses the results of value analysis to check whether all
targets of computed calls and branches and of returns can be reached, and marks the edges to the
unreachable targets as infeasible. This is for instance useful if a computed branch implements
a switch statement in a loop with the property that the i th case of the switch is taken in the i th
iteration:

for (i = 0; i < 3; i++) {
...
switch (i) {

case 0: ... break;
case 1: ... break;
case 2: ... break;

}
...

}

Without target check, a3 would assume that the case with the highest WCET is taken in all three
iterations. With target check, a3 realizes that case i is taken in the i th iteration, provided that each
iteration has its own loop context (see section 4.3.2) and value analysis can track the values in the
register corresponding to i.

The target check is also used to control to some extent the validity of the list of targets given by
annotations as described in sections 5.8.2 and 5.8.3. If the target check indicates that all possible
targets are infeasible according to the results of value analysis, a3 issues a warning.

In some situations however, you may wish to add a target that should be analyzed although it is
unreachable, or you may want to replace the list of proper targets entirely by some other list that
should be analyzed. This is only possible if the target check is switched off for this call or branch,
which can be done by

INSTRUCTION ProgramPoint SKIP TARGET CHECK;

where ProgramPoint is the position of the branch, call, or return for which the target check
should be skipped.
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The annotation can be combined with a target specification as described in sections 5.8.2 and 5.8.3
by means of AND, e.g.,

INSTRUCTION ProgramPoint CALLS TargetList

AND SKIP TARGET CHECK;

5.8.5 Properties of Call Instructions

Normally, a call instruction transfers control to a routine, from which it returns to the instruction
after the call. This default behavior may be modified in various ways. The following specification
for instance indicates a non-standard return address:

instruction "main" + 1 call returns to pc + 8 bytes;

It is possible to list several different return targets.

A “returns to” specification can only be applied to an instruction classified as a possible call (see
section 5.8.1). If this is not the case, the necessary reclassification can be combined with the
“returns to” specification as follows:

instruction "main" + 1 branch is a call
and returns to pc + 8 bytes;

Maybe, the return address stored by a non-standard call is the return address of the routine con-
taining the call. The effect is that a return of the routine called behaves as if it had triggered an
immediate return of the routine containing the call. This behavior can be specified as follows:

INSTRUCTION ProgramPoint IMMEDIATELY RETURNS;

Finally, it may happen that a call never returns, e.g., a call to a routine of the operating system.
This can be specified as follows:

INSTRUCTION ProgramPoint NEVER RETURNS;

The next section (5.8.6) contains related features for routines, and some further remarks about the
“never returns” property.

5.8.6 Properties of Routines

The specifications in section 5.8.5 apply to single calls. There are related specifications for routines
that apply to all calls of the routine under consideration.

SNIPPET "R" NEVER RETURNS;
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informs exec2crl that routine R does not return when called. Thus, exec2crl does not read
code textually following a call to R unless this code is reached from somewhere else.

A specification SNIPPET "exit" NEVER RETURNS is not needed; a3 knows by itself that exit
does not return.

The no-return property is not propagated automatically: If R ends by calling R′ and R′ does
not return, then R does not return either, but a3 does not infer this property. Hence it does
not suffice to declare that R′ never returns; R should be declared as never returning, too.

Omitting a never-returns declaration for a non-returning routine R does not necessarily lead to an
error. It usually causes a loss of precision since a3 unnecessarily considers the code after the calls
of R during its analyses. An error results if a call of R is followed by data whose decoding leads to
nonsense code or illegal-instruction errors.

SNIPPET "R" IMMEDIATELY RETURNS;

informs exec2crl that routine R causes its caller to return immediately: if some R′ calls R,
then R′ will return immediately after R has returned. The reason for such behavior may be that R
removes its own return address so that its return instruction branches to the return address of R′,
thus causing R′ to return immediately.

5.9 Addresses of Memory Accesses (Timing Analysis, Value
Analysis)

Addresses of memory accesses are irrelevant for stack analysis.

The actual value analysis, which is part of timing analysis and value analysis, tries to determine
the addresses of memory accesses. In cases when it fails to obtain exact addresses, you may
supply specifications of exact addresses or possible address ranges. These specifications are only
relevant for timing and value analysis. They fall into two classes: local specifications valid for
a single instruction (sections 5.9.1 and 5.9.2), and global specifications valid for entire routines
(section 5.9.3).

5.9.1 Local Address Specifications

To specify addresses of memory accesses in single instructions, you may write specifications of
the form

INSTRUCTION ProgramPoint ACCESSES RangeList;

The intention of these specifications is to restrict imprecise value analysis results to a smaller range
of possible values, which may be an exact value in the extreme case. Let U be the set of addresses
specified by the AIS specification, and let V be the set of addresses computed by value analysis.
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These two address sets are combined into a result set R that is communicated to pipeline analysis.
If U is a subset of V , then R is U , i.e. the annotation wins. If U is not a subset of V , then a3

issues a warning. If in this case U and V have something in common, then R is the intersection
of U and V . If U and V are disjoint from each other, then R is V , i.e. the result of value analysis
wins. So these specifications are declarations, not assertions (see the discussion near the beginning
of chapter 5). Section 5.12 describes related specifications of assertions that express that certain
instructions should only access certain memory areas and cause a3 to complain if they fail to do
so.

Useful ProgramPoint formats for such specifications are simple instruction addresses and
routine-relative expressions of the forms

"R" + n READS and "R" + n WRITES

meaning the nth instruction in routine R reading from memory and the nth instruction writing to
memory, respectively.

A RangeList is a comma-separated list of ranges. A range may be one of the following:

• Position
is a single position in memory, e.g., an address (see below for other possibilities);

• FROM Position TO Position
Position .. Position
are two equivalent ways to specify a memory area given by its start and end position (both
belonging to the area);

• "A"
denotes the memory area covered by array A.

A single position denotes the start address of the access. If you know the exact address of, say, a
word access, you need (and should) not specify a range of 4 bytes, but only the start address of the
access. In contrast, a range spreading over several addresses expresses some degree of uncertainty.
It should be specified not as a range of start addresses, but as a range covering the full width of all
possible accesses.

A Position may be an address in memory or an expression of the form

"A" + n bytes

denoting a specific byte in the memory area covered by array A. Such positions can be used not only
for byte accesses, but also for halfword, word, or larger accesses; in these cases, a byte position
greater 0 denotes the start address of the accessed piece of memory.

If the Position .. Position form is used to specify a memory area, it is quite common that
both positions are expressed w.r.t. the same start point. In this case the following abbreviation can
be used:

Position .. Position + n bytes
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is equivalent to

Position .. + n bytes

Examples: Assume array TAB is mapped to memory area 0x8100–0x81FF, and the first read
instruction in routine main has address 0x8500. Then the following specifications are equivalent:

instruction 0x8500 accesses 0x8100 .. 0x81FF;
instruction 0x8500 accesses "TAB";
instruction "main" + 1 read accesses "TAB";

The following specifications are also equivalent to each other, but different from the ones above:

instruction 0x8500 accesses 0x8100;
instruction 0x8500 accesses start "TAB";

While address ranges in the AIS file cover the full width of all possible accesses, address
ranges in the report file indicate the possible range of start addresses followed by the width
of the access. For instance, a range specified as 0x1000..0x1fff in the AIS file ap-
pears as [0x1000..0x1ffc]:4 in the report file if the access is a word access (4 is
the access width, and 0x1ffc is the start address of the last access that entirely fits into
0x1000..0x1fff).

If value analysis found an exact address A for a load instruction and A points to a ROM data
section, then it reads the value at A and uses it for obtaining further results. This happens
even if there is a user annotation specifying an address A′ different from A. Yet for timing
analysis, the access time of A′ is considered, not that of A. User annotations for memory
accesses do not influence value analysis itself, but only timing analysis performed by cache
and pipeline analysis. This not only holds for the annotations described above, but also for
the global address specifications introduced below (section 5.9.3).

5.9.2 Local Address Specifications for a Base Register

There is an alternative form of local address specifications that looks as follows:

INSTRUCTION ProgramPoint ACCESSES Range FOR BASE Register ;

Processor registers are specified by name (A0–A15 or D0–D15).

These specifications are similar to those described in section 5.9.1, but the following important
differences exist:

• An annotation involving FOR BASE R takes effect only for accesses using register R as base
register.
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• FOR BASE annotations do not admit an address range list, but only a single address range.

• In an annotation without FOR BASE, the specified address ranges replace the value analysis
result. If FOR BASE is present, the behavior is entirely different: The specified address
range is intersected with the value analysis result. For instance, if the value analysis com-
putes 0x80..0x100 and the user specifies 0x10..0xff, the result is 0x80..0xff.

• If the intersection is empty, a warning is issued and the user-specified range is taken.

5.9.3 Global Address Specifications

Global address specifications provide information about all memory accesses in a routine or even in
the entire executable. These are declarations, not assertions (see the discussion near the beginning
of chapter 5). Section 5.12 describes related specifications of assertions telling that some routines
should or should not access certain memory areas, causing a3 to complain if it finds something
different.

Global address specifications have the following general form:

Dom1 Kind1 Qualifier Dom2 Kind2 TO RangeList;

Each annotation applies to a certain part of the executable only, called the application domain of
the annotation. The application domain is defined by Dom1 and Dom2 together. There are three
choices:

... Routines ...;

GLOBAL ... ...;

GLOBAL ... EXCEPT Routines ...;

• In the first form, Dom1 is empty and Dom2 is Routines, a comma-separated list of rou-
tine names. The application domain of this form consists of the code of the listed routines
(including all loop routines extracted from these routines).

• In the second form, Dom1 is the keyword GLOBAL and Dom2 is empty. The application
domain of this form consists of the entire executable (as far as it is analyzed).

• In the third form, Dom1 is the keyword GLOBAL and Dom2 consists of the keyword EXCEPT
followed by a comma-separated list of routine names. The application domain of this form
is the entire executable minus the listed routines.

Kind1 and Kind2 together determine to which accesses the annotation applies. There are four
possible choices:

... READS ... ...;

... WRITES ... ...;

... ACCESSES ... ...;

... ACCESSES ... FOR BASE Register ...;
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Kind2 is non-empty only in the last case. In this case, Kind1 is restricted to ACCESSES. An
annotation with ACCESSES (third case) applies to all data accesses in its application domain, while
annotations with READS or WRITES apply to read accesses or write accesses only. The last form
(ACCESSES . . . FOR BASE Register) applies to all accesses that use the given register as base
register. Processor registers are specified by name (A0–A15 or D0–D15).

A RangeList is a comma-separated list of ranges. These ranges have the same syntax and
meaning as the ranges used in INSTRUCTION . . . ACCESSES annotations (see section 5.9.1).

If FOR BASE is used, the RangeList should consist of a single range only.

The Qualifier is either restrict or default. An annotation with Qualifier =
restrict applies to all accesses of the specified kind in the application domain, while an anno-
tation with Qualifier = default only applies to the accesses for which no information at all
has been found by value analysis. These are the accesses with address range [?] in the report file.

The combination of DEFAULT with FOR BASE has not been implemented.

With 3 choices for the domain (Dom1 and Dom2), 4 choices for the kind (Kind1 and Kind2),
and Qualifier = RESTRICT, the following 12 syntactic forms exist:

READS RESTRICT Routines TO RangeList;
WRITES RESTRICT Routines TO RangeList;
ACCESSES RESTRICT Routines TO RangeList;
ACCESSES RESTRICT Routines FOR BASE Register TO Range;
GLOBAL READS RESTRICT TO RangeList;
GLOBAL WRITES RESTRICT TO RangeList;
GLOBAL ACCESSES RESTRICT TO RangeList;
GLOBAL ACCESSES RESTRICT FOR BASE Register TO Range;
GLOBAL READS RESTRICT EXCEPT Routines TO RangeList;
GLOBAL WRITES RESTRICT EXCEPT Routines TO RangeList;
GLOBAL ACCESSES RESTRICT EXCEPT Routines TO RangeList;
GLOBAL ACCESSES RESTRICT EXCEPT Routines

FOR BASE Register TO Range;

There are another 9 syntactic forms with RESTRICT replaced by DEFAULT. (These are 9 instead
of 12 forms since DEFAULT excludes FOR BASE.)

Example 1: Assume that the address range 0x20000000 .. 0x3fffffff is mapped to slow
memory, which is accessed in routines slow1 and slow2 only. Then you may specify

global accesses restrict except "slow1", "slow2"
to 0x0..0x1fffffff, 0x40000000..0xffffffff;

Example 2: In routine mark, value analysis can predict all accesses via the stack, but cannot
obtain any information about the other accesses. You want to specify that these other accesses
all go into array A. Since this array is disjoint from the stack, a restrict annotation leads to
contradictions, but a default annotation works:
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accesses default "mark" to "A";

Example 3: Assume you know that in the entire program all accesses from base register A0 go
into the area 0x1000..0x1fff. Then you may specify

global accesses restrict for base A0 to 0x1000..0x1fff;

5.9.4 The Evaluation of Address Specifications

In this section, “value analysis” means the actual value analysis, which is part of timing analysis
and of value analysis.

The addresses considered by a3 for a memory access A are influenced by value analysis and by
user annotations. Their calculation is performed in the following steps:

1. Value analysis determines a set of possible addresses for A. This set may contain a single
address (exact prediction), more than one, but not all addresses (inexact prediction), or all
addresses (no information). In the last case, the set is denoted by [?] in the report file.

2. If an INSTRUCTION ACCESSES annotation with or without FOR BASE applies to A, the
result of value analysis is intersected with the addresses specified in that annotation. If the
result is empty, a3 issues a warning and takes

the user-specified range if FOR BASE is present, but the result of value analysis if there
is no FOR BASE.

3. If value analysis did not obtain any information and there was no INSTRUCTION
ACCESSES annotation for A, the global DEFAULT annotations applying to A are taken into
account (otherwise, the result of Step 3 is the same as the result of Step 2). An annotation
applies to A if A is in its application domain and has the appropriate access kind. If there
is no DEFAULT annotation applying to A, the address set as determined by Step 2 remains
unchanged, i.e. [?]. If there is at least one, the result set of Step 3 is the union of the address
sets of the relevant DEFAULT annotations.

4. Now the global RESTRICT annotations applying to A are taken into account. If there is
none, the address set as determined by Step 3 is the final result. If there is at least one, the
final result is the intersection of the result set of Step 3 and the union of the address sets of
the RESTRICT annotations applying to A.

If the intersection in Step 4 results in the empty set since the annotations are inconsistent, a3

issues a warning and marks the memory access as infeasible. The final result set is documented
in the report file whose name is specified in the Files view (see section 3.4.1). If a DEFAULT
annotation has been applied to obtain the final result, the documentation contains a remark telling
that this happened.

Value analysis is performed separately for each execution context, but AIS specifications
uniformly apply to all contexts. So it may happen that value analysis finds an exact result
for Context 1 and [?] for Context 2. Then default annotations take only effect in Context 2,
not in Context 1.
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So the final set of addresses for an access depends on the execution context in general.
Internally, these sets are passed to timing analysis (cache and pipeline analysis) separately
for each context to avoid a loss of precision. Yet the sets documented in the messages of a3

and in the report file are joined over all contexts. Thus, they often appear to be less precise
than they are in reality.

The concept of execution contexts is introduced in section 4.3.

5.9.5 Alignment Specifications

Apart from address ranges, it is also possible to specify that certain accesses are aligned. A memory
access of width 2k is aligned if the lowest k bits of the accessed memory address are 0.

Alignment specifications take one of the following forms:

INSTRUCTION ProgramPoint HAS ALIGNED ACCESS;
INSTRUCTION ProgramPoint HAS MISALIGNED ACCESS;

The ALIGNED form declares that the access is definitely aligned. The purpose of the
MISALIGNED form is to overwrite a global alignment assumption given by setting the flag
Assume aligned data accesses in the Analyses view (section 3.4.3.4). It means that
the access may be aligned or misaligned (not that it is definitely misaligned).

Alignment specifications can be combined with local address specifications as described in sec-
tion 5.9.1 by means of AND:

INSTRUCTION ... HAS ALIGNED ACCESS AND ACCESSES ...;

Alignment information is evaluated as follows:

• An access is assumed to be aligned in two cases:

– There is an ALIGNED annotation referring to this access;

– the flag Assume aligned data accesses in the Analyses view is set (sec-
tion 3.4.3.4), and not overwritten by a MISALIGNED annotation referring to this ac-
cess.

• If an access is assumed to be aligned, the set of possible addresses of the access as computed
by the value analysis of a3 is diminished by removing all non-aligned addresses from it.

• If the resulting set is non-empty, it is taken as the set of possible addresses. Yet if the
resulting set is empty, which means that the access is definitely not aligned according to
the knowledge of a3, a warning is issued and the original set is taken, i.e. the alignment
assumption is ignored.

Thus, a3’s own knowledge has highest priority, followed by the AIS annotations described here,
followed finally by the global flag, which has least priority.
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5.10 Specification of Register Values and Definition of User
Registers

The annotations presented in this section serve two purposes:

1. They can be used to specify the values of processor registers at a program point. Analogous
annotations for specifying memory values at a program point are presented in section 5.12.5.
Information about the values of some registers at some program point may imply that some
conditions are always false or always true, and therefore some paths are never executed.
These paths then do not contribute to the results of the analyses, improving their precision.
Register values are also used to determine the addresses of memory accesses. Thus, the spec-
ification of known register values can reduce the number of unknown addresses of accesses,
leading to more precise timing results in presence of memories with different access times.

2. The annotations can also be used to assign values to so-called user registers. These are
variables that the analyzers handle like additional registers not corresponding to any concrete
processor registers. They can be given arbitrary names marked by an initial @. The values
assigned to user registers can later be used in the definition of values of processor registers
and of further user registers (this section), in the specification of additional execution time
(section 5.13), the declaration of non-executed control-flow paths (section 5.17.2) and of the
values of conditions (section 5.18.2), and in the definition of loop bounds (section 5.20).
Sections 5.17.2 and 5.20 contain some examples for the usage of user registers.

The actual value analysis, which is part of timing analysis and value analysis, tries to determine
the values of the processor registers for every program point and execution context. Thus, the
declaration of the value of a processor register at a program point is meant to refine the results of
value analysis.

Value analysis does not assign values to user registers by itself; such assignments are only possible
with the declarations presented in this section. Of course, user registers are never modified by the
assembly instructions of the analyzed program. Nevertheless, value analysis handles user registers
like processor registers: it propagates their values through the program following the control flow,
taking into account execution contexts (described in section 4.3). When a user register has two dif-
ferent values at a control-flow join, these values are combined into one by value analysis. Consider
for instance the following piece of code:

if (C) { A; R(); }
else { B; R(); }
D;

• If @X is set to 1 in A and set to 2 in B, then it has two different values in the body of the
routine R: value 1 in the context of the call after A and value 2 in the context of the call after
B. The two values are combined at the beginning of D to the set {1,2}, which is the value of
@X within D and thereafter.

• If @X is set to 1 in A and this is the only setting (no setting in B or anywhere else), then
@X has value 1 in R in the context of the call after A, but is undefined in R in the context of
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the call after B. It is also undefined within D and thereafter since an undefined value and a
defined value are combined to undefined.

The general form of a declaration of register values is as follows:

INSTRUCTION ProgramPoint IS ENTERED WITH
Register1 = Expr1, ..., Registern = Exprn ;

The ProgramPoint can be an absolute address or an address relative to a routine entry, or
something more complicated (see section 5.29).

A Register is either a processor register or a user register. Processor registers are specified by
name (A0–A15 or D0–D15).

The names of user registers are arbitrary identifiers, marked by an initial @ symbol, e.g., @a,
@userreg1, @bound. The @ symbol can only appear at the beginning; @x@prime is not a legal
user register name.

An Expr is an expression that evaluates to a set of possible values (see section 5.28.2 for de-
tails). In general, an expression is built up from references to processor registers or user registers,
addresses of various kinds, and constants by means of various operators, including arithmetic op-
erators. The full syntax and semantics of expressions is detailed in section 5.28. Here we present
only a few examples. An expression may be among others:

• A number with an optional sign -. Numbers in AIS may be decimal, hexadecimal, octal,
or binary (see section 5.30.3). Small numbers are sign-extended to the size of the register.
Numbers that are too large for the register size are cut down by omitting the most significant
bytes.

• An interval written in the form (A..B) where A and B are numbers as described above.
This is a closed interval, i.e. A is the smallest possible value and B the largest possible value
of the register.

• In both cases, the number may be replaced by R or reg R where reg is an optional keyword
and R a register name (processor register or user register). The meaning of this expression is
the current value of the processor register as determined by value analysis, or the last value
assigned to the user register. This value may be an exact value (a single number) or a set.

• The keyword address followed by a program point stands for the address of the program
point. Complex program points must be written in parentheses.

• The keyword address followed by an area description stands for the interval of addresses
in the area. An area description may be a single program point, a pair of program points
from Start to End, or Start .. End, or an array or section name. If the extent of
the area is not provided explicitly and cannot be derived from the symbol table information
in the executable, the interval of addresses consists of the start address only. The import of
addresses into expressions is described in greater detail in section 5.28.4.

• The interval can be restricted to the start address in any case by writing start or start
address instead of address.
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• Similarly, the interval can be restricted to its last address by writing last or last
address.

• The elements listed above (numbers, contents of registers, and addresses) may be combined
by arithmetical operators such as +, -, and * as described in section 5.28.

Simple examples:

instruction 0x9110 is entered with D3 = 0, D7 = (0x10..0x1F);
instruction "prime" is entered with D2 = (-20 .. 20);
instruction "even" is entered with D3 = D7;

The first specification says that the instruction at address 0x9110 is always entered with 0 in D3
and 0x10 ≤ D7 ≤ 0x1F. (The values may be entirely different after executing the instruction.)
The second specification declares that −20 ≤ D2 ≤ 20 when prime is entered (for all calls of
prime). The last specification declares that D3 has the same value as D7 when even is entered.

instruction "prime" is entered with @D7 = D7;

saves the value of D7 at the beginning of prime in the user register @D7 where this value remains
unchanged even if the value of the processor register D7 is modified by some assembly instructions.

The value of a register R at a program point P is always the value that was in effect before
any value declaration for R at P was processed. Thus, the declaration

instruction "even" is entered with @X = 1, @Y = @X;

does not assign 1 to @Y, but the last value assigned to @X at some previous program point
if any; if there was no previous assignment to @X, then @Y is undefined after the above
declaration. Separating this declaration into two does not change the behavior;

instruction "even" is entered with @X = 1;
instruction "even" is entered with @Y = @X;

is equivalent to the combined declaration shown above.

Counting loop iterations: A user register can also be used to distinguish between the various
iterations of a loop. Suppose routine "prime" contains a loop at relative address 0x100. Then
the following annotations establish a user register @ctr counting the loop iterations:

instruction "prime" is entered with @ctr = 0;
instruction "prime" + 1 loop is entered with @ctr = @ctr + 1;

The two annotations cause that @ctr has value 1 in the first iteration of the loop, value 2 in the
second etc. – as long as the loop iterations have different contexts. If the number of loop contexts
is restricted to, say, 3 by max-unroll = 3 (see section 5.4), then the third, the fourth, and
all following loop iterations share the same context, in which @ctr will be undefined since no
consistent value is possible for it.

Addresses: As explained above, the specified values may also be addresses of arbitrary program
points (see section 5.29). For instance,
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D5 = start address "prime"

means the value of D5 is the start address of prime,

D7 = address ("MC" + 1 computed + 8 bytes)

means the value of D7 is 8 plus the address of the first computed call or branch in routine MC, and

D3 = address ("SU" + 4 bytes .. "SU" + 11 bytes)

means the value of D3 is between 4 and 11 plus the address of routine SU.

Suppose A is an array whose start and end addresses are specified in the symbol table. Then
address "A" describes the value range spanned by the start address and end address of A. If
however the symbol table does not contain the end address of A, address "A" describes an
exact value, namely the start address of A. The same happens in any case if you write start
address "A".

Now suppose A is an array whose extent is specified in the symbol table as 0x1000..0x1fff.
Then address "A" means the range 0x1000..0x1fff. Yet

address ("A" + 8 bytes)

means the single number 0x1008, calculated from the start address of A. If you wish to make this
behavior explicit for documentation purposes, you may write

address (start "A" + 8 bytes)

yet the keyword start is redundant here and does not change the meaning.

If you wish to address relative to the end of A, you may write for instance

address (last "A" - 0xf bytes)

which means 0x1ff0.

Analogously,

address ("A" + 0x10 bytes .. "A" + 0x1f bytes)

means the range 0x1010..0x101f where the start address of A is taken in both occurrences of
"A" + . . . . If you wish to shift the entire extent of A, you may write

address (start "A" + 0x2000 bytes .. last "A" + 0x2000 bytes)

which means 0x3000..0x3fff.

94



5.11 Assertions of Conditions

It is possible to assert that certain conditions, e.g., on values of registers or memory cells, hold at
certain program points:

ASSERT INSTRUCTION ProgramPoint
IS ENTERED WITH Expr1, ..., Exprn ;

As usual, the ProgramPoint can be an absolute address or an address relative to a routine
entry, or something more complicated (see section 5.29). Symbolic loop expressions of the kind
R + n loops are also possible. As suggested by the use of ENTERED, the expressions are
evaluated when the ProgramPoint is reached, before the execution of the instruction at the
ProgramPoint.

Expr1, . . . , Exprn are AIS expressions as described in section 5.28, in particular relational (sec-
tion 5.28.11) or logical expressions (section 5.28.12). See section 5.28.5 for how to refer to mem-
ory cells in expressions.

Relational and logical expressions have three possible results: 0 meaning “false”, 1 meaning “true”,
or the set {0,1} (both 0 and 1) meaning “ambiguous”. The assertion fails if one of the expressions
Expr1, . . . , Exprn yields “false”; an ambiguous result (may be true or false) does not cause an
assertion failure. In this regard, the always operator is useful, which transforms an ambiguous
result into a false result (see section 5.28.12). assert . . . E fails if E is definitely false, not
if E is true or ambiguous, but assert . . . always(E) fails if E is potentially false (false or
ambiguous), not if E is definitely true.

Example: Consider the following assertions on register D5:
(1) assert . . . D5 == 5;
(2) assert . . . always (D5 == 5);
If D5 indeed has value 5, both assertions hold. If D5 has value 6, both fail. If a3 only knows that
the value of D5 is in the set {5,6}, then the result of the comparison is ambiguous and therefore
assertion (1) holds, but (2) fails.

It is important to note that the value information determined by the value analysis of a3 includes all
values possible in reality, but maybe more. In the example above, it is possible that in reality, D5
is certainly 5, but a3 only finds that the value is in the set {5,6}. In this case, failure of assertion
(2) would be a false alarm. In contrast, assertion (1) only fails in case of definite errors, but it may
falsely accept some error cases.

Since the always operator is part of the expression syntax, an always before Expr1 does not
affect the remaining expressions; it must be repeated if it is intended to affect all expressions.

The always operator has high operator precedence. Thus, always D5 == 5 is parsed as
(always D5) == 5, which is probably not the intended meaning. Therefore, the expression
to which always is applied should be parenthesized as in always (D5 == 5).

A failed assertion causes a message in the message window of the analysis and in the textual report
file:
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tricoredaan: Warning: In "/a3/prime.c", line 7:
At address 0x10be in routine ’even’:
Assertion failed.

In "/a3/prime.ais", line 35:
Annotation is specified here (index 1).

The first part refers to the program point to which the failed assertion belongs, while the second
part refers to the text of the assertion in the AIS file, or more exactly to its beginning (the line with
the keyword assert). The “index” is the index of the failed condition; it is 1 if Expr1 failed,
2 if Expr2 failed etc. In a message window, both parts are active links leading to the place they
refer to when clicked.

5.12 Properties of Memory Areas

There are global properties of memory areas that constantly hold for the entire application, and
local properties that only hold in a certain routine or at a certain instruction. Global properties can
be specified in the form

AREA Area Properties;

where Area defines a memory area (see section 5.12.1) and Properties lists its properties (see
sections 5.12.2–5.12.6).

Local properties relative to a routine are specified as

ROUTINE Point AREA Area Properties;

where Point is a program point defining a routine, i.e. a routine name (quoted as usual) or the
start address of a routine, and the rest is as above.

Similarly, local properties relative to an instruction are specified as

INSTRUCTION Point AREA Area Properties;

where Point is an arbitrary program point resolving to an instruction address.

ROUTINE "R" refers to the entire extent of routine R, while INSTRUCTION "R" means
the first instruction of routine R.

While the global properties can only be declarations, the local properties are mixed: some consti-
tute declarations that are not scrutinized by a3, while other ones describe assertions that are tested
by a3 and cause complaints if they are violated (cf. the discussion near the beginning of chapter 5).
The explanation which is which is delivered when the various properties are introduced.
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5.12.1 Area Definitions

The area definitions Area appearing after the keyword AREA may be one of the following:

• FROM Position TO Position
Position .. Position
are two equivalent ways to specify a memory area given by its start and end position (both
belonging to the area);

• "A"
denotes the memory area covered by array A;

• section "S"
denotes the memory area covered by section "S" as defined in the executable. More pre-
cisely, it refers to the first memory area listed for section "S". In case of a relocated section,
this usually is the area before relocation.

• relocated section "S"
denotes the memory area covered by section "S" after relocation.

Here, a Position is the same as a ProgramPoint, which is defined in section 5.29. The most
important cases are absolute addresses in memory and relative addresses of the form

"N" + n bytes

where "N" denotes the start address of array or routine N.

A common use case is that the area is specified with a start and an end position which are both
expressed in terms of the same offset:

Position .. Position + n bytes

In this case the following short form is equivalent:

Position .. + n bytes

Note that this abbreviation cannot be used in combination with the from .. to form.

The description of an area by naming an array or a section only works if the executable contains
information enabling exec2crl to derive the extent of the area. For an array for instance, the
symbol table not only must contain the start address of the array, but also its end address or its
length. The data-value specifications described in section 5.12.5 form an exception: they also
work if the extent of the area is not known.

Properties fall into several classes: access, content, and copy properties. A special kind of content
property is the specification of data values in memory (see section 5.12.5).
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5.12.2 Access Properties

There are two possible global access properties: is read-only and is read-write. These
global properties constitute declarations. The most useful global property is the read-only
property. If an area is read-only then any data found there is known to be immutable and can be
safely used by value analysis and for control-flow reconstruction (values of function pointers and
switch tables).

Examples: area 0x1000 .. 0x1fff is read-only;
area section "data" is read-write;

There are four possible local properties: is read-only, is write-only, is read-write,
is inaccessible. In contrast to the global access properties, the local ones describe assertions,
not declarations.

Examples:

routine "prime" area 0x1000 .. 0x1fff is read-only;
asserts that routine prime should not write to the given area. If it does, a3 will complain.

routine "swap" area "A" is write-only;
asserts that routine swap should not read from array A; it may only write to it.

instruction 0x1000 area section "data" is inaccessible;
asserts that the instruction at address 0x1000 should not access section "data".

In contrast, the access specifications described in section 5.9 define declarations, not assertions.

5.12.3 Volatile Memory Areas

The property is volatile declares a memory area as volatile. Such a declaration prevents a3

from assuming any knowledge about values read from the area even if it knows the values that
have been written to the area before. This annotation must be applied e.g., to memory areas to
which I/O devices are mapped and to areas corresponding to C variables qualified by the keyword
volatile. By itself the analysis cannot determine whether an area is volatile or not (not even
for volatile C variables).

Examples: area 0x1000 .. 0x1fff is volatile;
area section "input" is volatile;

Volatile declarations are only possible in global area declarations and cannot constitute assertions.
There are no local volatile declarations.

a3 does not know by itself that an area is volatile. Failure to declare volatile areas as volatile
may lead to wrong results from timing and stack analysis.

5.12.4 Content Properties

There are four possible content properties: contains code, contains data, might
contain data, and specifications providing information about data values in memory. Data-
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value specifications are described in section 5.12.5. Here we concentrate on the code and data
declarations. These properties exist only as global properties and can only constitute declarations.

Example: area 0x1000 .. 0x1fff contains data
Properties may be combined:
area 0x1000 .. 0x1fff is read-only and contains data;

The most important usage of this feature is to declare a data region within code. The executable
reader exec2crl does not read unreachable code. Thus the code seen by exec2crl is not a
connected region in general, but usually contains some gaps. Some of these gaps are known to
contain data such as switch tables; these need no particular specification. The nature of other gaps
is unknown to exec2crl. Without further annotations, exec2crl refuses to resolve program
point descriptions such as "R" + 1 computed (meaning the first computed call or branch in
routine R) across such gaps because the gaps might contain code, in particular computed calls or
branches. However, if the gap is annotated as data area, exec2crl knows that it cannot contain
code and skips over it when resolving program points.

Example: Assume routine MC has 2 computed branches requiring target annotations as presented
in section 5.8.2:

instruction "MC" + 1 computed
branches to pc + 0x04 bytes, pc + 0x14 bytes, pc + 0x24 bytes;

instruction "MC" + 2 computed
branches to pc + 0x10 bytes, pc + 0x20 bytes;

Assume further the first branch of the second computed call ends prematurely with a return instruc-
tion whose last byte is at relative address 0x1B. Thus, relative position 0x1C is never reached and
not decoded by exec2crl. This “gap” of 4 bytes should be declared as data to tell exec2crl
that no reachable instruction is hiding there. The following annotation does the job:

area from "MC" + 2 computed + 0x1C bytes
to "MC" + 2 computed + 0x1F bytes contains data;

In some situations the code segment contains many such data blocks and it might be difficult to
estimate their start addresses and sizes. By using the third form with might contain data
it is possible to declare that a certain area might contain data blocks without knowing their exact
locations (the given area might contain the gaps plus some code).

More precisely, when this annotation is supplied and exec2crl identifies that a certain area
which lies within the given address range is unreachable (i.e. is a gap) it adds the assumption
that this area contains data and jumps over it when resolving program point declarations. If in a
later analysis step it can be determined that this assumption is wrong, i.e. exec2crl identifies
that some instruction branches inside the area that has been assumed to contain data, a warning is
issued; in this case the annotation needs to be reconsidered. Address ranges that have been declared
to contain code via contains code are not affected by this annotation (this way, declarations of
areas possibly containing data become more precise).

Example: The annotation
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area "MC" .. + 100 bytes might contain data;

declares that there might be one or several data blocks within the first 100 bytes after the routine
entry of MC.

The might contain data annotation should be used with greatest care and only as a last
resort. If the given area does not contain data this might confuse exec2crl in resolving
program points and lead to wrong results.

5.12.5 Data Values in Memory

The AIS language supports the specification of information about data values in memory. This
information can be global or local to an instruction or a routine. Both kinds specify declarations,
not assertions (cf. the discussion near the beginning of chapter 5). A data-value specification that is
local to an instruction describes data that is valid before the instruction is executed; the data may be
entirely different after executing the instruction. (Analogous specifications for register values are
described in section 5.10.) A data-value specification that is local to a routine describes data that is
valid before every instruction of the routine. In contrast, a global data-value specification describes
data constant over the entire analyzed task. A global specification overwrites any values that may
be contained in the executable. The values specified in a global specification are automatically
marked as constant. This means that a3 complains if they are overwritten by different values.
(In contrast to areas marked as read-only as in section 5.12.2, writes that do not modify the
specified values are not reported.) The specified values are not marked as data automatically; so
if you want a3 to use them as data, you should add an explicit data specification as described in
section 5.12.4.

Global data-value specifications have two effects: First, they are used in the decoder exec2crl
when it knows the address where the target address of a computed call or branch is stored, but this
address is not filled with data in the executable so that the target address cannot be read from the
executable. In this case, exec2crl checks whether there is a data-value specification specifying
the data missing in the executable, and extracts the target address from that data. Second, the
specified data values are used in value analysis: if the processor performs a load from the area
for which data values have been specified, the value analyzer extracts the loaded value from the
specified data values. Local data-value specifications are only used in value analysis, not in the
decoder exec2crl. Hence, they are irrelevant for stack analysis.

Specifications about data values in memory look as follows:

AREA Qualifier Area CONTAINS DV 1, ..., DV n ;

INSTRUCTION Point AREA Qualifier Area CONTAINS ...;

ROUTINE Routine AREA Qualifier Area CONTAINS ...;

The first form is a global data-value specification, the second is local to the given instruction,
and the third local to the given routine, which may be specified by its name or its address. In all
three forms, an Area is specified as described in section 5.12.1. The additional Qualifier is
optional. If it is omitted, the specification refers to the entire extent of the area, as far as it can

100



be derived from the symbol table of the executable. If the extent is known, a3 checks whether the
given data values exactly fit into the extent of the area. This checking is suppressed if the extent is
not known, or if the Qualifier is start. In that case, the values are filled into memory starting
from the start address of the area without any checking of overflow or underflow of the area. The
Qualifier may also be last, meaning that the values are filled into memory beginning from
the last address of the area (in the direction of increasing addresses i.e. leaving the area soon). This
way, you may for instance specify a value appearing at the last address of an array. Of course, this
only works if the last address of the area is known explicitly or can be derived from the symbol
table information in the executable.

The list DV 1, . . . , DV n provides information about the data values in the memory. This information
may consist of exact values, or of intervals providing lower and upper bounds for the values.
Note that the components DV 1, . . . , DV n are not alternatives applying to the same memory cell,
but information packages applying to n consecutive memory cells; the exact explanation follows
below.

A DV may consist of a list of qualifiers, followed by an atomic DV . The following qualifiers exist:

• Size qualifiers are size units such as byte or word. They declare the size of the DV, e.g.,
byte 1 describes a single byte containing the value 1 (seven 0-bits and one 1-bit), while
word 1 describes a word of 4 bytes containing the value 1 (31 0-bits and one 1-bit). If there
are several size qualifiers in a row, the rightmost one wins. A complete list of all possible
size qualifiers is given in section 5.30.4.

• Byte-order qualifiers describe how the bytes are ordered within larger memory units such as
words. The following choices exist:

– little endian or low byte first or lbf
means the bytes are ordered so that the least significant byte comes first.

– big endian or high byte first or hbf
means the bytes are ordered so that the most significant byte comes first.

– sectionorder is default and means that the endianness is read from the section
information in the executable.

• The selectors start and last restrict an interval to an exact value, namely the first or the
last value in the interval.

An atomic DV may be one of the following:

• A number written in hexadecimal or decimal, with an optional sign + or -. Small numbers
are sign-extended to the size prescribed by the size qualifier. Numbers that are too large for
the prescribed size are cut down by omitting the most significant bytes, e.g., byte 0x1234
is the same as byte 0x34.

• An interval written in the form A..B or from A to B, where A and B are numbers as
described above. This is a closed interval, i.e. the two end points A and B belong to the
interval.
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• A string, which stands for a sequence of bytes. With the size qualifier byte, the bytes of
the string correspond to a contiguous sequence of memory bytes. With a larger qualifier, say
word, each byte of the string describes its own word of memory (by zero extension).

• The keyword address followed by an area description stands for the interval of addresses
in the area. An area description may be a single program point, a pair of program points
from Start to End, or Start .. End, or an array or section name. If the extent of the
area is not provided explicitly and cannot be derived from the symbol table information in
the executable, the interval of addresses consists of the start address only. (The interval can
be restricted to the start address in any case by using start.) Size qualifiers for addresses
usually can be omitted since a3 knows about the size of addresses.

You should carefully distinguish between the string "divides" (a sequence of 7 bytes), and
address "divides", which denotes the start address of divides (4 bytes). You should also
distinguish between the string "12345" and the number 12345. With the size qualifier word
for instance, the string describes 5 words of memory filled with the zero-extended characters of the
string, while the number describes a single word of memory filled with that number.

In the DV list, common qualifiers including the keyword address may be factored out using
parentheses. For instance,

word hbf (123, 0x422, address ("main", "even"), "bla")

is the same as

word hbf 123, word hbf 0x422, word hbf address "main",
word hbf address "even", word hbf "bla"

which describes 7 words of memory since the 3 characters of "bla" define 3 words. Since the
rightmost (or innermost) size qualifier wins,

word hbf (123, 0x422, address ("main", "even"), byte "bla")

is the same as

word hbf 123, word hbf 0x422, word hbf address "main",
word hbf address "even", hbf byte "bla"

which describes 19 bytes of memory (4 words plus 3 extra bytes from "bla"). This sequence of
data values could also be written with a different grouping as

hbf (word (123, 0x422, address ("main", "even")),
byte "bla")

A data-value specification may describe an interval of possible data values. Suppose for instance
main is a routine whose start address is specified in the executable, but not the end address, and A
is an array whose start and end address are specified in the symbol table. Then
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address ("main", "A")

provides information about two pieces of memory, each of the size of an address. The information
about the first piece is exact: “this piece contains the start address of main”, while the information
about the second piece is inexact: “this piece contains some address from the interval spanned
by the start address and end address of A”. If however the symbol table does not contain the end
address of A, the specification provides exact information about the second piece, too: “this piece
contains the start address of A”. The same happens in any case if you write

start address ("main", "A")

5.12.6 Copied Areas

To specify the fact that some part of the executable is copied to a different memory area, you may
write

area Target is copied from Source;

where Source is either an area SourceArea to be copied or the start point SourceStart of
that area, and Target is either the area TargetArea where the copy is placed, or the start point
TargetStart of that area.

Example: area 0x140a is copied from section ".Cmd";

copies the entire section .Cmd to the area starting at 0x140a.

Remarks:

• The SourceArea must be part of a single section; it must not cross a section border.

• The copied area becomes a new section starting at the start address of the target area, which
is either the start address of TargetArea, or TargetStart if only the start address of
the target area is given.

• The length of this new section is the length of the target area if Target is given as an area
TargetArea and the length of that area can be derived by a3.

• If the length of the target area is unknown, in particular if Target is given as
TargetStart, the length of the copied section is the length of the source area if Source
is given as an area SourceArea and the length of that area can be derived by a3.

• If the length of the source area is also unknown, in particular if Source is given as
SourceStart, the copying proceeds from the start of the source area till the end of the
section to which this start point belongs.

• A copy annotation cannot be used to overwrite a read-only section by another read-only
section, or to overwrite a writable section by another writable section. However, overwriting
a writable section by a read-only section is possible. Here, “read-only” and “writable” refer
to the properties of the sections in the executables independent from any AIS annotations.
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If R is the name of a routine in the copied section, then the identifier "R" still refers to the instance
of R in the original section. To refer to the instance of R in the copied section, you may use the
identifier "R(T)" where T is the start address of the copied section, i.e. the start address of the
target area (not the start address of the copied routine!).

Example: "SynCPU(0x140a)"

Do not insert blanks in such an identifier. The number in parentheses must be written in
hexadecimal form with header 0x and lower case hex digits a–f. Leading zeroes or inserted
underscores are not allowed.

5.13 Additional Execution Time (Timing Analysis)

The specification of additional execution times is relevant for timing analysis only.

WCET analysis determines an execution time for each basic block and execution context, taking
into account possible cache and pipeline effects. This time may be artificially increased by spec-
ifying that certain instructions need additional execution time beyond the time determined by the
analyzer. Such additional execution time may for instance be caused by DMA accesses.

The additional execution time has no influence on the pipeline states. In particular, it does not
cause the pipeline to run empty.

Specifications of additional execution time refer to individual instructions:

INSTRUCTION ProgramPoint ADDITIONALLY TAKES time;

The time information can be an expression as described in section 5.28, which must be of type
cycles. This can be achieved by using time units as described in section 5.28.16. The basic time
unit is cycles, which means core processor cycles. If the clock rate of the processor has been
specified before (section 5.2), the “real-time” units sec (seconds), msec (milliseconds), usec
(microseconds), and nsec (nanoseconds) can be used, too. These units are internally converted
into cycles using the specified clock rate. Thus, the expression used as time information ulti-
mately yields some amount of processor cycles.

In general, expressions evaluate to a set of possible values, which are fractions (see section 5.28.2
for details). For the time expression in an additionally takes annotation, only the highest
possible value (fraction) h matters. If h ≥ 0, then ceil(h) (h rounded up to the nearest integer
amount of cycles) is taken as the additional execution time. If h is negative, then a3 issues a
warning and assumes an additional execution time of 0 cycles, i.e. the annotation is ignored.

If different additional-time annotations refer to the same program point, e.g.,

INSTRUCTION P ADDITIONALLY TAKES E1;
INSTRUCTION P ADDITIONALLY TAKES E2;

their additional times are added, i.e. the two annotations above are equivalent to

INSTRUCTION P ADDITIONALLY TAKES E1 +E2;
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Apart from the syntax described above, there are some other syntactic forms mainly to ensure
backward compatibility:

• ... ADDITIONALLY TAKES EXACTLY E
is equivalent to
... ADDITIONALLY TAKES E

• ... ADDITIONALLY TAKES MAX E
is equivalent to
... ADDITIONALLY TAKES (0 ..E)

• ... ADDITIONALLY TAKES MIN I MAX E
is equivalent to
... ADDITIONALLY TAKES (I ..E)

where (I ..E) is an expression denoting the range from I to E (see section 5.28.6). The minimum
additional execution time is irrelevant for WCET analysis since only the maximum is used, but the
minimum may be specified for documentation purposes or future uses like in Best-Case Execution
Time analysis.

Examples:
instruction 0x8124 additionally takes 5000 cycles;
instruction 0x3038 additionally takes

@factor * 100 usec;
instruction prime additionally takes

2500 + D7 * 4000 / 74 nsec;
instruction 0x4020 additionally takes

switch (D5) {0 => 100, 1 => 300, 2 => 200} cycles;

The first annotation specifies a fixed additional time of 5000 cycles. The additional time in the
second annotation depends on the value of the user register @factor. If it is 3, the time is 300
microseconds. If it is (3..6), the time is 600 microseconds. If it is unknown or undefined, the time
is 0, and a warning is issued. The third annotation is similar, but the time is proportional to the
value of processor register D7 and a constant amount of time is added. The last annotation uses
a switch expression as described in section 5.28.13. Its additional time is 100 cycles if D5 is
0, 200 cycles if it is 2, and 300 cycles if it is 1. If D5 is 0..1, the switch expression yields a set
of values containing 100 and 300, but 300 is the maximum of this set so that the additional time
is still 300. The same happens if D5 is 1..2 or 0..3, indeed if it is any set containing 1, or if it is
unknown altogether. If D5 is 4 or 7 or 6..12, the switch expression yields an undefined value,
which causes a warning and lets a3 assume an additional execution time of 0 cycles:

Unable to evaluate given expression to a concrete value
for additional cycles. Please review your annotations.
Assuming 0 cycles.
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5.13.1 Note on Backward Compatibility

Before support for general AIS expressions as described in section 5.28 was added to additional-
time annotations, they already supported a limited amount of expressions with a special syntax
that could not be unified with the more powerful general expressions. These special expressions
now lead to syntax errors or warnings and should be replaced by equivalent modern expressions as
described in the following.

• Annotations with constants still work as before.

• The only exception is something like
MIN 100 MAX 200 nsec
which causes the message
Annotation expects expression of type ’cycles’,
but found type ’number’.

The unit must be added to both parts:
MIN 100 nsec MAX 200 nsec

• A product like
R * EXACTLY 1000 cycles
where R is a register now gives a syntax error:
syntax error, unexpected exactly

The word EXACTLY should be put before the register or deleted altogether:
R * 1000 cycles

• A product such as
R * MAX 1000 cycles
where R is a register now works in principle, but gives the warning
Deprecated use of 1 argument for function ’max’,
you should use at least 2.
The reason for this warning is that MAX is now considered as the MAX operator described
in section 5.28.6, which is applied to the single argument 1000. To avoid the warning, you
should delete MAX or place it before the register:
MAX R * 1000 cycles

• A selection had the form
(time0, time1, ...) [register]
This was a parenthesized comma-separated list of constants followed by a register name in
square brackets. The idea of selection was that the register value is used as an index in the
list (starting from 0), i.e. the meaning of the selection was timei if i is the value of the
register. Since all parts timei had to be started by MAX or EXACTLY, one of the messages
shown above will appear. In addition there may be
syntax error, unexpected ’,’

The solution is to use a switch expression as described in section 5.28.13. For instance,
(max 100 nsec, max 300 cycles, max 200 usec) [D5]
should be replaced by
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switch D5 {0 => 100 nsec, 1 => 300 cycles, 2 => 200 usec};
A common unit can be put at outside the switch, e.g.,
(max 100 cycles, max 300 cycles, max 200 cycles) [D5]
may be replaced by
switch D5 {0 => 100, 1 => 300, 2 => 200} cycles;

5.14 WCET Contribution of Code Snippets (Timing Analysis)

After a timing analysis, a3 reports the WCET contributions of the various routines in the displayed
graphs and in the report files (see section 7.4.2). The WCET contributions of code snippets that are
not routines are included in the report files upon special request. Such requests may take several
forms. One of these forms is the following:

SNIPPET P1 ENDING P2 IS EVALUATED AS "Name";

Here, P1 and P2 are two program points indicating the beginning and the end of the considered
snippet, and Name is a name given to the snippet for identifying it in the report files. In the textual
report file, the WCET contribution of the snippet appears under the heading

* WCET contributions of region ’Name’ (routine ’R’):

where R is the routine containing the beginning of the snippet. The names must be unique among
the evaluated snippets; if there are two snippets with the same name, only one of them appears in
the report file.

A snippet to be evaluated cannot contain fragments of basic blocks. Therefore, the actual beginning
of the evaluated snippet is at the beginning of the basic block B1 containing P1, and the actual end
is at the end of the basic block B2 containing P2. The snippet also includes all routines called
within the snippet, including possible routines called at the end of B2. The snippet must be single-
entry / single-exit, i.e. B1 must be the only entry into the snippet and B2 the only exit. (Yet B1 may
have several predecessors and B2 several successors.) Violation of this condition is reported in the
report files. Snippet start and end should be in the same routine.

There is a variant

SNIPPET P1 CONTINUING P2 IS EVALUATED AS "Name";

which excludes the block B2 containing P2 from the evaluated snippet; the snippet ends immedi-
ately before the beginning of B2. If P′2 is the address of the predecessor B′2 of B2, then snippet
P1 continuing P2 includes B′2 and the edge from B′2 to B2. In contrast, snippet P1 ending
P′2 includes all edges leaving B′2 (there may be others than just the edge to B2).

The third form

SNIPPET P1 IS EVALUATED AS "Name";
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has no overt end point for the snippet. In this case, the snippet extends from the beginning of the
block B1 containing P1 till the end of the routine containing P1. In the special case that P1 is a
quoted routine name "R", this means that the evaluated snippet is the entire routine R (but the
WCET contribution of R is listed in the report files anyway).

The WCET contribution of a snippet S is the contribution of S to the overall WCET, not
the WCET of one execution of S. The WCET contribution is 0 if S is not on the calculated
WCET path. If S is in a loop that is executed 100 times in the worst case, then the WCET
contribution of S is the WCET of all 100 executions together, not that of a single execution.

5.14.1 Note on Backward Compatibility

The syntax described above replaces an older syntax that is no longer supported. Annotations in
this older syntax should be rewritten as described in the following:

• SNIPPET P1 .. P2 IS EVALUATED AS "Name";
should be replaced by
SNIPPET P1 ENDING P2 IS EVALUATED AS "Name";

• SNIPPET P1 .. P2 IS EVALUATED AS "Name" EXCLUDING LAST;
should be replaced by
SNIPPET P1 CONTINUING P2 IS EVALUATED AS "Name";

• SNIPPET P1 IS EVALUATED AS "Name";
should be replaced by
SNIPPET P1 ENDING P1 IS EVALUATED AS "Name";

The form
SNIPPET P1 IS EVALUATED AS "Name";
is valid in both syntax schemes, but with different meanings: In the old version, it
meant the snippet consisting of the block B1 containing P1 and all routines called by
it, while in the new version, it means the snippet from the beginning of B1 till the end
of the routine containing B1. To retain the old meaning, P1 must be replaced by P1
ending P1 as described above.

5.15 Not-Analyzed and External Code Snippets

The examples in this section are generic, i.e. not specific to the TriCore architecture.

Snippets are pieces of code, such as routines or basic blocks, or any instructions between two given
addresses A1 and A2. The AIS format allows for specifying that certain snippets should not be
decoded and thus not analyzed for WCET and stack usage. The execution time and stack usage of
such snippets must be specified explicitly. Section 5.15.1 describes how to exclude entire routines
from decoding and analysis. Thereafter, section 5.15.2 describes the exclusion of code pieces that
are not routines. The subsequent sections 5.15.3 and 5.15.4 explain how to specify the execution
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Figure 5.2: Effect of declaring exit not-analyzed

time and stack usage of excluded snippets. Of course, 5.15.3 is only relevant for timing analysis
and 5.15.4 is only relevant for stack analysis. Section 5.15.5 explains how to declare effects of
excluded snippets, which are important for both stack and timing analysis. Finally, section 5.15.7
contains a summary.

5.15.1 Declaration of Not-Analyzed and External Routines

To avoid the decoding of routines you are not interested in, like library code, you may write:

SNIPPET "name" IS EXTERNAL AND ...;

SNIPPET "name" IS NOT ANALYZED AND ...;

Here, name is the name of the routine the specification applies to.

Routine names must be surrounded by double quotes (like all names).

Both forms prevent routine name from being analyzed and inform a3 about its execution time,
stack usage, and effects. This information is contained in the part abbreviated to “. . . ” and will
be explained in sections 5.15.3 (time), 5.15.4 (stack), and 5.15.5 (effects). Use the form with
EXTERNAL if you want to analyze an incomplete executable that does not contain routine name,
and the form with NOT ANALYZED if your executable contains name, but a3 should not analyze
it.

When exec2crl encounters a call to a routine declared not-analyzed, it does not follow the
call, and thus does not read and decode the routine declared not-analyzed, and any routines only
reachable through it. For the effect, compare the left graph in Figure 5.2 with the right graph where
exit has been declared not-analyzed.

5.15.2 Not-Analyzed Code Snippets That Are Not Routines

In addition to exclusion of entire routines from analysis, it is also possible to exclude fragments of
routines with arbitrary start and end points. There are two possible formats for such specifications:
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Figure 5.3: Effects of excluding a snippet from analysis

SNIPPET P1 ..P2 IS NOT ANALYZED AND ...;

SNIPPET P1 ..P2 CONTINUING L IS NOT ANALYZED AND ...;

Here, P1 and P2 are two program points indicating the beginning and end of the excluded snippet.
The program point indicating the end should resolve to the last address within the snippet, not the
first address afterward. Since the snippet is not decoded, a3 cannot find out by itself the continuing
program points to which control flows when the snippet is left. In the first form, this is the exit
node of the routine the snippet belongs to, while in the second form, the continuing program
points are specified explicitly in the form of a comma-separated list L. If the excluded snippet is
a linear piece of code and its last instruction is not control-relevant, there is only one continuing
program point, namely the first address after the snippet. If the last instruction is a conditional
branch, the continuing program points are the successor instruction and the branch targets. The
part abbreviated to “. . . ” should contain information about execution time (5.15.3), stack usage
(5.15.4), and effects (5.15.5) of the excluded snippet.

Example: Figure 5.3 (left) shows the basic block graph of a routine called even. It consists of
two basic blocks, the first starting at address 0x50 with 6 instructions, and the second starting
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at address 0x68 with 5 instructions. The box labeled by end signifies the routine exit. The five
instructions of the first block have addresses 0x50, 0x54, 0x58, 0x5c, and 0x60, respectively.
Figure 5.3 (middle) shows the graph resulting from the specification

snippet 0x54..0x5f is not analyzed and ...;

which excludes the second, third, and fourth instruction from the analysis. The excluded instruc-
tions are represented by the dummy call block and a new routine, which usually is an anonymous
routine named :Anon_54 after the start address of the excluded snippet. If however a name is
associated with this code address in the symbol table, that name is taken as the name of the new
routine. Since no continuing program point has been specified, a3 assumes that routine even is
left after leaving the non-analyzed snippet. Therefore, the instructions starting from 0x60 are not
reached and thus not contained in the graph.

Figure 5.3 (right) shows the graph resulting from the specification

snippet 0x54..0x5f continuing 0x60
is not analyzed and ...;

which again excludes the second, third, and fourth instruction from the analysis. The excluded
instructions are now represented by the block labeled 0x54 after the start address of the excluded
snippet, which does not contain any instructions, and by a new routine called by this block, which
is named as in the example above. As specified, control flows to the address 0x60 after leaving the
excluded snippet. Therefore, the instructions starting from 0x60 are now contained in the graph.

As you can see from these examples, you must specify the continuing program point even if
it is the end address of the snippet plus 1.

The excluded snippet is not restricted to a fragment of a single basic block. If it contains branches
leaving the snippet, you should add the targets of these branches to the list of continuing program
points. Yet note that there is only one timing, stack usage, and stack effect for each excluded
snippet; you cannot make this information depend on the continuing program points.

Branches to addresses within the excluded snippet other than the start address should be
avoided. They lead to the implicit creation of additional excluded snippets starting at the
various branch targets. These snippets have no timing and stack usage specification and
thus their runtime is assumed to be 0, which may lead to wrong WCET results, while stack
analysis yields an unknown stack usage.

5.15.3 Execution Time of Excluded Snippets (Timing Analysis)

Since routines declared not-analyzed are not decoded, a3 cannot determine their worst-case exe-
cution time. The same holds true for external routines, just because their code is not available.
Therefore, timing information for external and not-analyzed routines must be provided as part of
the snippet specification:
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SNIPPET "name" IS EXTERNAL AND TAKES time;

SNIPPET "name" IS NOT ANALYZED AND TAKES time;

The time information can be an expression as described in section 5.28, which must be of type
cycles. This can be achieved by using time units as described in section 5.28.16. The basic time
unit is cycles, which means core processor cycles. If the clock rate of the processor has been
specified before (section 5.2), the “real-time” units sec (seconds), msec (milliseconds), usec
(microseconds), and nsec (nanoseconds) can be used, too. These units are internally converted
into cycles using the specified clock rate. Thus, the expression used as time information ulti-
mately yields some amount of processor cycles.

In general, expressions evaluate to a set of possible values, which are fractions (see section 5.28.2
for details). For the time expression in a takes annotation, only the highest possible value
(fraction) h matters. If h is finite and h ≥ 0, then ceil(h) (h rounded up to the nearest integer
amount of cycles) is taken as the additional execution time. If h is negative or infinite, then a3

issues a warning and assumes an execution time of 0 cycles.

Apart from the syntax described above, there are some other syntactic forms mainly to ensure
backward compatibility:

• TAKES EXACTLY E is equivalent to TAKES E

• TAKES MAX E is equivalent to TAKES (0 ..E)

• TAKES MIN I MAX E is equivalent to TAKES (I ..E)

where (I ..E) is an expression denoting the range from I to E (see section 5.28.6). The minimum
execution time is irrelevant for WCET analysis since only the maximum is used, but the minimum
may be specified for documentation purposes or future uses like in Best-Case Execution Time
analysis.

Note on Backward Compatibility: Previously only constants were allowed, not the general
AIS expressions as described in section 5.28. Since constants are special expressions, the old
annotations still work. The only exception is something like

MIN 100 MAX 200 nsec

which causes the message
Annotation expects expression of type ’cycles’,
but found type ’number’.

The unit must now be added to both parts:
MIN 100 nsec MAX 200 nsec

Example with constants (Exclusion of entire routines):
To exclude a routine "even" with a fixed execution time of 150 cycles from analysis, you may
write:

snippet "even" is not analyzed
and takes 150 cycles;
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or equivalently with real time

clock exactly 40 MHz;
snippet "even" is not analyzed

and takes 3750 nsec;

If the WCET contribution of even to the entire task is 150 cycles and even is declared not-
analyzed with WCET 150 cycles as in the example above, the overall WCET may increase consid-
erably. The additional cycles are partly caused by cache and pipeline effects; the analyzer flushes
the pipeline at the call of the non-analyzed routine and refills it after returning from the call. An
additional penalty comes from the fact that the not-analyzed routine may modify the registers in
any way so that the register settings are unknown after returning from it, which causes some im-
precision in the remainder of the analysis. This WCET penalty can be avoided by specifying that
the not-analyzed routine does not violate the calling conventions (see section 5.15.5):

snippet "even" is not analyzed
and takes 150 cycles
and does not violate calling conventions;

Examples involving expressions:
In the standard example of this manual, routine divides has two call sites, one in routine even
and one inside a loop contained in routine prime. Suppose we want to exclude divides from
analysis with an execution time of 50 cycles when called from even and 100 cycles when called
from the loop in prime. This can be done by assigning these runtimes to a user register at appro-
priate places before the call sites of divides as described in section 5.10 and then using the user
register in the runtime specification:

instruction "even" is entered with @dividesTime = 50;
instruction "prime" + 1 loop is entered with @dividesTime = 100;
snippet "divides" is not analyzed and takes @dividesTime cycles

and does not violate calling conventions;

Next suppose the runtime of divides is still 50 cycles when called from even, but the runtime
depends on the iteration number when it is called from the loop: in the first iteration, it needs 100
cycles, in the second 200 cycles, etc. This can be done by introducing a counter that is initialized
to 0 and incremented by 1 whenever the loop is entered. The call from even is now characterized
by a counter value of 0.

instruction "prime" is entered with @CTR = 0;
instruction "prime" + 1 loop is entered with @CTR = @CTR + 1;
snippet "divides" is not analyzed

and takes (@CTR == 0? 50: @CTR * 100) cycles
and does not violate calling conventions;

The above works well as long as every iteration has its own context. If the number of loop contexts
is restricted to, say, 3 by max-unroll = 3 (see section 5.4), then the third, the fourth, and
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all following loop iterations share the same context, in which @CTR will be undefined since no
consistent value is possible for it. Undefined user registers are evaluated as (−inf .. inf ), i.e. are
assumed to have all possible values. This causes the entire expression to be evaluated to (−inf .. inf )
in the shared context. This does not mean that a3 assumes an infinite execution time for divides
in this context, but causes it to assume a time of 0 cycles.

If the expression specifying the execution time of a snippet excluded from analysis is un-
bounded because some part is undefined, then a3 assumes a runtime of 0 cycles for the
excluded snippet, which is likely to cause an underestimation of the overall WCET.

The case of an undefined/unbounded expression can be recognized by the following warning:

Unable to evaluate given expression to a concrete value
for additional cycles. Please review your annotations.
Assuming 0 cycles.

There is a second warning

The user given wcet for EXCLUDED routine divides is 0 cycles.

which appears in addition to the first in case of an undefined/unbounded expression, but also on its
own if the expression is defined/bounded, but evaluates to a number ≤ 0.

The problem with undefined expressions can be avoided by means of the try operator of sec-
tion 5.28.6. The expression try(A,B) evaluates to A if this is bounded, and to B otherwise. If
the maximum iteration number of the loop in prime is 10, then a safe way to specify the execution
time of divides is

snippet "divides" is not analyzed
and takes (@CTR == 0? 50: try (@CTR, 10) * 100) cycles
and does not violate calling conventions;

Example (Exclusion of arbitrary snippets):
Figure 5.4 (left) shows the basic block graph of a routine called even, with results of timing
analysis. It consists of two basic blocks, the first starting at address 0x50 with 6 instructions,
and the second starting at address 0x68 with 5 instructions. The box labeled by end signifies the
routine exit. The numbers labeled max t indicate the number of cycles the preceding basic block
takes to execute. The five instructions of the first block have addresses 0x50, 0x54, 0x58, 0x5c,
and 0x60, respectively. Figure 5.4 (middle) shows the graph resulting from the specification

snippet 0x54 .. 0x5f is not analyzed
and takes 3 cycles;

which excludes the second, third, and fourth instruction from the analysis. The excluded instruc-
tions are represented by the dummy call block and a new routine, which usually is an anonymous
routine named :Anon_54 after the start address of the excluded snippet. If however a name is

114



Figure 5.4: Effects of excluding a snippet from analysis

associated with this code address in the symbol table, that name is taken as the name of the new
routine. Since no continuing program point has been specified, a3 assumes that routine even is
left after leaving the non-analyzed snippet. Therefore, the instructions starting from 0x60 are not
reached and thus not contained in the graph.

Figure 5.4 (right) shows the graph resulting from the specification

snippet 0x54 .. 0x5f continuing 0x60
is not analyzed and takes 3 cycles;
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which again excludes the second, third, and fourth instruction from the analysis. The excluded
instructions are now represented by the block labeled 0x54 after the start address of the excluded
snippet, which does not contain any instructions, and by a new routine called by this block, which
is named as in the example above. As specified, control flows to the address 0x60 after leaving the
excluded snippet. Therefore, the instructions starting from 0x60 are now contained in the graph.

As you can see from these examples, you must specify the continuing program point even if
it is the end address of the snippet plus 1.

The blocks indicating the place of the exclusion in the graph pictures (e.g., dummy call
in Figure 5.4, middle and 0x54 in Figure 5.4, right) do not have a WCET box. The time
specified for the excluded snippet (3 in this example) is attributed to the anonymous routine
formed from the excluded snippet (:Anon_54 in this example). The WCET contribution
of this routine as stored in its second info field is a multiple of the WCET of the excluded
snippet. The multiplication factor is the number of times the excluded snippet is executed in
the worst case. It is 0 if the snippet does not lie on the worst-case path.

An exclusion may increase the WCET considerably since the excluded snippet may modify
all registers and so a3 has lost all information about register contents after the excluded
code snippet. Claiming that the excluded snippet does not violate the calling conventions is
not possible since the excluded snippet is not a routine and therefore the notion of calling
conventions is meaningless. While it is impossible to declare for a general register that its
value is not modified by the excluded snippet, this can be done for the stack pointers using
the stack effect assertions presented in section 5.15.5, e.g.,

snippet 0x54 .. 0x5f continuing 0x60
is not analyzed and takes 3 cycles
and removes exactly 0 bytes of user stack
and removes exactly 0 bytes of system stack;

5.15.4 Stack Usage of Excluded Snippets (Stack Analysis)

Since snippets declared not-analyzed are not decoded, a3 cannot determine their stack behavior.
The same holds true for external snippets, just because their code is not available. Therefore,
the stack behavior of external and not-analyzed snippets must be provided as part of the snippet
specification (abbreviated to “. . . ” in sections 5.15.1 and 5.15.2).

The stack behavior falls into two parts: the stack usage, i.e. the maximum amount of stack space
allocated within the excluded snippet, and the stack effect, i.e. the difference of the stack level after
leaving the excluded snippet from the level before entering the snippet.

Example: Assume that the excluded snippet performs the following stack operations:

Allocate 4 bytes leading to stack level 4;
Allocate 8 bytes leading to stack level 12;
Free 4 bytes leading to stack level 8;
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Allocate 8 bytes leading to stack level 16;
Free 8 bytes leading to stack level 8;
Free 8 bytes leading to stack level 0.

The given stack levels are relative to the level at the beginning of the snippet. Thus the stack usage
is 16 (the maximum relative stack level) and the stack effect is 0 (the relative stack level at the end).
Without the last stack operation, the stack effect would be +8, and with an additional operation
“free 4 bytes”, the stack effect would be −4.

In fact, stack analysis for TriCore processors computes results for two stacks called user stack and
system stack. The user stack is the “normal” stack with stack pointer A10. The system stack is the
Context Save Area CSA whose “stack pointer” is the FCX register. Hence system stack space is
always allocated in portions of size 64 byte, which is the size of a context.

The stack usage (maximum relative level of the two stacks) is specified as follows:

SNIPPET ... AND USES EXACTLY Nu BYTES OF USER STACK
AND USES EXACTLY Ns BYTES OF SYSTEM STACK

The two numbers Nu and Ns must be non-negative integer constants (no expressions). Since Ns
indicates the maximum CSA size used up by the excluded snippet measured in bytes, it should be
a multiple of 64.

The specification of the stack effect is explained in the next section 5.15.5 since it is of relevance
not only for stack analysis, but also for timing analysis.

5.15.5 Effects of Excluded Snippets (Both Analyses)

The notion of effect summarizes any modification of register values and values in memory. By
default, a3 assumes that an excluded snippet modifies all such values in an unknown way and thus
destroys all value information collected by a3. Therefore, it is important for both timing and stack
analysis to specify that certain values remain unchanged or are changed in some specific way.

The simplest possibility is that the excluded snippet behaves like an ordinary routine, i.e. respects
all the calling conventions of the compiler. This can be specified as follows:

... AND DOES NOT VIOLATE CALLING CONVENTIONS

This specification means that the callee-saved registers keep their values, and implies a specific
stack effect: the user stack level remains the same, and the system stack level decreases by 64
bytes – the size of the upper context removed from the CSA area by the return instruction of an
ordinary routine. (Stack effects have been introduced in the previous subsection 5.15.4.)

If the excluded snippet violates the calling conventions, the stack effect must be specified explicitly.
The specification of the stack effect is similar to the specification of the stack usage as described in
section 5.15.4, but the sign of the effect must be taken into account. If the effect is positive, i.e. the
excluded snippet allocates some stack space that is not freed within the snippet, the specification
looks as follows:
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... AND LEAVES BEHIND EXACTLY N BYTES OF kind STACK

where kind is either user or system. If the effect is negative, i.e. the excluded snippet frees
some stack space that has not been allocated by the snippet, the specification looks as follows:

... AND REMOVES EXACTLY N BYTES OF kind STACK

In both cases, the number N must be a non-negative integer constant (no expression). Of course,
two such stack effect specifications are needed, one for the user stack and one for the system stack.

The specification does not violate calling conventions for a routine is therefore sim-
ilar to the stack effect declaration

AND REMOVES EXACTLY 0 BYTES OF USER STACK
AND REMOVES EXACTLY 64 BYTES OF SYSTEM STACK

but includes the declaration that the callee-saved registers apart from the stack pointers are not
modified.

It is possible – and sometimes useful – to combine an annotation for an explicit stack effect with a
specification does not violate calling conventions. This means that the stack pointers
are modified as specified explicitly, while all other registers are handled according to the calling
conventions.

5.15.6 Cache and Pipeline Flushes (Timing Analysis)

Since an excluded snippet may modify the cache in unpredictable ways, a3 normally assumes that
the cache contents are completely unknown at the first instruction after the excluded snippet. This
pessimistic cache flush may be suppressed by the AIS directive

global disable_external_cache_flush = 1;

When the pipeline analysis of a3 encounters an excluded snippet, it flushes the pipeline, i.e. lets it
run empty, and then refills it at the first instruction after the excluded snippet. The pipeline flush
can be suppressed by the AIS directive

global disable_external_pipeline_flush = 1;

It causes the pipeline analysis to let the pipeline evolve as if the last instruction before the excluded
snippet would be immediately followed by the first instruction after it.

As indicated by the word global, the directives for disabling cache and pipeline flushes are
stand-alone directives that cannot be attached to specific exclusion annotations by means of
and. They do not refer to individual excluded snippets, but to all of them without distinction.

If cache or pipeline flushes at excluded snippets are disabled, the WCET prediction of a3

may be wrong, i.e. it may be smaller than the actual worst-case execution time.
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5.15.7 Summary

Excluded snippets and their properties are specified as follows:

• What is excluded?
(See 5.15.1 for entire routines and 5.15.2 for other code snippets)

• What is its execution time?
(Only relevant for timing analysis – see 5.15.3)

• What is its stack usage?
(Only relevant for stack analysis – see 5.15.4)

• What is its effect on register values (including the stack effect)?
(Relevant for both analyses – see 5.15.5)

• Influence of excluded snippets on cache and pipeline analysis
(Only relevant for timing analysis – see 5.15.6)

Here are some examples of complete specifications:

global disable_external_pipeline_flush = 1;

snippet "error" is not analyzed
and takes 735 cycles
and uses exactly 16 bytes of user stack
and uses exactly 128 bytes of system stack
and does not violate calling conventions;

snippet 0x8100..0x81ff continuing 0x82ff is not analyzed
and takes 84 cycles
and uses exactly 14 bytes of user stack
and uses exactly 0 bytes of system stack
and leaves behind exactly 6 bytes of user stack
and removes exactly 64 bytes of system stack;

5.16 Calling Conventions

As explained in section 5.15.5, a3 assumes by default that a not-analyzed routine violates the
calling conventions of the compiler. In contrast, a3 assumes by default that each analyzed routine
satisfies the calling conventions of the compiler. If this is false for some routine, this fact should
be made known to a3 as follows:

ROUTINE "R" VIOLATES CALLING CONVENTIONS AND ...;
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where R is the name or the start address of the violating routine. The part abbreviated by “. . . ”
should contain a specification of the stack effect of the routine using the same syntax as introduced
in section 5.15.5. This specification is relevant not only for stack analysis, but also for timing
analysis since the layout of the stacks is important for tracking the values in the registers and the
processor memory.

5.17 Infeasible Code

Infeasible code is code that is never executed. You can declare that a certain block is never exe-
cuted unconditionally (section 5.17.1) or conditionally (section 5.17.2), or assert that it should be
executed or should not be executed (section 5.17.3). In the first case, a3 accepts the declaration
and does not produce analysis results for that block, while in the last case, it checks whether the
assertion is satisfied and complains if not (cf. the discussion near the beginning of chapter 5).

5.17.1 Declaration of Unconditional Infeasibility

To declare that a certain block is never executed, you may write

SNIPPET ProgramPoint IS NEVER EXECUTED;

where ProgramPoint refers to an arbitrary instruction in the block, e.g., by its address.

Example: snippet 0x1a0c is never executed;

The ProgramPoint may also be specified relative to a routine entry.

Example: snippet "prime" + 0x98 bytes is never executed;

You can also specify that an entire routine is never executed by using its name as ProgramPoint:

Example: snippet "prime" is never executed;

This also works for loop routines:

Example: snippet "prime" + 1 loop is never executed;

Infeasible code is still decoded and thus appears in the disassembly window and in the control-flow
graph pictures, but does not contribute to the calculated analysis results. In the graph pictures, in-
feasible routines are shown in gray. Infeasible basic blocks are marked by the word infeasible
in WCET result graphs and by the symbol ⊥ in stack result graphs.

Infeasibility is propagated through the control-flow graph: if a block is only reachable from an
infeasible block, it is infeasible, too; there is no need for an explicit specification.

If all paths from the entry to the exit of the analyzed program part contain a block declared
infeasible, timing analysis deduces that “This problem is infeasible”.

5.17.2 Declaration of Conditional Infeasibility

There is also a conditional version of infeasibility that can be declared as follows:
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SNIPPET ProgramPoint IS NOT EXECUTED IF Expr ;

where Expr is an AIS expression as described in section 5.28. The expression is evaluated to a
numerical value. Ideally, a value of 0 is considered as “false” and any other value as “true” as in
the C programming language. Yet an expression evaluates to a single number in special cases only
while in general, it results in a set of numbers. Such a set is considered as “true” if it does not
contain 0.

Conditional infeasibility can be used to improve precision if a code snippet is never executed in
certain contexts, but possibly executed in others. Consider the following example:

if (C) { A; R(); }
else { B; R(); }

where routine R contains a code snippet S that is never executed if R is called after A, but may be
executed if R is called after B. These facts may be expressed in AIS as follows:

instruction A is entered with @notS = 1;
instruction B is entered with @notS = 0;
snippet S is not executed if @notS;

The first two annotations define a user register called @notS (see section 5.10). It is given value 1
(true) at the beginning of A and value 0 (false) at the beginning of B. These values are propagated
through the calls of R, and the third annotation specifies that S is not executed if @notS is 1, i.e.
in the context of the call after A.

5.17.3 Assertions about Infeasibility (Value Analysis)

To specify the assertion that a certain block should be or should not be executed, you may write

SNIPPET ProgramPoint SHOULD BE REACHABLE;
SNIPPET ProgramPoint SHOULD NOT BE REACHABLE;

where ProgramPoint refers to an arbitrary instruction in the block, e.g., by its address. a3

complains if a block that should be reachable is not reachable, or vice versa.

5.18 Values of Conditions

Among other things, value analysis can find that certain conditions are always true or always false
in certain contexts. Yet value analysis cannot predict all register values, in particular if they depend
on input data. Thus, if you happen to know the values of more conditions, you may declare these
values unconditionally (section 5.18.1) or conditionally (section 5.18.2).
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5.18.1 Unconditional Values of Conditions

An unconditional declaration of condition values applies to all contexts. It has two variants as
follows:

CONDITION ProgramPoint IS ALWAYS TRUE Action;
CONDITION ProgramPoint IS ALWAYS FALSE Action;

The ProgramPoint specified should be a conditional branch (not a compare instruction). The
Action indicates what to do with the branch that cannot be entered according to the specified
condition value. If Action is exclude, this branch is not decoded at all (unless it can be
reached from somewhere else). If Action is make infeasible, the branch is decoded, but
marked as “infeasible” so that it does not contribute to the worst-case execution time. For backward
compatibility, the Action may be omitted, which means exclude.

Example:

condition "prime" + 0x4c bytes is always false exclude;
condition 0x91a4 is always true make infeasible;

Since the code in the unreachable branch may be prefetched, we recommend to specify make
infeasible so that a3 is aware of the unreachable code. The action exclude should only be
specified if the code in the unreachable path causes problems when trying to decode it.

The attributes TRUE and FALSE in a CONDITION specification refer to the situation in the
executable, not to the condition in the source code. Be aware that compilers often translate
a condition in the source to the opposite condition in the executable.

5.18.2 Conditional Values of Conditions

The declaration of a condition value can also include an AIS expression used as guard. There are
one-sided and two-sided forms of these declarations. The one-sided form has the following two
variants:

CONDITION ProgramPoint IS TRUE IF Expr ;
CONDITION ProgramPoint IS FALSE IF Expr ;

As in the unconditional form, the ProgramPoint specified should be a conditional branch (not
a compare instruction). The declaration only takes effect in those contexts in which the Expr
evaluates to “true”, i.e. to a set not containing 0. There is no Action since there is no choice:
both branches must be decoded to prepare for the case that the expression does not evaluate to
“true”.

The declaration

CONDITION ProgramPoint IS TRUE IF Expr ;
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is one-sided since it only has an effect if Expr evaluates to “true” (then the condition is TRUE).
There is no effect if Expr does not evaluate to “true”; in this case, the condition may be TRUE or
FALSE. This is different in a two-sided declaration, which looks like

CONDITION ProgramPoint IS EXACTLY Expr ;

In this case, the condition is TRUE if Expr evaluates to “true”, i.e. to a set of values not containing
0, and the condition is FALSE if Expr evaluates to “false”, i.e. to the exact value 0. There is no
effect if the expression is ambiguous, i.e. evaluates to a set containing 0 and also some non-zero
values. Note that the two-sided declaration

CONDITION P IS EXACTLY E ;

is equivalent to the two one-sided declarations

CONDITION P IS TRUE IF E ;
CONDITION P IS FALSE IF !(E);

where ! is the negation operator “not” (see section 5.28).

5.19 Recursion

The analyzed program may be recursive, i.e. a routine R may call itself directly or indirectly (via
some other routines). To obtain estimations for stack usage and WCET, the recursion must be
bounded by a user annotation. The way to do this is very different: for stack analysis, the maximum
call depth must be specified (see section 5.19.1), while for timing analysis, the maximum number
of recursive calls is required (5.19.2). A recursion bound is not strictly necessary for value analysis,
but is recommended to improve its precision.

5.19.1 Maximum Call Depth (Stack Analysis)

A successful stack analysis requires knowledge about the maximum call depth of recursive clusters
of routines. This information must be provided by suitable AIS specifications. If there are not
enough specifications to bound all recursive clusters, stack analysis fails with an error message.

Call-depth specifications may take one of the following two forms:

ROUTINE R INCARNATES Bounds;
ROUTINE R1 CALLS TO R2 INCARNATES Bounds;

Here, R, R1, and R2 may be routine names or start addresses of routines.

Routine names must be surrounded by double quotes (like all names).

The Bounds information can have either of the following forms:
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• MIN i MAX j
specifies the minimum and maximum number of occurrences on the call stack.

• MAX j
specifies the maximum number of occurrences. There is no minimum, which is therefore
assumed to be 0.

• EXACTLY j
is an abbreviation for MIN j MAX j.

In general, a call limit l for a routine R restricts the call chains considered by a3 to those with at
most l occurrences of R. A limit l for a call from R1 to R2 restricts the call chains considered by a3

to those which contain at most l occurrences of the call from R1 to R2.

Example 1: Assume main calls a routine fac, which calls itself. Then the specification

routine "fac" incarnates max 3;

restricts the call chains considered by a3 to

main
main→fac
main→fac→fac
main→fac→fac→fac

i.e. at most 3 calls of fac, namely the call in main that starts the recursion plus two recursive
calls. The same result can be achieved by the specification

routine "fac" calls to "fac" incarnates max 2;

which counts only the calls of fac in fac (therefore the limit must be one less to achieve the same
effect).

More complicated cases are possible. If for instance A calls B and C, B calls A, and C calls A,
unrestricted recursion can be avoided by a call limit on A, or by call limits on B and on C.

Note that a3 has no possibility to check whether a given call limit is a true property of the appli-
cation. If the user provides a call limit that is not supported by specific measures in the code, the
results of a3 can only be used as hint what would be the stack usage if the call limit were respected
by the application. A call limit limit > 0 for a directly recursive routine R can for instance be
enforced by a static counter in R:

... R (...) {
static int counter = 0;
counter += 1;
if (counter < limit) { ...; R(...); ...; }
counter -= 1;

}
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5.19.2 Maximum Number of Calls (Timing Analysis, Value Analysis)

In contrast to stack analysis, timing and value analysis work with the maximum number of re-
cursive calls (not the call depth). Therefore, separate annotations are required for stack and tim-
ing/value analysis.

5.19.2.1 Direct Recursion

Direct recursion describes the situation in which a routine R calls itself by means of one or several
recursive calls of R. For the following description, you have to distinguish between these recursive
calls (located inside R) and outside calls (calls of R in routines other than R). A directly recursive
routine requires a user annotation as a declaration specifying the maximum number of calls of R
induced by each outside call of R (including that outside call). Such a specification may look as
follows:

RECURSION R Bounds;

Here, R is the name or the start address of the recursive routine.

Routine names must be surrounded by double quotes (like all names).

The Bounds information can have either of the following forms:

• MIN i MAX j
specifies the minimum and maximum number of calls of the routine for each outside call.
This includes the outside call starting the recursion.

• MAX j
specifies the maximum number of calls. There is no minimum, which is therefore assumed
to be 0.

• EXACTLY j
is an abbreviation for MIN j MAX j.

Example: The following routine fib is directly recursive with 2 recursive calls:

int fib (int n) {
if (n<=2) return 1;
else return fib(n-1)+fib(n-2);

}

(This is not the most efficient way to implement that function, but it serves as a good example.)
Suppose you know that all outside calls of fib are performed with arguments ≤ 10. Then the
correct annotation for fib can be derived as follows:

• A call fib(1) induces one call of fib, namely that call fib(1) itself.
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• The same holds true for fib(2).

• A call fib(3) induces recursive calls fib(2) and fib(1). The call numbers for these
calls are 1, so that the total call number for fib(3) (including itself) is 3.

• A call fib(4) induces recursive calls fib(3) and fib(2). The call number for fib(3)
is 3 and the call number for fib(2) is 1. Thus the total call number for fib(4) (including
itself) is 3+1+1 = 5.

• In general, the call number for fib(n) is the call number for fib(n− 1) plus the call
number for fib(n−2) plus 1 (standing for fib(n) itself).

• An iteration therefore shows that the call number for fib(10) is 109. The correct annota-
tion for this example is thus

recursion "fib" max 109;

In contrast, the maximum call depth of fib in this example is 9 since the call stack of max-
imum length is fib(10)→fib(9)→···→fib(2). Therefore, the correct annotation for
stack analysis is

routine "fib" incarnates max 9;

5.19.2.2 Simple Direct Recursion

The situation is much simpler if R contains a single recursive call to itself (simple direct recursion).
In this case, the call number is the same as the call depth, i.e. the maximum number of calls of R
in a call chain (including the call that starts the recursion). Nevertheless, two different annotations
are required for stack and timing analysis.

Example 1: The following routine is implemented with simple direct recursion:

int fac (int n) {
if (n <= 1) return 1;
else return n * fac(n-1);

}

Suppose you know that all outside calls of fac are performed with arguments ≤ 10. Thus the
worst case is fac(10), which calls fac(9), which calls fac(8), etc. all the way down to
fac(1), which does not call fac any more. Therefore, the call number for fac(10) equals the
call depth, which is 10. The correct annotation for this example is thus

recursion "fac" max 10; # for timing analysis
routine "fac" incarnates max 10; # for stack analysis

Example 2:
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... R (...) {
static int counter = 0;
counter += 1;
...
if (... && counter < 2) R(...);
...
counter -= 1;

}

Under the assumption that counter is not modified anywhere else, routine R has a maximum
call number = call depth of 2: when called from outside R, it sets counter to 1 and then may
call itself. This second incarnation of R sets counter to 2 and then cannot call R again. So the
appropriate specification for this case is

recursion "R" max 2; # for timing analysis
routine "R" incarnates max 2; # for stack analysis

5.19.2.3 General Recursion

The simplest form of general (indirect) recursion consists of two routines R1 and R2 such that R1
calls R2 and R2 calls R1. Here, two cases must be distinguished:

1. If only one routine, say R1, has an outside call, while the other one (R2) is only called
within R1, then a recursion annotation can be applied to R1. The bound to be used in the
annotation is the maximum number of calls of R1 for each outside call of R1 (including that
outside call).

A recursion annotation applied to R2 takes no effect.

2. If both routines have outside calls, then recursion annotations cannot be applied.

This distinction also applies to the most general case in which many routines call each other recur-
sively. If only one of them has an outside call, a recursion annotation can be applied to it, but
this is impossible if more than one routine has outside calls. For timing analysis, flow constraints
(section 5.22) can be used instead, but these do not work for value analysis.

5.19.2.4 Implementation Restriction

A recursion annotation applied to the start point of the analysis may lead to a gross overes-
timation of the worst-case execution time, up to an unbounded time, and to imprecision in value
analysis caused by extra execution contexts or an unbounded call number (as if there were no
annotation). The problem with this case is that there is no outside call to start with.
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5.20 Loop Bounds

WCET analysis requires that upper bounds for the iteration numbers of all loops be known. Value
analysis becomes more precise if loop bounds are known, but knowledge of the bounds is not
strictly required. Stack analysis does not need loop bounds unless the loop body has a non-zero
stack effect. If for instance 4 bytes are pushed on the stack in each iteration, then a3 must know
the number of iterations to calculate the overall stack usage.

If loop bound analysis is included in your license, a3 tries to determine the number of loop it-
erations by a static analysis, but succeeds in doing so for simple loops only (see section 4.4.1).
The results of loop bound detection can be found in the report file whose name is provided in
the Files view (see section 3.4.1), and in the first info fields of the loop call nodes (see sec-
tion 7.4.4). Bounds for the iteration numbers of the loops for which loop analysis did not succeed
must be provided by the user in the AIS file or in source code annotations (see section 5.31).

Neither automatic loop bound analysis nor loop bound annotations can be applied to multi-
entry loops (also called irreducible loops) because such loops are not detected by the loop
transformation (see section 4.1.4). For timing analysis, bounds for multi-entry loops can be
specified by means of flow annotations (see section 5.22). Flow annotations are ignored by
stack analysis and value analysis.

Loop bound specifications can be classified in two different ways. On the one hand, there is a
distinction between local loop bound specifications applying to a single loop (section 5.20.1) and
global annotations applying to all loops in a set of routines (section 5.20.3). On the other hand,
there is a distinction between absolute specifications with higher priority than automatic results
and default specifications with lower priority. All global specifications are default specifications,
and so all absolute specifications are local specifications.

Absolute specifications may specify loop bounds by arbitrary expressions as described in sec-
tion 5.28 while default specifications are restricted to use immediate constants as loop bounds.
Loop bounds given by non-trivial expressions (containing not only constants) are called paramet-
ric loop bounds. In general, AIS specifications uniformly apply to all contexts, but since the value
of a non-trivial expression may depend on the context, parametric loop bounds are a way to specify
context-sensitive loop bounds. Note that a parametric loop bound may fail to evaluate to a concrete
loop bound since it may be based on registers with unknown values.

The various ways to obtain loop bounds interact as follows:

1. Absolute loop bound specifications have highest priority. They supersede any automatic
results and default specifications. This is even true for parametric loop bounds not evaluating
to concrete loop bounds; if there is an automatic result that is overwritten by an absolute loop
bound with an unbounded expression, then the automatic result is lost.

2. A default local specification for a loop takes only effect if there is no result from Step 1, i.e.
either no absolute specification and no automatic result, or an absolute parametric specifica-
tion failing to produce a result (no matter whether automatic analysis produced a result or
not).

3. Global loop annotations apply only to loops for which there are no results from Step 2.
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If the results of automatic analysis are overwritten by a user annotation, a3 tries to run the loop as
often as the user has specified, but this may prove impossible so that the automatic bound seems to
prevail, or may lead to contradictions if the user specification is wrong.

Loop bound analysis is performed separately for each execution context, but AIS specifica-
tions uniformly apply to all contexts. So it may happen that loop bound analysis finds a loop
bound for Context 1, but fails for Context 2. Then default loop bounds take only effect in
Context 2, not in Context 1.

The concept of execution contexts is introduced in section 4.3.

If the specified loop bounds are not correct, the results of a3 may be incorrect. This remark
includes loops whose loop bound can be found by a3 since user-given absolute loop bounds
supersede the results of the automatic loop bound detection.

If there are still unbounded loops after reading all user annotations and running the automatic loop
bound detection, a3 states “This problem is unbounded” when it performs a timing analysis, and
fails to obtain a bound for the worst-case execution time.

a3 complains about missing loop bounds in timing analysis by messages listing the start addresses
of the loops that lack loop constraints.

a3 issues such messages only for loops that are recognized by the loop transformation. If
path analysis says “The problem is unbounded” (see section 4.4.4) and there are no “Loop
bound missing” messages, then watch out for loops with several entry points (irreducible
loops). Such loops cannot be annotated directly; see section 5.22 for other ways to annotate
them for timing analysis. (There is no way to bound them for stack and value analysis.)

5.20.1 Local Loop Bound Specifications

A local loop bound specification may have the following forms:

LOOP ProgramPoint Qualifier Bounds;

LOOP ProgramPoint Bounds Qualifier ;

LOOP ProgramPoint Qualifier SimpleBounds BY DEFAULT;

LOOP ProgramPoint SimpleBounds Qualifier BY DEFAULT;

The first two forms are equivalent, and so are the second two forms. The forms without DEFAULT
specify absolute local loop bounds taking priority over the automatic loop bound analysis, while the
forms ending in BY DEFAULT specify default local loop bounds that are overridden by automatic
results (and absolute local bounds).

A ProgramPoint is either an address or a loop expression. The address must be the start ad-
dress of the loop; this is the same address as in the messages about missing loop bounds. A loop
expression looks like

"R" + n LOOPS

129



which means the nth loop in routine R, counted from 1. (The plural ending may be omitted; loop
and loops are equivalent.)

Loop counting refers to the executable. If for instance the source code of a routine contains
two loops and the compiler decides to completely unroll the first loop, then + 1 loop refers
to the second loop in the source. The unrolled loop does not require an annotation because
it is not a loop in the executable.

Loop routines are numbered according to the address of their entry point. If two nested loops
are entered by fall-through from the code before the loop, the entry of the outer loop is before
the entry of the inner loop, and so the number of the outer loop is smaller than the number of
the inner loop. Yet if two nested loops are entered by jumps to their last basic blocks, then
the entry of the outer loop lies behind the entry of the inner loop, and so the inner loop has
the smaller number.

The Bounds information can have either of the following forms:

• MIN I MAX J
specifies the minimum and maximum execution count for the loop body in the executable.

It may differ from the execution count derived by looking at the source since the compiler
may partially unroll loops.

Here, I and J may be expressions as described in section 5.28. Such expressions evaluate
to a set of fractions in general, which may be unbounded (extend till infinity). If I evaluates
to a set with least element i1 ≥ 0, then floor (i1) (i1 rounded down to the nearest integer) is
taken as the minimum execution count of the loop. If i1 is negative, it is replaced by 0. If
J evaluates to a set with greatest element j2 ≥ 0, then ceil( j2) ( j2 rounded up to the nearest
integer) is taken as the maximum execution count of the loop. If j2 is negative or smaller
than the lower bound i1, the entire annotation is ignored; the loop remains unbounded in this
case.

• MAX J
specifies only the maximum execution count. There is no minimum, which is therefore
assumed to be 0.

• EXACTLY J
combines the effects of MIN J and MAX J: if J evaluates to a set with least element j1 and
greatest element j2 ≥ 0, then max(0, floor ( j1)) is taken as the minimum execution count
and ceil( j2) as the maximum execution count of the loop. If j2 is negative, the annotation is
ignored; the loop remains unbounded in this case.

• J
is the same as EXACTLY J. The keyword EXACTLY was introduced at a time when loop
bounds had to be immediate constants. While the wording EXACTLY J is appropriate for
constants J, e.g., EXACTLY 10, it is a bit misleading for expressions J producing a set of
values, e.g., EXACTLY (0..10). Therefore, the keyword EXACTLY became optional.
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Default loop bound annotations involve SimpleBounds instead of Bounds. SimpleBounds
have the same structure as Bounds (described above), but the expressions I and J are restricted
to be immediate constants, namely non-negative integers such as 5 or 11. Yet this restriction does
not reduce the expressivity of the AIS language: instead of E by default, you may write try
(value, E) using the try operator described in section 5.28.6. The value of try (value,
E) is the result of loop bound analysis if this is a bounded set, and the value of E otherwise (see
also the examples presented in section 5.20.2).

Qualifier is one of the following:

• begin indicates that the loop test is at the beginning of the loop, as for C’s while-loops.

• end indicates that the loop test is at the end of the loop, as for C’s do-while-loops.

• unknown, which lets a3 assume the worst case of the two possibilities, which is begin
where the loop test is executed one more time.

• An unknown qualifier may be omitted.

The begin/end information refers to the executable, not to the source code; the compiler
may move the loop test from the beginning to the end, or vice versa.

More exactly, begin means that the loop test is near the entry point of the loop, no matter whether
the entry point is at the beginning or end. Thus you should specify begin if the loop test is in the
entry block of the loop – unless the loop consists of a single block only; in that case you should
specify end.

A different view on these qualifiers is that you specify the number of iterations of the loop body
when writing begin, and the number of iterations of the loop test when writing end. Internally,
a3 always works with the number of iterations of the loop test, which is 1 more than the number of
iterations of the body.

The maximum number of executions of the loop test, which is taken as the number of
loop contexts if the max-unroll parameter in the context specification is sufficiently
high (see section 5.4), equals the specified maximum value only if Qualifier is end.
If Qualifier is begin or unknown, it is one more.

The minimum number of executions of the loop test equals the specified minimum value if
Qualifier is end or unknown. If Qualifier is begin, it is one more.

In its output, a3 also shows the number of iterations of the loop test (see section 7.4.4). Therefore,
the reported number of loop iterations is one more than the specified number if the specification
contains the begin qualifier.

Example 1: loop "prime" + 1 loop end max 10;

specifies that the first loop in prime has the loop test at the end and is executed at most 10 times.
This specification is absolute, i.e. overrides any automatic results.

Example 2: loop "main" + 2 loops max 5 begin by default;

specifies that the second loop in main has the loop test at the beginning and is executed at most 5
times. This is a default specification that is ignored if there are any automatic results for this loop
(or an absolute local specification for the same loop).
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5.20.2 Examples with Parametric Loop Bounds

In principle, an AIS annotation uniformly applies to all contexts (contexts have been introduced in
section 4.3). Thus, a loop bound specification with a constant defines the same loop bound for all
contexts. A parametric loop bound specification with an expression also applies to all contexts, but
may lead to context-dependent loop bounds since the value of the expression may depend on the
context. Consider the following example:

if (C) { A; R(); }
else { B; R(); }

where routine R contains a loop with at most 10 loop iterations if R is called after A, but at most 20
loop iterations if R is called after B. These facts may be expressed in AIS as follows:

instruction A is entered with @RLoopMax = 10;
instruction B is entered with @RLoopMax = 20;
loop "R" + 1 loop max @RLoopMax;

The first two annotations define a user register called @RLoopMax (see section 5.10). It is given
value 10 at the beginning of A and value 20 at the beginning of B. These values are propagated
through the calls of R, and the third annotation specifies that the maximum number of iterations
of the loop in R is given by @RLoopMax, i.e. is 10 in the context of the call after A and 20 in the
context of the call after B.

Parametric loop bounds are also useful if the loop bound depends on function parameters held in
some registers. For example if the number of iterations of a loop depends on the number of padding
bytes that can occur in a frame according to the formula floor (T−D

4 ) where the total frame length
T is held in register r0 and the number D of data bytes is held in register r1, then the annotation
could look like this:

loop "FrameByID" + 4 loops begin max floor ((r0 - r1) / 4);

The advantage here is that the evaluated loop bound may depend on the context in which the loop
is executed. Without the possibility of parametric loop bounds, only a fixed bound could have
been specified for all contexts. So the parametric loop bound annotation reduces overestimation in
WCET analysis.

A problem is that a parametric loop bound annotation like the above fails to produce a concrete
bound if the value analysis performed by a3 does not find the values of all the parameter registers
(r0 and r1 in this example). To cope with this, an additional default value may be supplied using
the try operator described in section 5.28.6. An expression try(E1,E2) is equivalent to E1 if
this expression yields a bounded result set, and equivalent to E2 otherwise. The expression E2 thus
supplies a default value if E1 fails to produce a bounded set. If you want to supply for instance a
loop bound of 256 if r0 or r1 cannot be evaluated, then you may write

... max try (floor ((r0 - r1) / 4), 256);
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Instead of supplying a default for the entire expression, you may supply defaults for the register
values themselves. Assume you know that r0 is at most 1024 and r1 is not negative, then you
may write

... max floor ((try (r0, 1024) - try (r1, 0)) / 4);

This gives the same result as the previous expression if both registers are unknown, but gives more
precise results if one of them is known.

A more complicated example may involve binary search with variable arguments. This case can
also be handled by a parametric loop bound depending on the value in some register. Here is an
example with a source code annotation, which relies on the fact that parameter size is passed in
register R2:

function search (array a, int size, int x) {
...
while (...) {

/* ai: loop here max ceil (log (R2, 2)); */
/* Binary search over a */
...

}
}

The expression log(R2,2) evaluates to the binary logarithm of the value of R2 (approximately
– see section 5.28.8). The ceil operator rounds up to the nearest integer. Actually, it is redundant
in this example since it is implied by max as described in section 5.20.1.

Now suppose the value of R2 is modified between the entry of search and the beginning of the
loop. To refer to the original value in the loop bound, it may be saved in a user register:

function search (array a, int size, int x) {
/* ai: instruction "search" is entered with @size = R2; */
...
while (...) {

/* ai: loop here max ceil (log (@size, 2)); */
/* Binary search over a */
...

}
}

Parametric loop bounds based on constants and (user) registers overwrite the results of the auto-
matic loop bound analysis. This holds even if the parametric loop bound cannot be evaluated to a
bounded set; in this case, the results of the automatic analysis are lost. To overcome this problem,
a special variable value has been introduced whose value is the result of the automatic analysis;
it is an unbounded set if the automatic analysis failed (see section 5.28.14).

Using this special variable, the results of the automatic analysis may be amended or modified. For
the following examples, assume E is an expression not containing value.
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• loop . . . max E
replaces the result of value analysis by the result of E (even if this result is unbounded).

• loop . . . max restrict(value,E)
restricts the result of value analysis by the result of E, by forming the intersection of the two
result sets (see section 5.28.6 for restrict).

If the analysis produces nothing, the result of E is taken, and vice versa. Otherwise the two
results are combined. If for instance E yields the interval (5 ..7), then a less precise analysis
result of (2 ..9) is restricted to (5 ..7), but a more precise result of 6 is preserved. The two
pieces of information are even combined: an analysis result of (2 ..6) is restricted to (5 ..6).

• loop . . . max try(value,E)
supplies E as a default value that is taken if the automatic analysis produces an unbounded
or undefined result (see section 5.28.6 for try).

If the analysis produces nothing, the result of E is taken, and vice versa. Yet if the analysis
produces a bounded set, E is ignored even if it would be more precise. If for instance E
yields the interval (5 ..7), then a less precise analysis result of (2 ..9) is still preserved. Only
if the automatic analysis fails to produce a bounded set, (5 ..7) is taken.

• If you trust in the automatic analysis, but if it fails, you have an expression E, and if that
fails, too, you wish to fall back to 1000, you should write

loop . . . max try(value,E,1000).

• If you believe that your expression E is better than value analysis, you may write

loop . . . max try(E,value,1000).

• If you believe that your expression E is in principle as good as value analysis, so one should
take whichever yields more precise results, then you can write

loop . . . max try(restrict(value,E),1000).

Here, 1000 serves as a fall-back solution if both the automatic analysis and the expression E
fail to produce a bounded set.

• If you are sure that 1000 is a valid upper bound that should even be taken if value analysis
and E yield, say 2000, you can write

loop . . . max restrict(value,E,(0..1000)).

5.20.3 Global Loop Bound Specifications

Global loop bound specifications provide information about all loops in a set of routines or even in
the entire executable. They exist in three different forms:

LOOP-ITERATION DEFAULT Routines IS ...;

GLOBAL LOOP-ITERATION DEFAULT IS ...;

GLOBAL LOOP-ITERATION DEFAULT EXCEPT Routines IS ...;
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In the first and third forms, Routines stands for a comma-separated list of routine names (en-
closed in double quotes as usual). Each annotation applies to a certain part of the executable only,
called the application domain of the annotation. The application domain of the first form con-
sists of the code of the listed routines (including all loop routines extracted from these routines).
The application domain of the second form (GLOBAL) consists of the entire executable (as far as
it is analyzed). The application domain of the third form (GLOBAL . . . EXCEPT) is the entire
executable minus the listed routines. As indicated by the word DEFAULT, global loop bound spec-
ifications apply to all loops in the application domain that are not bounded by other means (loop
bound analysis or local loop bound specifications (absolute or default)).

The part after the keyword IS has the same syntax and meaning as the end of a default local loop
bound specification: it consists of an optional Qualifier and SimpleBounds for the loop
in any order as described in section 5.20.1. Recall that SimpleBounds are restricted to integer
constants (no expressions).

Example 1: You want to express that all loops in the application perform at most 20 iterations.

global loop-iteration default is max 20;

This specification is even valid if there are a few loops with more than 20 iterations provided that
each of these loops is annotated by a local specification, or their bounds are found automatically.

Example 2: Loops with more than 10 iterations occur in routines large1 and large2 only.
Then you may specify

global loop-iteration default except "large1", "large2"
is max 10;

If several different global loop specifications apply to the same loop, their loop bound inter-
vals are intersected. For instance, min 10 max 30 and min 20 max 40 are combined to
min 20 max 30.

Sometimes, a3 cannot find a loop bound by itself, but is able to prove that a loop bound given
by a default specification is wrong. In this case, a3 states “This problem is infeasible” when
it performs a timing analysis.

Global loop bound annotations do not apply to loops with multiple entries, which are not
detected by the loop transformation (see section 4.1.4). Such loops can only be bounded by
local specifications as presented in section 5.22. These specifications take effect in timing
analysis only. There is no way to bound multi-entry loops for stack and value analysis.

5.21 Timing Specifications for Loops (Timing Analysis)

Timing specifications for loops are relevant for timing analysis only.

Sometimes it is natural to provide a bound on the execution time that is spent in a loop instead of
specifying the maximum number of iterations. For instance, the abort conditions of loops used for
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busy waiting depend on the change of the value in an operational register but are not expressed in
terms of a variable that counts the loop iterations.

Timing annotations for loops have the following form:

SNIPPET ProgramPoint TAKES time;

ProgramPoint is either an address or a loop expression (see section 5.20.1). time can have
either of the following forms:

• MIN i MAX j CYCLES
specifies the minimum and maximum number of cycles required for executing the loop.

• MAX j CYCLES
specifies the maximum number of cycles required for executing the loop. There is no infor-
mation about the minimum number, which is therefore assumed to be 0.

• EXACTLY j CYCLES
is an abbreviation for MIN j MAX j CYCLES.

If the clock rate of the processor has been specified before (see section 5.2), the execution time
can also be specified in seconds sec, milliseconds msec, microseconds usec, or nanoseconds
nsec. The numbers i and j may be integers, floats, or fractions.

The above declaration specifies the execution time of one execution of the loop routine that corre-
sponds to the loop that is referred to by ProgramPoint. The code snippet that is covered by the
timing annotation thus includes the loop routine itself and all routines that are reached from there.

Timing specifications for loops are evaluated during path analysis (see section 4.4.4). There-
fore, their usage is only possible if the Path analysis variant is set to ILP based
in the General tab of the Analyses view, see section 3.4.3.7.

Timing specifications for loops are not applicable to multi-entry loops (also called irreducible
loops) because they cannot be transformed to loop routines (see section 4.1.4).

Example: The following annotation expresses that the execution of the second loop in routine
"reset" needs at most 10 milliseconds.

snippet routine "reset" + 2 loops takes max 10 msec;

5.22 Flow Constraints (Timing Analysis)

Flow constraints are ignored by stack and value analysis and therefore relevant for timing analysis
only.

The loop annotations described in section 5.20 above can only be applied to loops that have been
turned into loop routines by the loop transformation. Loops with several entries (also called irre-
ducible loops) are not transformed into loop routines (section 4.1.4) and thus cannot be annotated
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by loop specifications. Worse yet, they are hard to find because there is no easily recognizable loop
routine, and a3 does not produce a message such as “loop bound missing at start node 0x10f8”
that would reveal the address of the beginning of the loop.

Once a loop with several entry points has been identified, a loop bound can be specified for it
by means of a flow constraint that bounds the relative execution counts of two basic blocks. Yet
flow constraints are not restricted to giving loop bounds to multi-entry loops. They can be applied
to any program points to specify some relationship between the execution counts of these points.
Flow constraints exist in two versions: a3 originally supported only constraints specifying lower
and upper bounds for the ratio of two execution counts. Later, arbitrary linear constraints were
introduced. Anything that could be expressed by the old ratio constraints can also be expressed by
linear constraints – and much more. Hence, ratio constraints are now obsolete, but they are still
supported. We first describe the more powerful linear constraints (section 5.22.1), and thereafter
the old ratio constraints (5.22.2) with hints how to translate them into linear constraints. Finally,
section 5.22.3 describes the interaction between constraints and contexts.

5.22.1 Linear Flow Constraints

Linear flow constraints basically look as follows:

FLOW Qualifier Expression rel Expression;

• Qualifier is SUM or EACH, which specify the behavior w.r.t. contexts (see section 5.22.3).
The Qualifier may be omitted with default SUM.

• rel is <=, >=, ==, or =. The two variants of equality (== and =) carry the same meaning.

• An Expression is built from one or more Terms by addition or subtraction, i.e. looks
like

Term op ... op Term

with op being + or -. It may as well consist of a single Term.

• A Term can have either of two forms:

constant
factor ( ProgramPoint )

The first form is an absolute constant, while the second form stands for the execution count of
the ProgramPoint multiplied by the given factor. The constant and the factor
must be non-negative integer numbers. A factor of 1 can be omitted.

Syntactic restriction: The first term on the left-hand side of the constraint must not be a
constant.

For instance, to specify that a loop with several entries has a loop bound of 4, find a block B1 in the
loop body that is executed in each loop iteration, and a block B2 before or after the loop. Assume
the start addresses of B1 and B2 are 0x8100 and 0x8200, respectively. Then the constraint
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flow each (0x8100) <= 4(0x8200);

means that the number of executions of B1 is at most 4 times the number of executions of B2, i.e.
the loop body is executed at most 4 times as often as the code around the loop.

Program points are not restricted to absolute addresses (see section 5.29). Annotations with ad-
dresses relative to a routine entry remain valid when the routine moves in the memory:

flow each ("R" + 0xAC bytes) <= 4 ("R" + 0xC4 bytes);

Note that flow constraints may be used for other purposes than to provide bounds for the number
of iterations of multi-entry loops. They can be applied whenever there is a known relationship
between the execution counts of some basic blocks. Here are some more examples:

flow each ("R" + 1 computed) <= 1;
flow sum 3(0x2456) + 4(0x3260)

<= 5("prime") - 2("even");

5.22.2 Ratio Flow Constraints

The older ratio flow constraints are less powerful than the more modern linear flow constraints.
They only admit (limited) statements about the relationship between two program points. Their
syntax is as follows:

FLOW Qualifier ProgramPoint1 / ProgramPoint2
IS MIN min MAX max ;

• The Qualifier is the same as in linear constraints: it is SUM or EACH, which specify the
behavior w.r.t. contexts (see section 5.22.3). The Qualifier may be omitted with default
SUM.

• ProgramPoint1 and ProgramPoint2 denote the start addresses of two basic blocks,
say b1 and b2.

• min is the minimum value of the ratio between the execution count of b1 and the execution
count of b2.

• max is the maximum value of the ratio between the execution count of b1 and the execution
count of b2.

• As in loop specifications, MIN 0 can be omitted and MIN n MAX n can be replaced by
EXACTLY n.

For instance, to specify that a loop with several entries has a loop bound of 4, find a block B1 in the
loop body that is executed in each loop iteration, and a block B2 before or after the loop. Assume
the start addresses of B1 and B2 are 0x8100 and 0x8200, respectively. Then the constraint
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flow each 0x8100 / 0x8200 is max 4;

means that the number of executions of B1 is at most 4 times the number of executions of B2, i.e.
the loop body is executed at most 4 times as often as the code around the loop.

Clearly, each ratio constraint can be replaced by one or two equivalent linear constraints.

flow Q P1 / P2 is min a max b;

is equivalent to the two constraints

flow Q (P1) >= a(P2);
flow Q (P1) <= b(P2);

and

flow Q P1 / P2 is exactly n;

is equivalent to the constraint

flow Q (P1) = n(P2);

5.22.3 Constraints and Contexts

The qualifiers SUM and EACH define whether the flow constraint applies to all contexts cumula-
tively or to each context separately (contexts are introduced in section 4.3). With SUM (the default
qualifier), the constraint does not apply to the execution counts in individual contexts, but to the
sum over the number of executions in all contexts. For instance with the constraint

flow sum (0x8100) <= 4(0x8200);

and two contexts, path analysis may assign to block 0x8200 an execution count of 1 in each con-
text, and to block 0x8100 a count of 8 in the first context and 0 in the second. These assignments
satisfy the constraint since (8+0) ≤ 4 · (1+1).

In contrast, a flow constraint qualified by EACH applies to each context individually. For instance
with the constraint

flow each (0x8100) <= 4(0x8200);

and two contexts, block 0x8100 gets a count of at most 4 in each context if 0x8200 has a count
of 1 in each context. Therefore flow each constraints lead to more precise WCET estimates
than flow sum constraints (unless they contain absolute constants – see below). On the other
hand, the usage of flow each constraints is restricted: Their meaning is well-defined only if
the two program points are in the same routine so that they have the same contexts. Here “in the
same routine” refers to the situation after loop transformation i.e. loop routines are distinguished
from ordinary routines. This does not restrict the usage of flow each for multi-entry loops since
such loops are not transformed into special loop routines. If a flow each constraint is applied to
program points in different routines, a3 complains with the message
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pathan2: Error:
Nodes for user constraint are not in the same routine.

In contrast, flow sum constraints can be applied to arbitrary program points.

If a linear constraint does not contain absolute constants, it is safe to replace each by sum, in
particular if each is rejected because the program points involved occur in different routines. This
is no longer true if the constraint contains non-zero constants. The constraint

flow each ("prime" + 16 bytes) <= 1;

means that the indicated program point in prime is executed at most once in every context, while

flow sum ("prime" + 16 bytes) <= 1;

means that the program point is executed at most once in all contexts together, which is much
stronger.

Constants should be used with care anyway. If you want to express that "prime" + 16 bytes
is executed at most once in every call of prime, you may be tempted to write

flow each ("prime" + 16 bytes) <= 1;

assuming that every call gives a new context. However, this is only true if the call string length is
large enough because otherwise, several different calls may share the same context, which makes
the constraint above incorrect. The constraint with the intended meaning avoids the use of absolute
constants:

flow each ("prime" + 16 bytes) <= ("prime");

5.23 Output from Value Analysis

Note that these commands have only an effect if a value analysis is performed (see section 3.5.1).

The AIS format admits certain directives that do not specify declarations or assertions, but instruct
a3 to write certain kinds of output into the report file when performing a value analysis: who calls
some routine (5.23.1), who accesses some memory area (5.23.2), the control-flow successors of an
instruction (5.23.3), and the contents of registers and memory cells as far as known by a3 (5.23.4).
Section 5.24 presents commands for producing output when performing a timing analysis.

5.23.1 Routine Callers

The directive

ROUTINE Point IS WATCHED;

instructs a3 to report all calls to the specified routine that occur in the analyzed code. Here, Point
must be a program point defining a routine, i.e. a routine name (quoted as usual) or the start address
of a routine.
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5.23.2 Memory Accessors

AREA Area IS WATCHED;

instructs a3 to report all accesses to the specified memory area that occur in the analyzed code.
Here, Area is a memory area definition as described in section 5.12.1.

5.23.3 Control-Flow Successors

INSTRUCTION Point FEATURES "show" = "successors";

instructs a3 to display all possible control-flow successors of the specified instruction (of course
only those that occur in the analyzed piece of code).

5.23.4 Output of Register and Memory Contents

ROUTINE Point IS INTERESTING;

causes a3 to output the value analysis results that hold at the beginning of the specified routine.
These are the contents of the registers and memory cells as far as they are known to a3. The
output is written in AIS syntax as described in sections 5.10 (registers) and 5.12.5 (memory). The
rationale for using AIS syntax is that these AIS annotations can be used to specify the initial state
for a new analysis starting at the specified routine. Since AIS syntax does not admit any reference
to contexts, the value ranges written by a3 are joins over all contexts. If for instance r2 has value 1
in one context and 7000 in another one, then the value range for r2 will be the interval (1 ..7000)
that includes all intermediate values as well.

5.24 Output from Timing Analysis

Note that these commands have only an effect if a timing analysis is performed (see section 3.5.1).

This section presents directives for writing certain kinds of output into the XML report file during
timing analysis. Section 5.23 presents commands for output during value analysis.

5.24.1 Counting Accesses to Some Memory Area

It is possible to specify a single memory area for which accesses on the WCET path are counted
for every start point, i.e. for the overall start point of the analysis and any additional start points
(section 5.5):

AREA Area COUNT ACCESSES;

where Area is an area description as introduced in section 5.12.1. A typical example is
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area 0x3000 .. 0x3fff count accesses;

The results of access counting appear in the XML report file (but not in the textual report files).
For each start point, there is a subelement wcet_analysis of wcet_analysis_task.
The results of access counting for a specific start point are contained in the element
wcet_analysis→wcet_results→wcet_access_infos of the wcet_analysis
element corresponding to this start point. A typical example is

<wcet_access_infos>
<wcet_area begin=0x3000" end="0x3fff" />
<wcet_access_info routine="r15"

reads="1" writes="2" unknown="0" />
</wcet_access_infos>

The element wcet_area documents the memory area specified in the AIS file. The
routine name stated in wcet_access_info, e.g., "r15", is an internal name. In-
ternal names are mapped to the “real” routine names in another part the XML report
(wcet_analysis_task→decode→routines).

• reads is the number of definite read accesses on the WCET path into the area. Definite
means that the range of possible read addresses as determined by a3 is included in the given
area.

• writes is the number of definite write accesses on the WCET path into the area.

• unknown is the number of potential, but not definite accesses on the WCET path into the
area, i.e. of those accesses whose computed address range overlaps the given area without
being included in it.

The counts represent numbers of accesses, not numbers of instructions. For instance, an instruction
accessing the specified memory area in a loop with 100 iterations is counted 100 times if that loop
is on the calculated WCET path.

Accesses can be counted for a single memory area only.

Only accesses on the WCET path as calculated by a3 are counted. Accesses in routines or
basic blocks that are not on the WCET path are not counted.

5.25 Symbolic Names for Program Points and Areas

The purpose of a label specification is to introduce an artificial label as a name for a program point
or an area. These labels may be used in subsequent specifications as convenient abbreviations for
complex program point or area descriptions. The format of label specifications is as follows:

LABEL ProgramPoint = "Name";
LABEL ProgramPoint1 .. ProgramPoint2 = "Name";
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In both cases, Name is the name of the new label. In the first case, ProgramPoint is the program
point the new label refers to. In the second case, ProgramPoint1 .. ProgramPoint2 is the
area the new label refers to. Whenever you want to refer to this program point or area later on, you
may write

LABEL "Name" or "Name"

instead of the original description of the program point or area.

If a label name N is also a routine name, then the bare name "N" refers to the label. The ambiguity
can be resolved by writing LABEL "N" or ROUTINE "N".

Symbolic loop descriptions of the kind R + n loops are not supported as program points in
label specifications.

If a label L happens to denote the same program point as a routine R, e.g., because of label "R"
= "L", then the routine name R is still used in the output of a3. This behavior can be changed by
adding the keyword force to the label name:

LABEL ProgramPoint = FORCE "Name";

Then the routine name R is replaced by the label name L in the graph pictures and the report files
produced by a3. However, the routine name R remains visible in the symbol table in the Symbols
view (section 3.6.2) and the list of possible start points for analyses (section 3.5.5); the label name
L does not show up there. Nevertheless, labels defined in the AIS file can be used as start points
(section 3.5.2) although they do not show up in the list of possible start points, no matter if force
is used or not.

5.26 Avoiding Problems with Unreachable Program Points

exec2crl complains if a ProgramPoint referred to in an AIS file is not reachable from the
start point of the analysis. If you use for instance the specifications

instruction "MC" + 1 computed ...;
instruction "MC" + 2 computed ...;

presented in section 5.8.2, but routine MC is not reachable from the selected start point, then
exec2crl complains with error messages of the following kind:

Unable to resolve 0x181cc + 1 computed.
Unable to resolve 0x181cc + 2 computed.

where 0x181cc is the start address of MC in the analyzed executable. This kind of error can be
avoided by writing TRY in front of the specifications:
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try instruction "MC" + 1 computed ...;
try instruction "MC" + 2 computed ...;

A TRY directive can also be applied to several specifications grouped by braces as in

try { instruction "MC" + 1 computed ...;
instruction "MC" + 2 computed ...;

}

In fact, TRY does not only suppress the above-mentioned error messages, but all error mes-
sages resulting from the annotations in its scope. Thus, TRY should not be applied before
the annotations are completely debugged.

5.27 Include Directives

Include directives in AIS files are similar to the #include directives of the C preprocessor: they
tell a3 to suspend reading the current AIS file, to read the contents of another file instead, and then
to resume reading the original file. The format of include directives is as follows:

INCLUDE ’Name’;

where Name is the name of the file to be read. This way you may for instance include an AIS file
describing features of the C library.

The single quotes around Name let the path name separator \ of MS Windows stand for itself.
With double quotes, \ would have to be written as \\ like in C-strings (see also section 5.30.2).

If source code reading is enabled by your license, the file to be included is not restricted to be
an AIS file again. It may as well be a .c or .h file. In this case, exec2crl reads the source
annotations in the included file (see section 5.31). The purpose of this feature is to let exec2crl
read source files whose names have not been included in the debug information of the executable.

5.28 Expressions and their Evaluation

In this section, we describe the full syntax and semantics of the expressions that may occur at
various syntactic places:

• In specifications of register values and in definitions of user registers, e.g.,
instruction P is entered with r1 = Expr1, @X = Expr2;
(see section 5.10);

• In assertions, possibly about values of registers or memory cells, e.g.,
assert instruction P is entered with Expr1, ..., Exprn;
(see section 5.11);
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• In specifications of the execution time of code snippets excluded from analysis, e.g.,
snippet P is not analyzed and takes Expr;
(see section 5.15.3);

• In specifications of additional execution time, e.g.,
instruction P additionally takes Expr;
(see section 5.13);

• In declarations of conditional infeasibility, e.g.,
snippet S is not executed if Expr;
(see section 5.17.2);

• In declarations of the values of conditions, e.g.,
condition P is true if Expr;
condition P is exactly Expr;
(see section 5.18.2);

• In non-default loop bound specifications, e.g.,
loop L min Expr1 max Expr2;
(see section 5.20.1 and the examples in section 5.20.2).

5.28.1 Priorities and Grouping

The following subsections describe the various kinds of expressions in detail. Before that, we list
the available operators with their precedence as a quick overview.

Subexpressions can be grouped by parentheses (. . .) as usual in mathematics and programming
languages. The operands of unary operators such as address and sqrt must be put in paren-
theses. If no parentheses are used, subexpressions are grouped according to operator precedences.
In the following, the operators are listed in order of decreasing precedence (binding power), where
all operators in a row have the same precedence.

• Prefix operators with one or several arguments in parentheses: address (section 5.28.4);
mem (5.28.5); min, max, join, restrict, low, high, bounded, exact, try, abs
(5.28.6); sqr (5.28.7); sqrt, log (5.28.8); floor, ceil, int (5.28.9); frac, uint,
sint (5.28.10); ! (not), if, always (5.28.12).

• Exponentiation ** (5.28.7);

• Multiplicative operators *, / (5.28.7), and modulo % (5.28.10);

• Additive operators + and binary - (5.28.7);

• Relational operators <, <=, >, >=, ==, !=, <=>, and in (5.28.11);

• Logical “and” && (5.28.12);

• Logical “or” || and “xor” ˆˆ (5.28.12);
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• Conditional -?-:- (5.28.12);

• The before operator (5.28.15);

• Size and time units as postfix operators e.g., bytes and cycles (5.28.16);

• The range operator .. (5.28.6);

• The with operator used for specifying modulo information (5.28.10);

• The separators => and , of switch expressions and the , in argument lists (5.28.13).

Because of their low precedence, the operators .. and with require parentheses in most cases.
See also the examples in section 5.28.16 for possible problems caused by the low precedence of
size and time units.

5.28.2 Results of Expressions

In principle, the value of an expression is meant to be a fraction, and indeed, simple expressions
such as 1+ 1 or 1/2 evaluate to a fraction. Possible values are also −inf (minus-infinity) and
inf (plus-infinity). In general however, the result of evaluating an expression is not a single such
value, but a set of possible values. There are two reasons for this complication: First, the values
of registers as determined by value analysis can be imported into expressions, but value analysis
often can only determine a set of possible values instead of an exact value. Second, expressions
can be used to specify the values of registers at certain program points, but often the exact value
is not known or may vary, and only some set of possible values is known, e.g., the set of integers
between 0 and 1000.

Neither value analysis nor AIS expressions produce arbitrary sets of values though. All result sets
are non-empty and described by the combination of three kinds of constraints:

• a lower bound a, which may also be −inf or inf ;

• an upper bound b, which may also be −inf or inf ;

• optional modulo information saying that all elements x of the set satisfy x % p == m where
p is a power of 2. This kind of modulo information was introduced to be able to express
alignment properties.

If there is no modulo information, lower and upper bound together describe an interval (a ..b)
standing for the set of all fractions x with a ≤ x ≤ b. The notation (a ..b) is not the standard
mathematical notation for such intervals, which would be [a,b]. Yet (a ..b) is the way in which
intervals can be specified in AIS expressions (section 5.28.6), e.g., (1..2) is valid AIS syntax
evaluating to the interval (1..2) ([1,2] in mathematical notation). A special case is the interval
(a ..a) that contains a single value a; in this case, we identify the interval with its single element.
This is also true in AIS; for instance, the expressions 1 and (1..1) are equivalent.
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With modulo information, sets of the form {x | a ≤ x ≤ b and x % p = m} can be described. We
abbreviate this to (a ..b with x % p == m), which is also valid AIS syntax for this set (see sec-
tion 5.28.10 for the with operator). Examples are (3 ..15 with x % 4 == 3) = {3,7,11,15},
(1 ..20 with x % 8 == 0) = {8,16}, and (2 ..3 with x % 1/2 == 0) = {2,2.5,3} (p in x % p == m
may be a negative power of 2). A special case of modulo information is x % 1 == 0 which means
restriction to integers. For instance, (2 ..5 with x % 1 == 0) = {2,3,4,5} and (0 ..1 with x % 1 ==
0) = {0,1} which contains only 0 and 1, while (0..1) also contains fractions such as 1/2 and 2/3.

Note that not all two-element sets can be results of expressions because of the restriction to powers
of 2: although {a,b} = (a ..b with x % (b− a) == a % (b− a)) holds mathematically whenever
a < b, this can only be an expression result if b− a is a power of 2. So {0,1} and {1,3} can be
results, but not {0,3}. The restriction to powers of 2 was a pragmatic decision to simplify the
implementation.

a3 sometimes describes result sets in its output with a different syntax [a..(+p)..b], which is closer
to its internal representation and stands for {a, a+ p, a+ 2p, . . . , b} = (a ..b with x % p == m)
where m = a % p = b % p, for instance (3 ..15 with x % 4 == 3) = [3..(+4)..15] or (0 ..1 with x %
1 == 0) = {0,1} = [0..(+1)..1]. This syntax however is not valid AIS syntax and we avoid it in
this manual.

5.28.3 Atomic Expressions

Expressions are built from atomic expressions using various operators. Atomic expressions may
be integers in various representations including decimal and hexadecimal (see section 5.30.3),
floating point numbers, the names of processor registers and user registers. Processor registers are
specified by name (A0–A15 or D0–D15). User registers have arbitrary names starting with @ (see
section 5.10). Register names may be preceded by the optional keyword reg.

The results of evaluating integers and floating point numbers are obvious. The values of processor
registers and user registers are determined by value analysis; they are integer intervals with optional
modulo information. The values of user registers are also restricted to integers. They ultimately
stem from defining annotations (described in section 5.10). If there are no such annotations, they
evaluate to (−inf .. inf ).

Since register values are restricted to integers, thay are imported into AIS expressions with modulo
information x % 1 == 0 if they do not already come with their own modulo information.

There is also a special constant inf whose value is larger than any representable number. There-
fore the interval (-inf..inf) contains all numbers. Thus, a previous definition of a user register
can be withdrawn by setting it to (-inf..inf).

The special variable value described in section 5.28.14 is also syntactically atomic.

5.28.4 Addresses of Program Points and Memory Areas

There are means to import the addresses of program points and memory areas into expressions. In
the sequel, Point means a program point and Area an area description, which may be a pair of
program points from Start to End, or Start .. End, or an array or section name. Area
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descriptions are presented in more detail in section 5.12.1 and program points in section 5.29.

• address(Point) evaluates to the address of the program point.

• address(Area) evaluates to the interval of addresses in the given area. If the extent of
the area is not provided explicitly and cannot be derived from the symbol table information
in the executable, only the start address of the area is considered.

• The interval can be restricted to the start address in any case by writing
start address(Area) or start(Area).

• The interval can be restricted to the last address in the area by writing
last address(Area) or last(Area).

The parentheses around Point or Area may be omitted if these consist of a single routine or
section name, e.g., address "prime".

5.28.5 Contents of Memory Cells

The contents of memory cells can be referenced by means of the following expressions:

• mem(Address,Width)
yields the contents of the memory at the given Address, as far as it is known to value
analysis. Width is an expression that may optionally contain a size unit such as byte (see
section 5.30.4 for a complete list and section 5.28.16 for the usage of units in expressions).
If no size unit is used, byte is assumed. Only the access widths supported by the actual
hardware are supported by a3.

Examples: mem(0x1000, 4) mem(0x1000, 4 bytes)

• mem(Address,Unit)
is similar, but the access width is given by the Unit, e.g., byte. All possibilities for Unit
are listed in section 5.30.4.

Example: mem(0x1000, word)

• mem(Address)
is a form without explicit access width. In this case, the standard access width of the target
processor is taken.

Example: mem(0x1000)

• In any case, there may be a further argument lbf (low byte first) or hbf (high byte first) to
specify the endianness of the memory. This is rarely needed since a3 employs the standard
endianness of the target architecture if no explicit endianness is specified.

Examples: mem(0x1000, 4, hbf)
mem(0x1000, word, lbf)
mem(0x1000, hbf)

148



The part described as Address can be an arbitrary expression whose value is taken as the address
of the access. Examples for Address:

• 0x9020 is an absolute address.

• R + 0x10 is an address relative to register R with offset 0x10 bytes. In particular, R may
be the stack pointer so that you can refer to the contents of stack cells.

• @ADR is the address derived from the value of the user register @ADR.

5.28.6 Minimum, Maximum, and Interval Operations

We start the presentation of the possible operations in expressions by listing some operations in-
volving minimum and maximum.

• min(E1,. . .,En)
is a valid expression if E1, . . . , En are valid expressions. (A sentence like this should be
written for each operator, but will be omitted in the sequel.)

If the subexpressions E1, . . . , En evaluate to exact values, then the result of the entire expres-
sion min(E1, . . . ,En) is the minimum, i.e. the smallest of these values. On intervals, the
min operator works by forming the minimum of the lower ends and of the upper ends:

min((a1 ..b1), . . . ,(an ..bn)) = (min(a1, . . . ,an) ..min(b1, . . . ,bn))

Since an exact value v is considered to be the same as the interval (v..v), the definition for
intervals subsumes the definition for exact values.

Modulo information in the operands is preserved in the result as far as possible.

Examples: min(2,1,4,3) = 1; min((1..5), (2..3)) = (1..3);
min((2 ..4 with x % 1 == 0),(1 ..5 with x % 1 == 0)) = (1 ..4 with x % 1 == 0);
min((2 ..4 with x % 2 == 0),(1 ..5 with x % 2 == 1)) = (1 ..4 with x % 1 == 0)

• max(E1,. . .,En)
is analogous to min, but uses maximum (greatest value) instead of minimum (smallest
value). On intervals, it operates as follows:

max((a1 ..b1), . . . ,(an ..bn)) = (max(a1, . . . ,an) ..max(b1, . . . ,bn))

Examples: max(2,1,4,3) = 4; max((1..5), (2..3)) = (2..5);
max((2 ..4 with x % 1 == 0),(1 ..5 with x % 1 == 0)) = (2 ..5 with x % 1 == 0);
max((2 ..4 with x % 2 == 0),(1 ..5 with x % 4 == 1)) = (2 ..5 with x % 1 == 0)

• join(E1,. . .,En)
evaluates to the least representable set containing the result sets of all the subexpressions E1,
. . . , En. The lower end of the result is the minimum of the lower ends of the operands, and
the upper end of the result is the maximum of the upper ends of the operands. On proper
intervals (not single values) without modulo information, the result is

join((a1 ..b1), . . . ,(an ..bn)) = (min(a1, . . . ,an) ..max(b1, . . . ,bn))
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Again modulo information is preserved as much as possible. If exact values are joined, the
best possible modulo information consistent with all operands is generated.

Examples:
join(3,4) = (3 ..4 with x % 1 == 0) = {3,4} since both arguments are integers;
join(1,9) = (1 ..9 with x % 8 == 1) = {1,9} since 1 % 8 = 9 % 8 = 1;
join(1,7) = (1 ..7 with x % 2 == 1) = {1,3,5,7}

since 1 % 2 = 7 % 2 = 1, but 1 % 4 = 1 6= 3 = 7 % 4;
join(2,1,4,3) = (1 ..4 with x % 1 == 0);
join((1..5), (2..3)) = (1..5); join((1..5), (0..3)) = (0..5);
join((2 ..4 with x % 2 == 0), (1 ..5 with x % 4 == 1)) = (1 ..5 with x % 1 == 0)

• restrict(E1,. . .,En)
evaluates to the intersection of the result sets of the subexpressions E1, . . . , En. If there is
no modulo information, the lower end of the result is the maximum of the lower ends of the
operands, and the upper end of the result is the minimum of the upper ends of the operands.
Modulo information can cause the result to be smaller. If the intersection is empty, i.e. the
lower end would be larger than the upper end or the modulo information is inconsistent, the
result is (−inf .. inf ), i.e. contains all possible numbers.

restrict ((a1 ..b1), . . . ,(an ..bn)) = (max(a1, . . . ,an) ..min(b1, . . . ,bn))

where (a ..b) = (−inf .. inf ) if a > b

Examples: restrict ((1..5), (2..4)) = (2..4); restrict ((1..5), (0..4)) = (1..4);
restrict ((1..3), (3..5)) = 3; restrict ((1..3), (4..5)) = (−inf .. inf );
restrict ((1 ..5 with x % 2 == 1), (2 ..4 with x % 1 == 0)) = 3;
restrict ((1 ..5 with x % 2 == 1), (2 ..4 with x % 2 == 0)) = (−inf .. inf )

• low(E) and high(E)
extract the lowest value and the highest value respectively from the result set produced by E.
For intervals, this means

low(a ..b) = a high(a ..b) = b

An exact value v produced by E is considered as singleton set {v}, so low and high repro-
duce the value v in this case.

Examples: low(5) = 5; high(5) = 5;
low(3..7) = 3; low(3 ..7 with x % 4 == 3) = 3;
high(3..7) = 7; high(3 ..7 with x % 4 == 3) = 7;
low(high(3..7)) = 7

• (E1 ..E2)
is the AIS syntax for an interval. If E1 evaluates to an exact value v1 and E2 to an exact value
v2, then the result is the interval (v1..v2) if v1≤ v2, and the error value (−inf .. inf ) otherwise.
The general case in which the two operands evaluate to sets is reduced to the case of exact
values by taking the lowest value from the first set and the highest from the second:

(V1 ..V2) =

{
(low(V1) .. high(V2)) if low(V1) ≤ high(V2)
(−inf .. inf ) otherwise
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Examples: (1..2) = (1..2); (2..1) = (−inf .. inf );
((0..4) ..(1..5)) = (0..5); ((1..5) ..(0..4)) = (1..4); ((4..5) ..(0..2)) = (−inf .. inf );
((0 ..4 with x % 4 == 0) ..(1 ..5 with x % 4 == 1)) = (0..5);
((1 ..5 with x % 4 == 1) ..(0 ..4 with x % 4 == 0)) = (1..4)

• bounded(E)
yields 1 if the expression E yields a bounded set, and 0 otherwise. A set is bounded if both its
lowest element and its highest element are finite (not −inf or inf ). The modulo information
of the set does not matter for this test.

A user register @X that has not been given a value yields an unbounded interval (−inf .. inf ).
Therefore, bounded(@X) is 0 in this case.

• exact(E)
yields 1 if the expression E yields an exact value, and 0 otherwise.

Examples: exact (5) = 1; exact (3..7) = 0; exact (low(3..7)) = 1

• try(E1,E2)
is E1 if bounded E1, and E2 otherwise. Thus E2 is a kind of default value that is taken if
E1 does not evaluate to a bounded interval. Section 5.20.2 contains some examples for this
operator.

• try(E1,. . .,En)
is alternative syntax for try(E1,try(E2, . . .,En)) .

• abs(E)
computes the absolute value of E. This is straightforward for exact values, but a bit more
tricky for general sets of values. For intervals without modulo information we have:

abs(a ..b) =


(a ..b) if 0≤ a
(−b .. −a) if b≤ 0
(0 ..max(−a,b)) if a < 0 < b

 = (max(0,a,−b) ..max(−a,b))

Examples: abs(2) = 2; abs(−2) = 2; abs(2..4) = (2..4); abs(−4 .. − 2) = (2..4);
abs(−1 ..3) = (0..3); abs(−3 ..1) = (0..3)

Modulo information from the argument is taken over into the result as far as possible. The
result is straightforward if the argument set is all-positive or all-negative:

abs(1 ..5 with x % 4 == 1) = (1 ..5 with x % 4 == 1)
abs(−5 .. −1 with x % 4 == 3) = (1 ..5 with x % 4 == 1)

If some values are negative and some are positive, more complicated things can happen:

abs(−16 ..8 with x%8== 0) = abs{−16,−8,0,8} = {0,8,16} = (0 ..16 with x%8== 0)
abs(−12 ..4 with x % 8 == 4) = abs{−12,−4,4} = {4,12} = (4 ..12 with x % 8 == 4)
abs(−6 ..10 with x % 8 == 2) = abs{−6,2,10} = {2,6,10} = (2 ..10 with x % 4 == 2)
Ideally, abs(−7 ..1 with x % 8 == 1) = abs{−7,1} = {1,7}, but this set is not rep-
resentable with power-2-modulo information, so the result is (1 ..7 with x % 2 == 1) =
{1,3,5,7}.
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5.28.7 Rational Arithmetic

While the effect of the arithmetical operations on exact values is more or less clear, care must be
taken when they are applied to arguments producing non-trivial sets of values. The general idea is
to apply the operation to all elements of the sets and then to take as result the least representable
set containing all possible result values. Of course, this is not an effective way to implement the
operations. Instead, methods must be found to compute the bounds and the modulo information of
the result from the bounds and the modulo information of the arguments.

• E1 + E2
sums the results of E1 and E2. On intervals, this is done by summing the respective ends:

(a1 ..b1) + (a2 ..b2) = (a1 +b1 .. a2 +b2)

The modulo information is in principle handled by taking over the smaller power of two and
adding the two remainders (modulo the new power of two).

Examples: 1+2 = 3; 1
2 +

1
3 = 5

6 ;
2+(4..5) = (6..7); (1..4)+(2..5) = (3..9);
(1 ..9 with x % 4 == 1)+(2 ..18 with x % 8 == 2) = (3 ..27 with x % 4 == 3);
(1 ..9 with x % 4 == 1)+(5 ..21 with x % 8 == 5) = (6 ..30 with x % 4 == 2)

• - E
negates the result of E, e.g., maps 2 to −2 and −2 to 2. The effect on intervals is as follows:

−(a ..b) = (−b .. −a)

In the modulo information, the power of two is unchanged; only the remainder is adapted.
Examples: −(1..2) = (−2 ..−1); −(−2 ..4) = (−4 ..2);
−(1 ..9 with x % 4 == 1) = (−9 .. −1 with x % 4 == 3)

• E1 - E2
corresponds to E1 +(−E2). On intervals, this means

(a1 ..b1) − (a2 ..b2) = (a1−b2 .. a2−b1)

Examples: 3−2 = 1; 2−3 =−1; 4−4 = 0; 1
2 −

1
3 = 1

6 ;
(4..5)−2 = (2..3); (4..5)− (1..2) = (2..4); (3..5)− (3..5) = (−2 ..2);
(2 ..26 with x % 8 == 2)− (1 ..13 with x % 4 == 1) = (−11 ..25 with x % 4 == 1)

• E1 * E2
multiplies the results of E1 and E2. When computing the product of two intervals, one has to
take into account that multiplication with a negative number turns the order around. Thus it
is not sufficient to multiply corresponding ends.

Examples: 2∗3 = 6; −2∗−3 = 6; 1
2 ∗

1
3 = 1

6 ;
2∗ (3..4) = (6..8); −2∗ (3..4) = (−8 .. −6);
(2..3)∗ (4..5) = (8..15); (−2 ..3)∗ (−4 ..5) = (−12 ..15);
4∗ (1 ..9 with x % 2 == 1) = (4 ..36 with x % 8 == 4);
3∗ (1 ..9 with x % 2 == 1) = (3 ..27 with x % 2 == 1);
1/3∗ (1 ..9 with x % 2 == 1) = (1/3 ..3);
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In the last example, the modulo information disappears entirely since the step width 2/3 is
not an integer multiple of any power of 2.

• E1 / E2
divides E1 by E2. Division by 0 does not result in a specific value, so the result is (−inf .. inf )
if the result interval of E2 contains 0.

Examples: 12/4 = 3; 3/4 = 3
4 ; (−6 ..8)/2 = (−3 ..4);

1/(2..3) = (1
3 ..

1
2); 1/(−1..1) = (−inf .. inf );

(8..10)/(2..5) = (8
5 ..5); (−8..10)/(2..5) = (−4 ..5); (2..4)/(2..4) = (1

2 ..2);
(1 ..5 with x % 2 == 1)/2 = (1/2 ..5/2 with x % 1 == 1/2);
(1 ..5 with x % 2 == 1)/3 = (1/3 ..5/3); 1/(1 ..5 with x % 2 == 1) = (1/5 ..1)

The last two examples show that division destroys modulo information in many cases.

Although / is not integer division, there is a modulo operator % presented in section 5.28.10.

• sqr(E)
computes the square of E. It is defined for intervals as follows:

sqr (a ..b) =


(a2 ..b2) if 0≤ a
(b2 ..a2) if b≤ 0
(0 ..max(a2,b2)) if a < 0 < b

Examples: sqr (2) = 4; sqr (−2) = 4; sqr (2..4) = (4..16); sqr (−4 .. −2) = (4..16);
sqr (−1 ..3) = (0..9); sqr (−3 ..1) = (0..9);
sqr (2 ..8 with x % 2 == 0) = (4 ..64 with x % 4 == 0);
sqr (3 ..9 with x % 2 == 1) = (9 ..81 with x % 8 == 1);
sqr (−3 ..3 with x % 2 == 1) = (1 ..9 with x % 8 == 1)

For exact values v, sqr (v) is simply the same as v ∗ v. This is not true for intervals or for
general sets; sqr (a ..b) is in general smaller than (a ..b)∗ (a ..b) since in the latter numbers
drawn from the two operand intervals may vary independently.

Example: sqr (−3 ..1) = (0..9), but (−3 ..1)∗ (−3 ..1) = (−3 ..9).

The above specifications are idealized because they abstract from overflow. If the sum or product
of two big positive numbers gets too large to be represented, the result is undefined; there is no
wrap-around to negative numbers as in most processor arithmetics.

Since all operations are implemented via arithmetic on fractions, an overflow in the denominator
may happen even if the result is not too large. In such a case, the result x is replaced by a tiny
interval containing x whose end points have representable denominators.

5.28.8 Irrational Operations

AIS expressions also offer a few operations that go beyond the field of rational numbers (fractions).
This is possible at the expense of precision: genuine irrational results are replaced by tiny rational
intervals containing the exact result.
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Modulo information is generally destroyed by irrational operations; even in the few cases where
modulo information in the result would be possible mathematically, the result is an interval without
modulo information.

• sqrt(E)
computes the square root of E. The square root of a negative number is undefined
((−inf .. inf )). On intervals, sqrt operates as follows:

sqrt (a ..b) =

{
(sqrt−(a) ..sqrt+(b)) if 0≤ a
(−inf .. inf ) if a < 0

Here sqrt−(a) is
√

a if this is rational, and a rational number slightly below
√

a if this is
irrational. Similarly, sqrt+(b) is a rational number slightly above

√
b if this is irrational.

Examples: sqrt (9) = 3; sqrt (0) = 0; sqrt (−1) = (−inf .. inf ); sqrt (1
9 ..9) = (1

3 ..3);
sqrt (2) = tiny interval containing

√
2;

sqr (sqrt (2)) = tiny interval containing 2;
exact (sqrt (9)) = 1; exact (sqrt (2)) = 0;
sqrt (0 ..1 with x % 1 == 0) = (0 ..1)

• E1 ** E2
computes E1 to the power of E2. The base of the power must not be negative, and base 0 is
only allowed if the exponent is positive. For exact values v1 > 0 and v2, v1 ∗∗v2 is in general
a tiny interval containing the exact result vv2

1 . Of course, this extension to a tiny rational
interval cannot be avoided if vv2

1 is irrational, but in contrast to square root, the extension
may even happen for rational results; there is no guarantee here that a rational result is
exactly reproduced.

Examples: 2 ∗∗ 3 = 8; 3 ∗∗ 2 = 9;
3 ∗∗ (−2) = 1

9 ; (2..3) ∗∗ (3..4) = (8..81);
(0 ..1 with x % 1 == 0) ∗∗ 2 = (0 ..1),
but sqr (0 ..1 with x % 1 == 0) = (0 ..1 with x % 1 == 0) (more precision)
9 ∗∗ 1

2 = 3 (exact)
27 ∗∗ 1

3 = tiny interval containing 3 (not exact)

81 ∗∗ 1
4 = 3 (exact)

• log(E1,E2)
computes the logarithm of E1 to the base E2. For two exact values v1 > 0 and v2 > 0, v2 6= 1,
log(v1,v2) is in general a tiny interval containing the exact result logv2

v1. Rational logarithms
may be exactly reproduced.

Examples: log(1, 2) = 0; log(2, 2) = 1; log(4, 2) = 2;
log(81, 3) = 4; log(81, 1

3) = −4; log(1000, 10) = 3;
log(3, 2) = tiny interval around log2 3
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5.28.9 Rounding Operations

In this section, we describe various operations for rounding to integers. All these operations pre-
serve modulo information as much as possible, and they are able to create new modulo information:
even if the argument set does not contain any modulo information, the result set is known to consist
only of integers and thus to satisfy at least the modulo information x % 1 == 0.

• floor(E)
rounds the value of E down to the nearest integer below it. The effect on a set of values is to
round down each element of the set. For intervals without modulo information, the result is
therefore

floor (a ..b) = (floor (a) .. floor (b) with x % 1 == 0)

Examples: floor (2) = 2; floor (4.2) = 4; floor (−4.2) = −5; floor (1.4 ..1.7) = 1;
floor (1.2 ..3.7) = (1 ..3 with x % 1 == 0);
floor (−2.3 ..8.2) = (−3 ..8 with x % 1 == 0);
floor (1.2 ..5.2 with x % 2 == 1.2) = (1 ..5 with x % 2 == 1)

• ceil(E)
rounds the value of E up to the nearest integer above it. The effect on a set of values is to
round up each element of the set. For intervals without modulo information, the result is
therefore

ceil(a ..b) = (ceil(a) .. ceil(b) with x % 1 == 0)

Examples: ceil(2) = 2; ceil(4.2) = 5; ceil(−4.2) = −4; ceil(1.4 ..1.7) = 2;
ceil(1.2 ..3.7) = (2 ..4 with x % 1 == 0);
ceil(−2.3 ..8.2) = (−2 ..9 with x % 1 == 0);
ceil(1.2 ..5.2 with x % 2 == 1.2) = (2 ..6 with x % 2 == 0)

• int(E)
applied to an exact value x yields {floor (x), ceil(x)}. Thus x is reproduced identically if it
is an integer and replaced by the two integers around it if not. The result for a set of values
is the union of the results for the individual values in the set. For intervals without modulo
information, the result is therefore

int (a ..b) = (floor (a) .. ceil(b) with x % 1 == 0)

Examples: int (2) = 2; int (4.2) = (4 ..5 with x % 1 == 0);
int (−4.2) = (−5 .. −4 with x % 1 == 0); int (1.4 ..1.7) = (1 ..2 with x % 1 == 0);
int (1.2 ..3.7) = (1 ..4 with x % 1 == 0);
int (−2.3 ..8.2) = (−3 ..9 with x % 1 == 0);
int (1.2 ..5.2 with x % 2 == 1.2) = (1 ..6 with x % 1 == 0);
int (sqr (sqrt (9))) = 9;
int (sqr (sqrt (2))) = (1 ..3 with x % 1 == 0)

The explanation for the last example is that sqrt (2) yields a tiny interval around
√

2, and so
sqr (sqrt (2)) yields a tiny interval around 2. Its left end point is slightly below 2 and thus
gives 1 when rounded down, and its right end point is slightly above 2 and thus gives 3 when
rounded up. This does not happen in the second but last example since sqrt (9) is exactly 3.
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5.28.10 Modulo Operations

In this section, we describe the with operation for specifying modulo information, the % operation
for computing it, and the related operations of extracting the fractional part and of casting to a
given bit width (unsigned and signed).

• (E with x % A == R)
restricts the result set of E so that (ideally) only those elements x with x%A = R are retained.
This works properly only if A is an exact power of two since only modulo information w.r.t.
powers of two can be handled by the present implementation.

The above is special syntax; the “identifier” x must be x; there is no other choice here.
Likewise, % is the only operator allowed after x, and == is the only relational operator
allowed here; you cannot use <= or != or the like. On the other hand, the parts A and
R are not restricted to constants, but may be expressions – arbitrary expressions in case of
R and atomic expressions in case of A (numeric constants, register names, or anything in
parentheses).

Examples:
If the modulo constraint involves a power of two and E yields a pure interval whose end
points satisfy the modulo constraint, then the with expression directly corresponds to the
resulting set of values:
(2 ..8 with x % 2 == 0) = (2 ..8 with x % 2 == 0)

If the end points of the interval do not satisfy the modulo constraint, the interval is shrunk
until the end points do satisfy it:
(1 ..9 with x % 2 == 0) = (2 ..8 with x % 2 == 0)

Sometimes this shrinking leads to an exact value:
(1 ..9 with x % 8 == 0) = 8

. . . or to no value at all. As usual in AIS, the empty set is replaced by the set of all values:
(1 ..7 with x % 8 == 0) = (−inf .. inf )

An unbounded interval cannot carry modulo information in the current implementation:
(0 .. inf with x % 8 == 0) = (0 .. inf )

A modulo constraint with a denominator d that is not a power of two is not ignored com-
pletely, but replaced by a weaker constraint whose denominator is the largest power of 2
contained in d:
(5 ..29 with x % 12 == 5) = (5 ..29 with x % 4 == 1)

If the result set of E already has a modulo constraint, this constraint is combined with the
new one if they are compatible:
((5 ..21 with x % 8 == 5) with x % 2 == 1) = (5 ..21 with x % 8 == 5)
((5 ..21 with x % 2 == 1) with x % 8 == 5) = (5 ..21 with x % 8 == 5)

If the constraints are incompatible, the result set would be the empty set, which is replaced
by the set of all values:
((5 ..21 with x % 2 == 1) with x % 8 == 2) = (−inf .. inf )
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• E1 % E2
computes E1 modulo E2, the remainder of division of E1 by E2. For two exact values v1 and
v2, v1 % v2 has the same sign as the divisor v2. For v2 > 0, 0≤ (v1 % v2)< v2 holds, and for
v2 < 0, v2 < (v1 % v2)≤ 0. For v2 = 0, v1 % v2 is still defined and equals 0.

Examples: 6 % 3 = 0; 7 % 3 = 1; 7.24 % 3 = 1.24; 8 % 3 = 2;
8.88 % 3 = 2.88; 9 % 3 = 0; −1 % 3 = 2; −2 % 3 = 1; −3 % 3 = 0;
6 %−3 = 0; 7 %−3 = −2; 8 %−3 = −1; 8.88 %−3 = −0.12;
9 %−3 = 0; −1 %−3 = −1; −2 %−3 = −2; −3 %−3 = 0;
3 % 0.7 = 0.2; 3 % 0 = 0; 0 % 0 = 0

The behavior on intervals without modulo information is quite complicated and depends on
whether the modulo wraps around.

Examples: (31 ..37)% 10 = (1 ..7); (33 ..40)% 10 = (0 ..10);
5 % (2 ..3) = (0 ..3); 35 % (10 ..11) = (2 ..5)

Modulo information in the left argument is of course taken into account.

Examples:
(1 ..11 with x % 2 == 1)% 2 = 1;
(1 ..11 with x % 2 == 1)% 1 = 0;
(1 ..11 with x % 2 == 1)% 4 = (1 ..3 with x % 2 == 1);
(1 ..11 with x % 2 == 1)% 3 = (0 ..2 with x % 1 == 0)

• frac(E)
computes the fractional part of the result of E, which is the same as E % 1; hence 0 ≤
frac(v) < 1 always holds. For an exact value v, frac(v) equals v− floor (v). For intervals
without modulo information, one has to distinguish whether the floors of the two end points
are equal or not. If not, the fractional part wraps around from 1 to 0 within the interval, and
so the result is (0..1).

frac(a ..b) =

{
(frac(a) .. frac(b)) if floor (a) = floor (b)
(0 ..1) if floor (a) < floor (b)

Examples: frac(2) = 0; frac(4.2) = 0.2; frac(−4.2) = 0.8;
frac(1 ..1.3) = (0 ..0.3); frac(1.4 ..1.7) = (0.4 ..0.7); frac(1.6 ..2) = (0 ..1);
frac(−4.7 .. −4.2) = (0.3 ..0.8); frac(−5 .. −4.2) = (0 ..0.8);
frac(−4.7 .. −4) = (0 ..1);
frac(1 ..10 with x % 0.5 == 0) = (0 ..0.5 with x % 0.5 == 0);
frac(1 ..10 with x % 1 == 0) = 0;
frac(0.85 ..1.6 with x % 0.25 == 0.1) = (0.1 ..0.85 with x % 0.25 == 0.1)

• uint(bits B,E)
casts its argument to an unsigned integer of bit width B. Here E is an arbitrary expression and
B is an atomic expression (a constant, a register, or an arbitrary expression in parentheses).
The cast is performed by transforming the result set of E into a set of integers by applying
the int operator from section 5.28.9 and then the modulo-2B operation. Since the result set
of uint consists of integers, it always carries modulo information, at least x % 1 == 0.

Examples:
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uint (bits 1, 10) = 0; uint (bits 2, 10) = 2;
uint (bits 3, 10) = 2; uint (bits 4, 10) = 10;
uint (bits 8, 3.6) = (3 ..4 with x % 1 == 0); (int produces the two adjacent integers)
uint (bits 8, (300 ..400)) = (44 ..144 with x % 1 == 0);
uint (bits 8, (500 ..600)) = (0 ..255 with x % 1 == 0);
uint (bits 8, (500 ..600 with x % 4 == 0)) = (0 ..252 with x % 4 == 0)

• sint(bits B,E)
casts its argument to a signed integer of bit width B. Here E is an arbitrary expression and B
is an atomic expression (a constant, a register, or an arbitrary expression in parentheses). The
cast is performed by transforming the result set of E into a set of integers by applying the
int operator from section 5.28.9, then the modulo-2B operation, and finally sign adjustment
if the highest of the B bits is set. Since the result set of sint consists of integers, it always
carries modulo information, at least x % 1 == 0.

Examples:
sint (bits 1, 10) = 0; sint (bits 2, 10) = −2;
sint (bits 3, 10) = 2; sint (bits 4, 10) = −6; sint (bits 5, 10) = 10;
sint (bits 8, 3.6) = (3 ..4 with x % 1 == 0); (int produces the two adjacent integers)
sint (bits 8, (300 ..350)) = (44 ..94 with x % 1 == 0);
sint (bits 8, (300 ..400)) = (−128 ..127 with x % 1 == 0);
sint (bits 8, (500 ..600)) = (−12 ..88 with x % 1 == 0);
sint (bits 8, (500 ..600 with x % 4 == 0)) = (−12 ..88 with x % 4 == 0)

5.28.11 Relational Operators

All relational operators except for <=> yield only three possible results:

• The exact value 1, to be interpreted as “true”.

• The exact value 0, to be interpreted as “false”.

• The result set (0 ..1 with x % 1 == 0) = {0,1} containing both 0 and 1, to be interpreted as
“ambiguous” (not “true” and not “false”).

The following operators exist:

• E1 < E2
operates on exact values as expected. When applied to two sets of values, the result is only
1 if the < relation holds for all pairs of elements drawn from the two sets, and 0 only if the
negation of < holds for all pairs of elements. More formally, this means

S1 < S2 =


1 if v1 < v2 holds for all v1 in S1 and v2 in S2

0 if v1 6< v2 holds for all v1 in S1 and v2 in S2

{0,1} otherwise
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The two conditions given above illustrate the idea behind the definition. The actual impli-
cation is based on two simpler, but logically equivalent conditions involving the lowest and
highest elements of the two sets:

S1 < S2 =


1 if high(S1)< low(S2)

0 if low(S1)≥ high(S2)

{0,1} otherwise

Since only the lowest and highest elements are considered, modulo information in the argu-
ments does not matter.

Examples: (1 < 4) = 1; (1 < 1) = 0; ((1 ..4)< (6 ..9)) = 1;
((1 ..4)< (4 ..9)) = {0,1}; ((1 ..4)< (0 ..9)) = {0,1};
((1 ..4)< (0 ..2)) = {0,1}; ((1 ..4)< (0 ..1)) = 0

• E1 <= E2
is similar to <. We immediately present the simple conditions:

S1 ≤ S2 =


1 if high(S1)≤ low(S2)

0 if low(S1)> high(S2)

{0,1} otherwise

Examples: (1≤ 4) = 1; (1≤ 1) = 1; (1≤ 0) = 0;
((1 ..4)≤ (6 ..9)) = 1; ((1 ..4)≤ (4 ..9)) = 1;
((1 ..4)≤ (0 ..9)) = {0,1}; ((1 ..4)≤ (0 ..1)) = {0,1};
((1 ..4)≤ (0 ..0.5)) = 0

• E1 > E2 is equivalent to E2 < E1.

• E1 >= E2 is equivalent to E2 <= E1.

• E1 == E2
works in the same spirit as the operators listed above. When applied to two sets, the result is
only 1 if each member of the first set equals each member of the second, and 0 only if each
member of the first set is different from each member of the second:

S1 == S2 =


1 if v1 = v2 for all v1 in S1 and v2 in S2

0 if v1 6= v2 for all v1 in S1 and v2 in S2

{0,1} otherwise

The two conditions can be simplified as follows:

S1 == S2 =


1 if S1 = S2 = {v} for some v,

i.e. both arguments are exact values and identical
0 if S1 and S2 are disjoint, i.e. have no value in common
{0,1} otherwise

Examples: (1 == 4) = 0; (1 == 1) = 1; ((1 ..2) == (1 ..2)) = {0,1};
((1 ..2) == (2 ..4)) = {0,1}; ((1 ..2) == (3 ..4)) = 0;
((0 ..8 with x % 2 == 0) == (1 ..9 with x % 2 == 1)) = 0

Thus, == is not equality on result sets. It rather considers the result sets as sets of possible
values, and only returns “true” if these values are equal no matter which possibility is chosen.
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For instance, R == 0 where R is a register only returns “true” if value analysis can prove
that the value of R is 0, i.e. if the set of possible values of R is exactly {0}, not some set
containing 0.

Equality of the result sets of E1 and E2 can be checked by the operator exactly == de-
scribed below.

• E1 != E2
yields 1 iff E1 == E2 yields 0, and vice versa. Thus, the outcome is 1 iff the result sets of
E1 and E2 are disjoint, and 0 iff the result sets are identical exact numbers.

• E1 <=> E2
differs from the operators listed above in that it can also return −1 and sets involving −1.
For two exact values v1 and v2, the result is

(v1 <=> v2) =


−1 if v1 < v2

0 if v1 = v2

1 if v1 > v2

For sets, we have

(S1 <=> S2) = ((low(S1)<=> high(S2)) .. (high(S1)<=> low(S2)) with x % 1 == 0)

Since only the lowest and highest elements are considered, modulo information in the argu-
ments does not matter.

Examples: (1 <=> 2) = −1; (2 <=> 2) = 0; (4 <=> 2) = 1;
((0 ..2)<=> (3 ..5)) = −1;
((0 ..2)<=> (2 ..5)) = (−1 ..0 with x % 1 == 0) = {−1,0};
((1 ..2)<=> (1 ..2)) = (−1 ..1 with x % 1 == 0) = {−1,0,1};
((2 ..3)<=> (1 ..2)) = (0 ..1 with x % 1 == 0) = {0,1};
((3 ..5)<=> (1 ..2)) = 1

• E1 exactly== E2
differs from the operators presented above in that it provides a real set operation. The result
of E1 exactly== E2 is 1 if E1 and E2 have exactly the same result set (same bounds and same
modulo information), and 0 otherwise. Thus the outcome of E1 exactly== E2 is always an
exact value.

Syntactic issue: The operator exactly== binds tighter than ==, in fact tighter than
the arithmetic operators. Thus its operands E1 and E2 should be put in parentheses
unless they are atomic (constants or register names).

Examples: (1 exactly== 4) = 0; (1 exactly== 1) = 1;
((1 ..2) exactly== (1 ..2)) = 1; ((1 ..2) exactly== (0 ..2)) = 0;
((1 ..2) exactly== (1 ..2 with x % 1 == 0)) = 0

• E1 in E2
tests whether all values produced by E1 are contained in the result set of E2. Hence, if E1
yields an exact value v1 and E2 a set S2, then E1 in E2 is 1 if v1 is contained in S2, and 0 if
not. If E2 is also exact, this reduces to an equality check, but in general, it is different.
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If E1 yields a set S1 and E2 a set S2, then E1 in E2 yields 1 if S1 is a subset of S2, 0 if S1 and
S2 are disjoint, i.e. have no value in common, and {0,1} otherwise.

Examples: (1 in 2) = 0; (1 in 1) = 1; (1 in 0) = 0;
(1 in (3 ..7)) = 0; (3 in (3 ..7)) = 1; (4 in (3 ..7)) = 1; (5 in (3 ..7)) = 1;
(3 in (3 ..7 with x % 2 == 1)) = 1;
(4 in (3 ..7 with x % 2 == 1)) = 0;
(5 in (3 ..7 with x % 2 == 1)) = 1;
((0 ..1) in (3 ..7)) = 0; ((2 ..6) in (3 ..7)) = {0,1};
((4 ..6) in (3 ..7)) = 1; ((3 ..7) in (3 ..7)) = 1;
((3 ..7 with x % 2 == 1) in (3 ..7)) = 1;
((3 ..7 with x % 2 == 1) in (3 ..7 with x % 2 == 1)) = 1;
((3 ..7) in (3 ..7 with x % 2 == 1)) = {0,1};
((4 ..6 with x % 2 == 0) in (3 ..7 with x % 2 == 1)) = 0

A possible application of the in operator is to check whether all possible values of a register
R that is used for addressing are addresses within a certain section, say .text:

R in address(section ".text")

5.28.12 Logical Operators

a3 supports some logical operators, mainly for combining the results of relational operators (sec-
tion 5.28.11). Except for <=>, these operators only yield the result sets {1} = 1, {0} = 0, and
{0,1}.1 The logical operators can be applied to other arguments as well, but perform a “logical
interpretation” of their arguments first, which again yields only the three afore-mentioned sets.

Logical interpretation transforms any result set S to one of the three “logical” result sets {1},
{0}, and {0,1} according to the following rules:

• The result is {1} (“true”) if the set S lies entirely to the left or entirely to the right of 0.

• The result is {0} (“false”) if the set S contains 0 and nothing else, i.e. S = {0}.

• The result is {0,1} (“ambiguous”) in all other cases.

For instance (0.5 ..3) and (−2 .. −1) become {1} under the logical interpretation, while (−1 ..0)
and (−1 ..1) become {0,1}.

• !E
applies the logical interpretation to the result of E and then negates the outcome, i.e. replaces
1 by 0 and vice versa.

E 0 {0,1} 1

!E 1 {0,1} 0

1Recall that we identify singleton sets with their element.
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• E1 && E2
applies the logical interpretation to the results of E1 and E2 and then computes the logical
“and” of the outcomes.

&& 0 {0,1} 1

0 0 0 0

{0,1} 0 {0,1} {0,1}

1 0 {0,1} 1

• E1 || E2
applies the logical interpretation to the results of E1 and E2 and then computes the logical
“or” of the outcomes.

|| 0 {0,1} 1

0 0 {0,1} 1

{0,1} {0,1} {0,1} 1

1 1 1 1

• E1 ˆˆ E2
applies the logical interpretation to the results of E1 and E2 and then computes the “xor” of
the outcomes.

ˆ ˆ 0 {0,1} 1

0 0 {0,1} 1

{0,1} {0,1} {0,1} {0,1}

1 1 {0,1} 0

• E1 ? E2 :E3 or if(E1,E2,E3)
Let V1, V2, V3 be the results of E1, E2, E3. First the logical interpretation is applied to V1; let
the outcome be V ′1. Then the overall result is

(V ′1 ? V2 : V3) =


V2 if V ′1 = 1
V3 if V ′1 = 0
join(V2,V3) if V ′1 = {0,1}

The only remarkable case is the third, saying that if the condition is ambiguous, the least
representable set containing both the then-part and the else-part is taken (see section 5.28.6
for join).

Examples: 1? 2 : 3 = 2; 0? 2 : 3 = 3;
{0,1}? 2 : 3 = (2 ..3 with x % 1 == 0) = {2,3};
{0,1}? 3 : 9 = (3 ..9 with x % 2 == 1) = {3,5,7,9}

• always(E)
applies the logical interpretation to the result of E and then replaces an “ambiguous” result
{0,1} by 0 (“false”). This operator is especially useful in AIS assertions (see section 5.11).
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E 0 {0,1} 1

always(E) 0 0 1

Examples:
(3 == 3) = 1; always (3 == 3) = 1;
(3 == 4) = 0; always (3 == 4) = 0;
((3 ..4) == 4) = {0,1}; always ((3 ..4) == 4) = 0;

5.28.13 Switch Expressions

The general syntax of switch expressions is either of

switch (E) { switch (E) {
L1 => R1, L1 => R1,

...
...

Ln => Rn, Ln => Rn

default D }
}

where E, L1, . . . , Ln, R1, . . . , Rn, and D are expressions. The basic idea is as usual: The head
expression E is compared with the left-hand sides L1, . . . , Ln. If Li is the first match, then Ri is the
result; and if there is no match, D is taken if present, and if there is no match and no default, the
result is undefined.

As usual, the details are more complex because of the set semantics of expressions. The com-
parison between E and Li is not done by the == operator, but by the in operator described in
section 5.28.11 (the examples below provide some motivation for this choice). The evaluation can
be described by the following algorithm, which uses an auxiliary counter i and a list R of sets (the
list of sets contributing to the final result).

1. Let i = 1 and R be the empty list.

2. Let b be the result of evaluating E in Li, which is 0 (false), 1 (true), or {0,1} (ambiguous).

3. If b = 1, i.e. the set resulting from E is included in the one resulting from Li, add the result
set of Ri to the list R and go to 7.

4. If b = 0, i.e. the result sets of E and Li are disjoint, replace i by i+1 and go to 6.

5. If b = {0,1}, add the result set of Ri to the list R , replace i by i+1 and go to 6.

6. If i≤ n, go back to 2. If i = n+1 and there is a default D, add the result set of D to the list
R .

7. If R is the empty list, which happens if all comparisons resulted in 0 (disjoint sets) and there
is no default, the overall result is undefined, which is represented by (−inf .. inf ). Otherwise
the final result is the join of the result sets contained in the list R , i.e. the least representable
set including all those intervals (see section 5.28.6 for join).
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Example 1:
switch (E) { 1 => 100, 2 => 200, 3 => 300 }
If the left-hand sides Li are numerical constants like here, it does not matter whether == or in is
used for comparison.
If E is 2, the result is 200.
If E is 5, the result is undefined, represented as (−inf .. inf ).
If E is (1 ..2), the result is join(100,200) = (100 ..200 with x % 4 == 0).
If E is (2 ..5), the result is join(200,300) = (200 ..300 with x % 4 == 0).
If E is (0 ..8 with x % 2 == 0) = {0,2,4,6,8}, the result is 200.
If E is (0 ..8 with x % 4 == 0) = {0,4,8}, the result is undefined ((−inf .. inf )).

Example 2:
switch (E) { 1 => 100, 2 => 200, 3 => 300, default 400 }
If E is 2, the result is 200.
If E is 5, the result is 400 (the default).
If E is (1 ..2), the result is join(100,200,400) = (100 ..400 with x % 4 == 0) since there is no
perfect match (b = 1), but only false or ambiguous results of comparison so that the iteration
continuous till the end of the switch and thus reaches the default.
If E is (2 ..6), the result is join(200,300,400) = (200 ..400 with x % 4 == 0),
but (2 ..6 with x % 2 == 0) = {2,4,6}, leads to join(200,400) = (200 ..400 with x % 8 == 0).

Example 3:
switch (E) { 1 => 100, 2 => 200, 3 => 300, default (-inf..inf) }
If E is 2, the result is 200.
If E is 5 or (1 ..2) or (2 ..5), the result is undefined, i.e. (−inf .. inf ), since the default is reached.
This shows that an undefined default is different from a missing default.

Example 4:
switch (E) { 0 => 0, 1..7 => 200, 8 => 100, default 300 }
If E is 1, the result is 200, and likewise if E is 2, or (3 ..5). The reason is that the comparisons
1 in (1 ..7) and 2 in (1 ..7) and (3 ..5) in (1 ..7) yield 1 and so the evaluation stops without reaching
the default. If == had been used in place of in, these comparisons would have given the ambigu-
ous result {0,1} and thus the default would have been reached giving result join(200,300).
If however E is (7 ..8), then the in-comparisons with (1 ..7) and 8 yield ambiguous results
so that the default is reached and the final result is the join of 200, 100, and 300, which is
(100 ..300 with x % 4 == 0).

5.28.14 The Result of Value Analysis

The special variable value can only occur in parametric loop bounds (section 5.20.1). When
evaluated, it yields the result of a3’s built-in loop bound analysis. This is an unbounded interval if
the loop bound analysis did not find anything useful. In any case, the value result can be modified
by other expressions, in particular the restrict and try operators (section 5.28.6). Examples
for the usage of these operators are presented in section 5.20.2.
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5.28.15 The before Operator

An expression is always evaluated with reference to a certain program point, and it is evaluated
once for every context of that point. For instance, the expression in a parametric loop bound
(section 5.20.1) is evaluated at the program point immediately before the entry of the loop in all
contexts of the routine from which the loop has been extracted. The point of reference matters if
the expressions contains registers; for each register, its value at the point of reference is inserted.

Normally, all subexpressions are evaluated at the same program point as the overall expression.
The point of reference for a subexpression E can be modified by writing

E before ProgramPoint

Here, before indicates that the new point of reference for E is immediately before the given
ProgramPoint. More exactly, E is evaluated in the situation

• after executing any is entered with annotations (section 5.10) at the ProgramPoint,

• but before executing the machine instruction at the ProgramPoint.

The context in which the subexpression is evaluated is the same as the context of the overall expres-
sion if the new point of reference is in the same routine as the old. Otherwise, the subexpression
is evaluated in all contexts that may contribute to the context of the overall expression, and all
resulting sets of values are joined.

Usage of before is not very transparent, may be expensive (the subexpression may be evaluated
in many contexts), and suffers from various restrictions: the new point of reference must occur
somewhere before the old, and:

The before operator can only occur in parametric loop bounds (section 5.20.1). It cannot
be used in specifications of register values (5.10), declarations of conditional infeasibility
(5.17.2), and declarations of condition values (5.18.2).

An alternative method to refer to the values of registers at a certain point is to save the register
value into a user register at that point and then to use the user register later. This method appears
to be more transparent and works for all kinds of expressions, not only parametric loop bounds.

Example:

A loop implementing binary search is typically bounded by the binary logarithm of the size of the
array in which the search is performed. Here is an example with a source code annotation, which
relies on the fact that parameter size is passed in register R2:

function search (array a, int size, int x) {
...
while (...) {

/* ai: loop here max ceil(log(R2, 2)); */
/* Binary search over a */
...

}
}
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Now suppose the value of R2 is modified between the entry of search and the beginning of the
loop. To refer to the original value in the loop bound, the before operator can be used:

function search (array a, int size, int x) {
...
while (...) {

/* ai: loop here max ceil(log(R2 before "search", 2)); */
...

}
}

Alternatively, the original value of R2 may be saved in a user register:

function search (array a, int size, int x) {
/* ai: instruction "search" is entered with @size = R2; */

...
while (...) {

/* ai: loop here max ceil(log(@size, 2)); */
...

}
}

5.28.16 Types and Units

There are three types of expressions: those that produce pure numbers (type number), those that
produce an amount of bytes (type bytes), and those that produce an amount of processor cycles
(type cycles). The expression evaluator performs type checks, e.g., it is impossible to sum up an
amount of bytes and a pure number.

Bytes and cycles expressions result from the usage of space and time units, e.g., 10 bytes or 50
cycles. The available space units apart from bytes are listed in section 5.30.4. Time units are
cycles, and the “real-time” units sec, msec, usec, and nsec. In contrast to cycles, the
“real-time” units can only be used if the clock rate of the processor has been specified as described
in section 5.2.

Syntactically, units are postfix operators with very low precedence (see also section 5.28.1). Thus,
2500 + @X nsec is a legal expression parsed as (2500 + @X) nsec.

However, 100 cycles + 50 usec is parsed as (100 cycles + 50) usec
which gives a type error:
Argument 2 of function ’add’:
Expected same type as first argument,
but found ’cycles’ vs. ’number’

To solve this problem, use parentheses like this: (100 cycles) + (50 nsec).

The only binary operator that binds weaker than units is the range operator .. (see section 5.28.6).
Thus, (100 cycles .. 200 cycles) is correct, but (100 .. 200 cycles) is not
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since it is parsed as (100 .. (200 cycles)). The separators => and , used in switch
expressions (section 5.28.13) also bind weaker than units so that you can write
switch (@X) {1 => 10 cycles, 2 => 20 usec}.

5.28.17 The Interpretation of the Values of Overall Expressions

As explained above, expressions in general yield a set of fractions that are possible values. Yet
the various places where expressions may occur cannot cope with such general results and need to
interpret them in various ways.

• Assertions, possibly about values of registers or memory cells (section 5.11), e.g.,
assert instruction P is entered with Expr1, ..., Exprn;

declarations of conditional infeasibility (section 5.17.2), e.g.,
snippet S is not executed if Expr;

and declarations of condition values (section 5.18.2), e.g.,
condition P is true if Expr;

condition P is exactly Expr;

require a logical value. Therefore, the result of the Expr in these syntactic environment is
transformed by the logical interpretation introduced in section 5.28.12. The result of logical
interpretation is 1 meaning “true”, 0 meaning “false”, or {0,1} meaning “ambiguous”.

• Specifications of register values and definitions of user registers (section 5.10), e.g.,
instruction P is entered with r1 = Expr1, @X = Expr2;

and loop bound specifications (section 5.20.1), e.g.,
loop L min Expr1 max Expr2;

require sets of integers. These are obtained by applying an implicit int operator (sec-
tion 5.28.9) to the results of the expressions (“integer interpretation”). The int operator
rounds down the lowest value in the set to the nearest integer below it and rounds up the
highest value to the nearest integer above it. It preserves modulo information as much as
possible, and in any case adds the modulo information x % 1 == 0 for sets of integers.

• After the integer interpretation, negative numbers are removed from the results of loop bound
expressions, e.g., (−2 ..5 with x %1 == 0) is replaced by (0 ..5 with x %1 == 0). If nothing
remains after removing the negative numbers, the loop bound is ignored.

• Specifications of execution times of code snippets excluded from analysis (section 5.15.3),
e.g.,

snippet P is not analyzed and takes Expr;

and of additional execution times (section 5.13), e.g.,
instruction P additionally takes Expr;

require an integer amount of processor cycles. The expression Expr therefore has to have
type cycles, which can be achieved by using time units (see section 5.28.16). The given time
units are converted into cycles and then the integer interpretation is applied. Only the upper
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end is taken from the resulting integer set. If it is unbounded or negative, a warning is issued
and a value of 0 is assumed instead.

Because of the integer interpretation, extracting a subexpression and assigning it to a user variable
may change the value of an expression. Consider the following (artificial) example:

loop ... exactly 10 * (1/2);

gives a loop bound of exactly 5. However,

instruction ... is entered with @half = 1/2;
loop ... exactly 10 * @half;

gives minimum loop count 0 and maximum loop count 10. The reason is that the value of @half is
not really 1/2, but int (1/2) = (0 ..1 with x%1== 0) because of the implicit integer interpretation,
and 10∗ (0 ..1 with x % 1 == 0) = (0 ..10 with x % 2 == 0).

Extracting a subsexpression may also change the value of an expression because of the added
integer modulo constraint. For instance, the condition 4.2 in (3..6) yields 1, but

instruction ... is entered with @Y = (3..6);
... 4.2 in @Y ...

will give 0 since the value of @Y is not (3..6), but (3 ..6 with x % 1 == 0).

5.29 Program Points and Targets

Most AIS specifications refer to program points and/or targets. In the simplest cases, these are
routine names or addresses, but much more complex descriptions are possible (see for instance the
annotation of MC in section 5.8.2). Here, a detailed description of the syntax of program points and
targets follows.

A ProgramPoint is the same as a Target. A Target may be any of the following:

• Address
A simple address such as 0x91a4. This is a byte address as all TriCore addresses.

• ROUTINE "Name"
A routine given by its name, or more exactly the entry point of a routine. Routine names
must be quoted, e.g., "main".

• LABEL "Name"
A reference to a label as defined by a LABEL specification (see section 5.25). Program labels
cannot be referenced like this.

• "Name"
This may be a label or a routine name. a3 first tries to resolve it as a label, then as a routine.
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• file ’Name’ line Number
refers to line Number in source file Name. This feature can only be used if source file read-
ing is included in your license. It is inherently imprecise and relies on the line information
in the executable. See section 5.31.1 for the details of translating source lines into program
points.

The single quotes around Name let the path name separator \ of MS Windows stand for
itself. With double quotes, \ would have to be written as \\ like in C-strings (see also
section 5.30.2).

• here
can only be used in source code annotations and then refers to the code the annotation is
attached to (see section 5.31). This feature is inherently imprecise and relies on the line
information in the executable.

• pc
can only be used when specifying the targets of a computed call or branch and then denotes
the address of the computed call or branch instruction (see section 5.8.2).

• Target + n Unit or Target - n Unit
where Unit is a unit of addressing, such as byte/bytes, or word/words (see sec-
tion 5.30.4 for a complete list of units). One word corresponds to 4 bytes.

To evaluate Target +/- n Unit, exec2crl first finds the address Target refers to and
then adds q to this address or subtracts q from it, where q is the amount of bytes correspond-
ing to n Unit (1 word = 4 bytes).

Example: routine "R" + 0x1a bytes
refers to byte 0x1a relative to the beginning of routine R.

• Target + n Things or Target - n Things
Here, Things refers to a class of instructions described by a predicate. The following
atomic predicates exist:

INSTRUCTIONS (arbitrary instructions),
CALLS (call instructions),
BRANCHES (branch instructions),
RETURNS (return instructions),
BORINGS (instructions that do not alter the control flow),
CERTAIN (instructions classified exactly by exec2crl),
UNCERTAIN (instructions that cannot be classified exactly by exec2crl),
CONDITIONAL (conditional instructions),
UNCONDITIONAL (unconditional instructions),
COMPUTED (control-relevant instructions with computed targets),
UNCOMPUTED (control-relevant instructions with static fixed targets),
PREDICTABLE (control-relevant instructions with predictable targets),
UNPREDICTABLE (control-relevant instructions with unpredictable targets),
READS (instructions reading from memory),
WRITES (instructions writing to memory),
LOOPS (loop entries as recognized by loop transformation).

169



Plural endings may be omitted, e.g., BRANCH is equivalent to BRANCHES.

Several of these atomic predicates refer to the classification of instructions as presented
in section 5.8.1: so-called boring instructions cannot alter the control flow, while control-
relevant instructions may perform control-flow alterations. The latter are classified further
into branches, calls, and returns. These classes are not disjoint; they provide “may” in-
formation, i.e. there are instructions classified as branch-or-call without exec2crl being
able to decide between these two possibilities. Such a branch-or-call satisfies the predi-
cates UNCERTAIN, BRANCH, and CALL, while a definite branch satisfies CERTAIN and
BRANCH.

Predicates can be combined by logical operators not, && (and), || (or), and ˆˆ (xor). For
instance, CONDITIONAL && BRANCH refers to a conditional branch, and COMPUTED &&
CALL to a computed call (in contrast to a computed branch). As usual, && binds stronger
than || and ˆˆ.

BRANCH && CALL refers to instructions classified as potential branch and also as po-
tential call, i.e. to branch-or-call instructions and to branch-or-call-or-return instruc-
tions. BRANCH || CALL refers to instructions classified as potential branch or as po-
tential call, i.e. to certain branches, certain calls, but also to branch-or-call instructions,
branch-or-return instructions etc.

To evaluate a target of the form Target +/- n Things, exec2crl first finds the
address Target refers to and then moves forward or backward till the nth instruction sat-
isfying the given predicate. In doing so, exec2crl does not follow the control flow, but
moves from instruction to instruction in textual order.

Example: routine "R" + 3 computed && call
refers to the third computed call in routine R. If there are less than three computed calls in
routine R, an error results. exec2crl might have resolved the first computed call in routine
R. In this case, routine "R" + 1 unpredictable && call is equivalent to routine
"R" + 2 computed && call.

If some future version of a3 with improved capabilities can resolve the second com-
puted call, too, then the annotation routine "R" + 1 unpredictable && call
suddenly refers to the third computed call instead of the second. In contrast, annota-
tions involving computed are stable w.r.t. such changes of the prediction power.

When resolving Target +/- n Things the instruction at the position referenced by
Target is the first that is examined. Thus, routine "prime" + 1 computed always
refers to the first computed call or branch in prime, which may be the very first instruction
of prime. Similarly, routine "prime" + 1 instruction refers to the first instruction
of prime.

Consequently, 0x1000 + 1 instruction refers to the first instruction at or af-
ter address 0x1000, not to the instruction after the instruction at address 0x1000.
Therefore 0x1000 + 1 instruction is equivalent to 0x1000 if this address is in
a code segment.
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• Target align + n Unit or Target align - n Unit
where Unit is a unit of addressing, such as byte/bytes, or word/words (see sec-
tion 5.30.4).

Target declarations with alignment modifiers are evaluated as follows: First, Target is
evaluated; then, the least possible number of bytes is added to or subtracted from this location
such that the new location is aligned w.r.t. n Unit (if Target is already aligned, the
location is not modified at all).

Example: 0x8143 align - 4 bytes
refers to the first address before 0x8143 that is divisible by 4 bytes; this is 0x8140.

The description above is recursive. Wherever Target appears, it may be replaced with any of the
forms above. This way, more complex target descriptions can be built. Here are some examples:

routine "bla" + 2 branches + 5 bytes

"main" + 2 calls + 3 instructions

Such descriptions refer to the original extension of the routines before loop transformation
(see section 4.1). You should never refer to loop routines such as prime.L1 in AIS anno-
tations.

Implementation restriction: The target description Target +/- n LOOPS can only
be used in the positive form (with +) and cannot be combined with any of the other descrip-
tions. The Target must be a routine name (with or without the qualifier ROUTINE), a label
name (with or without the qualifier LABEL), or an address.

In resolving target descriptions of the form Target +/- n Things, exec2crl does
not move over gaps, i.e. non-reachable instruction addresses. (Gaps are no problem for +/-
n bytes.)

Data areas such as switch tables do not count as gaps if exec2crl has recognized them or if they
have been declared by a data area specification (see section 5.12.4). In fact, an address may be in
a known code area, a known data area, a gap, i.e. an area not read by exec2crl, or outside the
executable.

Example to the Gap Problem: Consider the following code fragment that only lists the control-
relevant instructions (addresses on the left, instruction width 4 bytes, byte addresses):

0x8000 start of routine R
0x8100 conditional computed branch with targets 0x8110 and 0x8120
0x810C return
0x811C return
0x8200 conditional computed branch with targets 0x8210 and 0x8220
0x8214 return
0x8300 conditional computed branch with targets 0x8310 and 0x8320
0x8400 return
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This code contains a gap: code addresses 0x8218–0x821F are unreachable. Assume there is an
AIS specification

instruction "R" + 1 computed branches to 0x8110, 0x8120;
instruction "R" + 2 computed branches to 0x8210, 0x8220;
instruction "R" + 3 computed branches to 0x8310, 0x8320;

Then exec2crl resolves "R" + 1 computed to 0x8100 and "R" + 2 computed to 0x8200,
but does not resolve "R" + 3 computed because of the gap. The rationale is that exec2crl does
not decode the instructions in the gap, which might include further computed branch instructions.
Note that it would resolve "R" + 0x300 bytes; targets involving bytes are not affected by
gaps. The gap problem can be overcome by declaring the contents of the gap as data:

area 0x8218 .. 0x821F contains data;

Such a specification is recommended even if the gap does not really contain data, but is filled with
NOP instructions or other nonsense code. After this specification, "R" + 3 computed is resolved
to 0x8300.

Note that without a prior specification of the targets of the first computed branch, exec2crl
does not resolve "R" + 2 computed because – not knowing the targets of the branch at address
0x8100 – it does not decode at these targets and thus creates a gap starting at 0x8110. Therefore,
target specifications for computed branches should always be provided in-order, starting from the
first branch.

Finally, the gap problem is the reason why targets of computed calls and branches cannot be spec-
ified in the form +/- n Things. This is because these targets usually lie in a gap before the
computed call or branch has been resolved. Filling this gap requires evaluating the targets, which
is impossible as long as the gap exists. The solution is to use targets of the form +/- n bytes
that work even in presence of gaps.

5.30 Atomic Parts of AIS Annotations

5.30.1 Keywords

The language of AIS annotations contains a large number of keywords such as END or
INSTRUCTION. In writing a keyword, you may use lower and upper case letters in arbitrary
combination. Thus, a keyword such as END may also be written as End or end, or even as eNd.

5.30.2 Names

In AIS files, various entities such as routines, labels, or files can be referred to by their name.
Such names must be enclosed in single or double quotes to distinguish them from keywords and
to separate them from their environment. Examples for names are "prime", "$activate",
"END", "SynCPU(0x140a)", and ’program file’; the last example shows that names
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may contain spaces. In contrast to keywords, case matters, i.e. "prime" and "Prime" are two
different names.

Names in double quotes are treated like strings in the C programming language: The \ character is
special and used to insert non-printable characters or double quotes into the name. Consequently,
you must write \\ to include the \ character in a name with double quotes. On the other hand, \
has no special meaning in names delimited by single quotes.

Example: "a\\b" is the same name as ’a\b’, but different from "a\b", which consists of the
letter a and a backspace character.

The above conventions apply to MS Windows path names. For instance, the name
"E:\a3\tricore\prime.elf" is illegal. The intended meaning is obtained by writ-
ing ’E:\a3\tricore\prime.elf’ or "E:\\a3\\tricore\\prime.elf".

Routine names must be written as in the executable. For instance, the C routine main must
be written as "_main" if the compiler adds underscores to routine names, or as "main" if
it does not add underscores.

5.30.3 Integers

AIS files may contain integers in many different syntactic positions, serving various purposes: as
addresses, as iteration counts of loops, as worst-case times of not-analyzed routines, as counters for
computed calls and branches, etc. All these integers are unsigned. They can be written in decimal,
hexadecimal, octal, or binary notation.

• Hexadecimal numbers must be introduced by 0x, e.g., 0x2a.

• Binary numbers must be introduced by 0b, e.g., 0b101010.

• Octal numbers must start with a leading 0, e.g., 052.

• Numbers starting with 1–9 are decimal numbers, e.g., 42.

To improve readability, integers in any notation may be structured by means of underscores ‘_’ that
do not modify the numerical value. For instance, 3_000_000 is the same number as 3000000.

5.30.4 Units of Addressing

Units of addressing such as byte/bytes are used in program point descriptions such as "main"
+ 0x10 bytes (see section 5.29). They also appear as size qualifiers in specifications of values
stored in memory (see section 5.12.5) and as units in expressions (see sections 5.28.16 and in
particular 5.28.5).

The basic unit of addressing is byte. The following additional units exist:
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halfword or hword 2 bytes
word 4 bytes
doubleword or dword 8 bytes
singlefloat or sfloat 4 bytes
doublefloat or dfloat 8 bytes

5.31 Source Code Annotations

If your license includes this feature, AIS specifications can also be included in C source code files
as special comments:

/* ai: specification1 ; ... specificationn ; */

They are marked by the key string ai:. Use only one ai: per comment!

The exact behavior of a3 w.r.t. source code annotations is governed by the flag Extract
annotations from source files in the General tab of the Analyses view (see sec-
tion 3.4.3.3). If the flag is switched on, exec2crl looks for source code annotations in all source
files whose names are listed in the debug information of the executable. Section 4.5 describes
how these files are found in the file system. Apart from the files named in the debug information,
exec2crl reads all .c and .h files that are included from these files by the C include mecha-
nism, or are included from the AIS file by the AIS include mechanism (section 5.27), or from any
included source file by the AIS include mechanism used in a special ai comment.

If the flag Extract annotations from source files is switched off, exec2crl does
not look for annotations in the source files that are only mentioned in the executable. It does
read source files mentioned in the AIS file via the AIS include mechanism or the file . . . line
. . . program point description. It may also read other source files for the purpose of source code
visualization, but not for extracting annotations.

Whenever source code annotations are extracted from a source file, the file is scanned for ai
comments independent from any if, ifdef, or ifndef directives.

All specifications possible in AIS files may appear as source code annotations. Such annotations
may be written at arbitrary places. There is an additional feature that can only be used in source
code annotations: They admit a special program point or target here, which roughly denotes
the place where the annotation occurs. More exactly, here means a source code line in the first
place, which is then translated into a code address (see section 5.31.1 below). The same translation
applies to program points of the form file ’Name’ line Number.

5.31.1 Translation of Source Code Lines into Code Addresses

Program points may refer to source code lines, either explicitly via file ’Name’ line Number
or implicitly via here, which refers to the line where it occurs. exec2crl translates source code
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lines into code addresses using the line information in the executable. This only works if the AIS
file specifies the compiler as described in section 5.3. Even in this case, the line information is not
always precise. The rule is that line n points to the first instruction associated with a line number
≥ n. A line without any source code is thus equivalent to the first line behind it containing source
code. A line containing source code in general corresponds to many assembly instructions. A
reference to such a line points to the first such instruction.

If a3 cannot resolve a source-code reference, it complains with a message such as

Unable to resolve source position ...:
No address in debug info corresponds.

A reason for such a problem may be inconsistencies between relative and absolute file names.
Therefore, setting the flag Strip compilation path mentioned in the executable
in the General tab of the Analyses view (see section 3.4.3.3) sometimes solves the problem.
Path replacements (see sections 3.4.5 and 4.5) may also be helpful.

Examples for source-code annotations:

/* ai: recursion here max 6; */
uint fac (uint n) {

...
}

is equivalent to

uint fac (uint n) { /* ai: recursion here max 6; */
...

}

and both are equivalent to

recursion "fac" max 6;

written somewhere in the AIS file.

Similarly, the annotation

/* ai: loop here max 20; */
for (i=3; i*i <= n; i += 2) {
...

}

is equivalent to

for (i=3; i*i <= n; i += 2) { /* ai: loop here max 20; */
...

}
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yet these two annotations do not work since the code corresponding to for (...) starts
with the initialization i=3, which is not in the loop. (It does not matter that the second
annotation lies inside the braces of the loop body.)

Writing here + 1 loop does not work either because of the implementation restriction
mentioned in section 5.29.

Yet the following works:

for (i=3; i*i <= n; i += 2) {
if (divides (i, n)) /* ai: loop here max 20; */

return 0;
}

Note that it is not required that here exactly denotes the loop start address. It suffices that it
resolves to an address anywhere in the loop.

There is another potential problem with source annotations: the line information in the executable
is created by the compiler. It becomes invalid when lines are added or deleted in the source file.

If you add lines while annotating, you need to recompile!

On the other hand, making lines longer does not spoil the line information. Thus you need not
recompile if you only append annotations to existing lines or put annotations into already exist-
ing empty lines. Nevertheless exec2crl issues a warning if a source file is younger than the
executable.

If exec2crl reads a source file, then it considers all specifications in it irrespective of any
if, ifdef, or ifndef directives. Thus, source references like here may lead to errors if
they occur in conditional code not compiled into the executable.
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Chapter 6

Requirements and Restrictions

First, the machine where a3 is run must provide enough resources to allow for a successful analysis
and visualization. The larger the application to be analyzed, the more resources in terms of memory
and execution speed are needed. In addition to this basic requirement, certain conditions must be
satisfied in order to obtain correct analysis results.

6.1 Hardware Design and System Configuration

The TriCore processor maps different address ranges to the same physical memory. Thus, some
memory cells can be accessed using different addresses. The address used for a particular access
decides whether the access is cached or uncached.

cached: 0x80000000 – 0x9fffffff
uncached: 0xa0000000 – 0xbfffffff

a3 treats those address ranges as separate memory areas so that writes via one address range do not
influence reads via the other address range.

6.2 Sequentiality of the Analyzed Tasks (Timing Analysis)

During timing analysis, a3 computes an upper bound of the worst-case execution time of a task. A
task must be a sequentially executed piece of code, i.e. there must not be any threads, parallelism,
or external events. a3 assumes no interference from the outside. Effects of exceptions, interrupts,
DRAM refreshes, input/output, timers, and other processors or co-processors are not reflected in
the predicted runtime and have to be considered separately. This remark applies in particular to the
cache effect of an interrupt. The worst-case time penalty caused by the effect of an interrupt on
the cache is the time needed for a complete refilling of the cache. A better approximation may be
obtained by taking the foot print of the interrupt into account, i.e. the cache lines that may possibly
be replaced because of the cache accesses of the interrupt routine.
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6.3 Restrictions on the Analyzed Code

The code of the analyzed task must have been compiled by the Tasking C Compiler or the GNU C
compiler (GCC) from a restricted subset of ANSI-C.

• For timing and value analysis: Dynamic data structures are not supported. Functions from
the alloc family like malloc and calloc must not occur in the analyzed code.

For stack analysis: alloca must not be used.

• For timing and value analysis: setjmp and longjmp must not be used in the analyzed
code.

For stack analysis: setjmp and longjmp should be used in a safe way, as specified in
their description.

• a3 assumes that all analyzed routines satisfy the calling conventions of the compiler, while all
external routines and routines declared not-analyzed violate the conventions. If an analyzed
routine violates the calling conventions or a not-analyzed routine satisfies them, this should
be made known to a3 by an annotation as introduced in sections 5.16 and 5.15.5, respectively.
The stack effect of routines violating the conventions, be they analyzed or not, should be
declared as explained in section 5.15.5.

• Return addresses must not be modified.

• Timing analysis does not support accesses spanning multiple memory areas with different
timing or cache characteristics.

• The TC1766 and TC1796 processor models as used in timing analysis do not support instruc-
tion fetches from the Data Flash and the Boot Rom both as part of the Program Memory Unit,
and from the Local Memory Interconnect (LMI).

• The analyzed code must not contain any task switches.

These restrictions only apply to the code that it is being analyzed. The remainder of the executable
may contain the excluded features.

6.4 User Annotations

The user must provide certain input in order to get any analysis results at all:

• The settings in the TriCore view should be appropriate (see section 3.4.2).

• If a routine or any other code snippet is declared not-analyzed, its properties must be cor-
rectly specified by the user (see section 5.15).
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• Timing analysis requires that for each loop in the analyzed task whose loop bound cannot
be found automatically, a maximum iteration number must be specified in the AIS file (see
sections 5.20 and 5.22) or as source code annotation (see section 5.31). This includes ordi-
nary loops found by the loop transformation (see section 4.1), but also multi-entry loops that
cannot be handled by the loop transformation. The maximum iteration bounds for the latter
loops must be expressed indirectly by flow constraints (see section 5.22).

Stack analysis only requires loop bounds for loops whose body has a non-zero stack effect.
Such bounds can only be specified for ordinary loops found by the loop transformation; flow
constraints do not take effect in stack analysis.

Value analysis does not strictly require upper loop bounds; yet, usually it yields more precise
results if the maximum iteration numbers of loops are known.

• For stack and timing analysis: For recursive routines, the maximum call depth (for stack
analysis) and the maximum call number (for timing analysis) must be specified in AIS format
(see section 5.19).

For value analysis: Recursive calls may be bounded by user annotations, however, this is not
strictly necessary to get analysis results, but may improve their precision.

• The possible call targets of the indirect calls and unresolved computed branches in the ana-
lyzed task must be specified in AIS format (see section 5.8.2).

The above-mentioned user annotations are required to obtain any analysis results at all. Of course,
these results can only be safe if all user annotations are correct, i.e. the specified maximum iteration
numbers are upper bounds of the true iteration numbers, all possible targets of a computed call or
jump must be among the specified targets, etc.

To ensure correct results from timing and value analysis, any volatile memory areas including
areas corresponding to volatile global variables must be declared as volatile in the AIS file (see
section 5.12.3).

6.5 Requirements Specific to Stack Analysis

Stack analysis may fail in three ways: it may fail altogether, producing nothing; it may produce
unknown results ? that are correct in a technical sense, but of course not very satisfactory; and
it may produce results that look like real results, but are wrong. The latter may happen if there
are wrong AIS specifications, or if there is an absolute setting of some stack pointer because such
settings reset the computed local stack level to 0. Such absolute stack-pointer settings can be
detected since they cause a3 to issue a warning. Generally, the results of a3 should not be trusted
if any errors or warnings appear in the messages view of a3 (or in the report file if reporting is
enabled). Here is a list of requirements that should be met to obtain meaningful stack analysis
results.

• As mentioned above, there should be no absolute settings of any stack pointer because such
settings reset the computed local stack level to 0.
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• The stack usage of external routines and not-analyzed routines is marked as unknown if it
is not declared by a user annotation (see section 5.15.4). External routines are routines that
are not contained in the executable, and not-analyzed routines are routines excluded from
analysis by an AIS specification (see section 5.15).

• Instructions modifying a stack pointer in an unexpected way, i.e. other than adding a constant
or setting it to a constant, lead to an unknown value for this stack pointer. (Absolute settings
do not lead to an unknown value, but cause a warning and reset the value to 0.)

• An unknown value results if a dynamic amount of space is allocated on the stacks, i.e. an
amount whose size cannot be statically determined. This in particular happens if the size of
the allocation depends on input data.

• Generally, there is a risk of unknown stack values if hand-written assembly code is analyzed
in which the stack is not used in a way the compiler would do.

When stack analysis yields the unknown value ?, it usually prints a diagnostic message explaining
the reasons for ? in the a3 message window.

The joining process employed to produce results for larger program parts from the results for
their constituents propagates unknown values up the hierarchy. Thus, the result node at the whole
program shows ? if ? occurs anywhere in the program.

There is one other special result value, namely ⊥, which stands for the stack usage of unreach-
able code. Unlike ?, ⊥ is ignored by the minimization process computing the results for higher
hierarchy levels.

Stack analysis is aborted to the effect that there are no analysis results at all if the application
contains unrestricted recursion. Unrestricted recursion can be avoided by declaring call limits (see
section 5.19.1).
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Chapter 7

The Analyses of a3

Various a3 commands cause the generation of a combined call graph and control-flow graph of the
part of the executable that is accessible from a selected start point. Depending on the command,
the generated graph may or may not be annotated with analysis results.

• A start operation (Analysis→Start or F7 or ) in a control-flow graph “analysis”
view, or a control-flow graph operation (Analysis→Control-Flow Graph or )
in one of the other analysis views causes a visualization without timing and stack analysis.
Consequently, the result is a pure call graph and control-flow graph without any timing and
stack annotations. It is described in section 7.1.

• An “interactive” operation (Analysis→Interactive or ) in a value-analysis view
starts a value analysis for the start point specified in the analysis view. The analysis results for
a particular instruction can be accessed by selecting the corresponding node in the graph and
pressing v. The resulting presentation of the value analysis results is described in section 7.2.

• A start operation (Analysis→Start or F7 or ) in a stack-analysis view starts a stack
analysis for the start point specified in the analysis view. The analysis results are merged
into the combined call graph and control-flow graph of the analyzed code. Stack analysis
and the features of the generated graphs are described in section 7.3.

• A start operation (Analysis→Start or F7 or ) in a timing-analysis view starts a
timing analysis for the start point specified in the analysis view. The analysis results are
merged into the call and control-flow graph, as described in section 7.4.

• An “interactive” operation (Analysis→Interactive or ) in a timing-analysis view
also starts a timing analysis for the start point specified in the analysis view. The difference
to the start operation lies in the fact that the generated graph provides access to the cache
and pipeline states of the analyzer, which are displayed as separate graphs on demand (see
section 7.5).

Since there are separate actions for performing stack and timing analysis, it is impossible to obtain
graphs showing stack and timing analysis results together.
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Figure 7.1: Call graph without analysis results

7.1 Combined Call Graphs and Control-Flow Graphs

When a start operation (Analysis→Start or F7 or ) is performed in a control-flow graph
“analysis” view, or a control-flow graph operation (Analysis→Control-Flow Graph or

) is performed in one of the other analysis views, a3 starts the visualization of the accessible
part of the combined call graph and control-flow graph of the application without a prior stack or
timing analysis.

The combined graph has a hierarchical structure. The outermost level is a call graph visualizing the
routines of the application and their calling relationships. Each routine contains a subgraph visual-
izing the basic blocks of the routine and the control-flow in between, and each basic block contains
a subgraph visualizing its individual assembly instructions. Besides the routines of the original
application, there may be loop routines resulting from the loop transformation, e.g., prime.L1
in Figure 7.1, left.

This section describes the features of the combined graphs and their visual representation (mean-
ing of colors etc.), based on the assumption that – unless stated otherwise – all options in the
Visualization view are disabled except for Manhattan edges (see section 3.4.6). See
chapter 8 for a description of commands for manipulating the visual representation.

The color scheme described in the following is the default color scheme. It can be customized via
the Visualization view (see section 3.4.6). A legend explaining the meaning of the colors in
the current color scheme can be invoked from a graph-browser view by File→Toggle legend
or by clicking on the button in the File tool bar.

7.1.1 Call Graphs

The combined call and control-flow graphs generated by a3 represent the input program down to
the level of individual assembly instructions, however these details are initially hidden so as to get
an overview of the entire program. When the visualization of the program is started, it shows its
call graph. An example call graph is depicted in Figure 7.1.

The handling of the loop routines resulting from loop transformation (section 4.1) depends on the
setting of the flag Inline loop routines in the Visualization view (section 3.4.6). If
Inline loop routines is off, loop routines are shown as separate routines like prime.L1
in the graph in Figure 7.1, left. If Inline loop routines is set, loop routines are visualized
as part of their host routines, which means that they do not appear on the call graph level (see
Figure 7.1, right).
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7.1.1.1 Routines

The nodes of the call graph represent routines, i.e., assembly procedures, which have several dif-
ferent origins as described in section 4.2. In short, there are routines coming from the executable,
virtual loop routines such as prime.L1 created by loop transformation (see section 4.1), and
anonymous routines :Anon_A with start address A.

Routines from the executable, loop routines, and anonymous routines are usually visualized as
(light) yellow boxes containing the name of the routine. Infeasible routines, i.e. routines that
are – according to the knowledge of a3 – never executed, either because value analysis found
some conditions that are always true or always false, or because the routines have been declared
infeasible by a never executed annotation (see section 5.17), are shown as gray boxes.

Routine boxes usually have a black border. Routines that contain computed calls whose targets
could not be determined by a3 are displayed with a red border. The possible call targets of com-
puted calls can be declared as described in section 5.8.

Certain routines can be declared as not-analyzed in the AIS file (see section 5.15). a3 does not read
the code of not-analyzed routines. Hence it does not find any routines that are only reachable from
not-analyzed routines. By declaring library routines as not-analyzed, you can concentrate on the
routines in your own application. Not-analyzed routines are depicted as orange boxes. Generally,
orange routines do not contain code, while yellow routines do.

7.1.1.2 Info Fields at Routines

The nodes of the graphs may carry up to three info fields, which are normally hidden, but can be
popped up by special commands of the visualization view (see section 8.1.7).

The first and second info fields of routine nodes are empty in graphs without analysis results. The
third info field of a node representing routine R contains the full path name of the file where R is
defined.

7.1.1.3 Calling Relationships

The edges of the call graph represent calling relationships. An arrow from routine R1 to routine
R2 usually means that routine R1 contains at least one call of routine R2. The arrow may also be
caused by a jump from R1 to the beginning of R2, or from the fact that R2 is a loop routine resulting
from a loop within routine R1.

In the example depicted in Figure 7.1, left, routine prime calls even, which calls divides.
Furthermore, prime includes a loop that has been transformed into routine prime.L1. This
loop contains a call of divides.

Two or more calls of or jumps to R2 in R1 are represented by a single edge.

Recursive calls from a routine R to itself are not represented by a call edge from the node
representing R to itself. The call edge is rather part of the basic block graph of R. This also
holds for the virtual recursive calls resulting from loop transformation. Thus, there is no call
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Figure 7.2: Graph with inlined loop routine and with separate loop routine

edge from prime.L1 to itself in Figure 7.1, left. This call edge is rather part of the basic
block graph of prime.L1 (see Figure 7.2).

7.1.2 Basic Block Graphs

The internal and analyzed routines (those with the lighter color) contain basic block graphs, whose
nodes represent basic blocks and whose edges indicate the control flow within the routine. These
basic block graphs are hidden in the call graph shown as initial visualization (see Figure 7.1). They
can be made visible for some or all routines using the commands described in section 8.2.

Figure 7.2 presents the basic-block graphs of routine prime and of the loop routine prime.L1
extracted from it by loop transformation (section 4.1). Figure 7.2, left, shows the graph with in-
lined loop routines, i.e. with Inline loop routines enabled in the Visualization view
(section 3.4.6). Therefore, prime.L1 is shown as a box within its host routine. Figure 7.2, right,
shows the same graph without loop-routine inlining. In this case, the loop routine prime.L1
appears as separate routine in the graph. All these visualizations were obtained with the visualiza-
tion option Display source code disabled. The effect of enabling this option is described in
section 7.1.5.

184



7.1.2.1 Basic Blocks

The nodes of the basic block graph represent basic blocks. A basic block is a sequence of in-
structions that have consecutive addresses and are executed sequentially, without any branching of
control flow. Thus, jump, call, and return instructions can only occur at the very end of a basic
block, and their targets always are at the beginning of a basic block.

In the visualization of the basic block graph, the instruction sequences in the basic blocks are
initially hidden, but can be made visible by special commands (see section 8.2). Their visual
representation is described in section 7.1.3.

In each routine, there are two special basic blocks: the entry block and the exit block. These special
blocks are dark green, the other blocks are blue or light green. The entry block is the first basic
block that is executed when the routine is called. It usually contains an instruction sequence like the
ordinary basic blocks. In Figure 7.2, the entry block of prime is the block labeled 0x8000002c,
and the entry block of prime.L1 is 0x80000040. Note that the entry block is not necessarily
placed at the top of its routine box.

The exit block is an artificial construct that symbolizes the exit from the routine. It does not contain
any instructions (not even a return instruction). The exit block is visualized as a green box labeled
by the word end.

Loop transformation introduces artificial loop-call blocks that do not contain any instructions ei-
ther. Such loop-call blocks are depicted as light green boxes. Figure 7.2, right, shows two loop-call
blocks, labeled loop call prime.L1 and loop call rec prime.L1. Generally, a loop rou-
tine R.Ln is called from two kinds of blocks, labeled loop call R.Ln and loop call rec
R.Ln. Block loop call R.Ln occurs in the routine where R.Ln is extracted from and marks
the place from which the loop has been extracted. The blocks labeled loop call rec R.Ln
indicate the recursive calls of R.Ln in R.Ln. If the loop routine is inlined as in Figure 7.2, left, it
replaces the loop-call block loop call R.Ln, which is therefore no longer visible.

When a3 finds that control flows to a different routine without a call instruction, it introduces a
dummy call. Dummy calls may result from a jump or even from fall-through to the next instruction
if the target or next instruction happens to be in a different routine. More details can be found in
sections 4.2 and 7.1.4.

All blocks are visually represented by boxes with some label. The border of the box is red if the
block contains computed calls whose targets could not be determined by a3. The possible call
targets of computed calls can be declared in the AIS file (see section 5.8).

If the visualization option Display source code is disabled, ordinary blocks are labeled by
the hexadecimal start address of the block, e.g., 0x8000002c. If Display source code is
enabled, ordinary blocks are labeled by source code provided that this is permitted by your license
(see section 7.1.5).

7.1.2.2 Info Fields at Basic Blocks

The nodes of the graphs may carry up to three info fields, which are normally hidden, but can be
popped up by special commands of the visualization view (see section 8.1.7).
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The first info fields of basic blocks are empty. The second info field contains a symbolic block
identifier. The third info field of all basic blocks (except for exit blocks and loop call blocks)
contains the start address of the block given as a hexadecimal number, e.g., 0x8000002c.

7.1.2.3 Control-Flow Edges

In the basic block graph of a routine, the basic blocks are connected by edges representing the
control flow in the routine. These control-flow edges are depicted as arrows. The colors of these
arrows denote different kinds of control flow:

• Black edges are normal edges. Normal edges usually represent a control flow caused by
textual succession in the assembly program.

• Red edges are “false” edges. “False” edges represent the control flow from a conditional
jump instruction to its textual successor, i.e., the direction of control flow if the condition
evaluates to false.

The compiler sometimes negates conditions so that a “false” edge may lead to the
assembly code corresponding to the “true” successor of the original C condition.

• Green edges are “true” edges. “True” edges usually represent the control flow from a condi-
tional jump instruction to its target, i.e., the direction of control flow if the condition evaluates
to true. Hence, red and green edges often occur in pairs. An example is block 0x80000032
in Figure 7.2. From this block, a green edge points to 0x8000003a and a red edge to
0x80000034.

A “true” edge may also represent the control flow from an unconditional jump instruction to
its target (the condition is always true). Hence, a block ended by an unconditional jump has
a single outgoing edge, which is green.

In addition, “true” edges point from blocks that end in a return instruction to the exit block
of the routine. An example for this is the edge from 0x80000058 to the exit block end in
Figure 7.2. Furthermore, “true” edges point from blocks ending in a call instruction to the
block after the call, e.g., from 0x8000002c to 0x80000032.

Finally, “true” edges represent the control flow from a computed jump to its possible targets.
The compiler often translates the head of a switch statement into a block ended by a ji
instruction with a register operand. In the visual representation, a bunch of green edges will
point from this block to the various cases of the switch statement.

• Dark blue edges, or call edges, are mentioned for the sake of completeness. Call edges
represent the control flow from a call instruction to the entry of the routine called. They
usually do not occur in the basic block graph of a single routine, but rather connect routines
in the call graph. Call edges resulting from recursive calls in a routine R form an exception:
They are part of the basic block graph of R and lead from the block containing the recursive
call to the entry block of R. This holds in particular for the virtual recursion introduced
by loop transformation; the edge from loop call rec prime.L1 to 0x80000040 in
Figure 7.2 provides an example.
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Figure 7.3: Some basic blocks with instruction sequences

7.1.3 Instruction Sequences

In the same way as routines contain basic block graphs that are initially hidden, basic blocks also
contain instruction sequences that are initially hidden. They can be exposed by the same commands
that can be used to expose basic block graphs (see section 8.2).

7.1.3.1 Instructions

Instruction sequences are visualized as graphs. In these graphs, each node represents an assembly
instruction from the visualized program. Such a node is visualized as a white box labeled by the
mnemonic form of the assembly instruction together with its operands (see Figure 7.3).

If the instructions in a basic block are shorter than the block label, the latter is truncated.

7.1.3.2 Info Fields at Instructions

The nodes of the graphs may carry up to three info fields, which are normally hidden, but can be
popped up by special commands of the visualization view (see section 8.1.7).

The first and third info fields of instructions are empty. The second info field contains the address
of the instruction given as a hexadecimal number, e.g., 0x8000002c. Such addresses are byte
addresses, as all addresses displayed by a3.
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Figure 7.4: Routine ended by a jump to another routine

7.1.3.3 Edges Between Instructions

The instructions in a single basic block are executed sequentially and therefore connected by black
normal edges. If a block ends with a branch to its own beginning, the corresponding “true” edge
is also part of the instruction graph of the block. Furthermore, “true”, “false” or even call edges
may occur between instructions if the instruction graphs of several basic blocks have been merged
using special commands (see section 8.2).

7.1.4 Tail Calls

Sometimes, a compiler or an assembler writer performs tail call optimization: if the last instruction
before the return instruction of routine R is a call to R′, it may be replaced by a jump to the
beginning of R′. The return address on the stack then is still the return address of R. Hence, R′

immediately returns to the call site of R when it performs its return instruction. Thus, the return
instruction of R is not reachable and can be omitted. In the graph picture, the call point indicating
the call from R to R′ is directly connected to the end block of R (see Figure 7.4).

7.1.5 Displaying Source Code in Basic Block Graphs

Up to now we have considered the case where all flags in the Visualization view are disabled,
except for Manhattan edges (see section 3.4.6). If the visualization option Display source
code is enabled and this feature is included in your license, basic blocks are labeled by fragments
of source code instead of addresses such as 0x8000002c, provided that references to source
code lines have been compiled into the executable and the source code files are found by a3.
The visualization option Normal layout causes the basic blocks in basic block graphs to be
ordered as in the executable. Figure 7.5 shows the source code and the basic block graph of routine
prime and the extracted loop routine prime.L1 when Display source code and Normal
layout are enabled, where bool is unsigned char, and uint is unsigned int. The
vertical ordering of basic blocks reflects the textual order of the basic blocks in the executable.

The names of the source files are extracted from the debug information in the executable. Sec-
tion 4.5 describes how these files are found in the file system. a3 uses the line information in the
executable to associate source line numbers with code addresses.
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bool prime (uint n) {
uint i;
if (even (n))

return (n == 2);
for (i = 3; i * i <= n; i += 2) {

if (divides (i, n))
return 0;

}
return (n > 1);

}

Figure 7.5: Basic block graph with source code

Figure 7.6: Look at the instruction level

The debug information in the executable usually suffers from several deficiencies. The association
of source lines to basic blocks is not always as one might expect. In particular, there are basic
blocks without any source code information, which are still labeled by their address.

Figure 7.6 shows the assembly instructions in the first two blocks of prime. Note that block
labels are truncated if the enclosed instruction sequences are exposed: only some initial part of the
first line of the block label remains. The first block, whose label contains if (even (n)), ends
in the call instruction that calls even. The test of the result of even and the corresponding
branch instruction are contained in the second block, which is labeled by its address since it has no
associated source code. The line with the closing brace } at the beginning of the first block is the
last line of the previous routine.
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A look at the instruction level also helps to explain the colors of the edges leaving the second block
of prime. The source says

if (even (n))
return (n == 2);

but the edge leading to the node labeled by return (n == 2); is a red “false” edge. The reason
for this is that the edge colors in a3 are defined by the assembly instructions, and the compiler has
chosen to test the result of even by testing the negated condition even(n) == 0.

7.2 Value Analysis

As explained in section 4.4.2, value analysis tries to statically determine the contents of registers
and memory cells at every program point for each context. The obtained information can be
employed to inspect which parts of the program access which memory areas and to verify that the
program does not perform illegal accesses.

A value analysis is performed as part of WCET analysis, but can also be in-
voked as a separate operation without subsequent determination of WCETs. When
a start operation (Analysis→Start or F7 or ) or an “interactive” operation
(Analysis→Interactive or ) is initiated in a value-analysis view, a3 performs a value
analysis and then displays a combined call graph and control-flow graph, which is similar to graphs
without analysis results as described in section 7.1.

Results obtained from value analysis are twofold:

• Information for individual instructions about register and memory contents and read or writ-
ten memory areas can be explored inside the a3 GUI. This is only possible if value analysis
has been started by the “interactive” operation.

• Information about assertions that have been specified in the AIS file (see, e.g., sections 5.12
and 5.17) and whether they could be refuted by the analysis, as well as the output that is
produced by certain AIS directives (see section 5.23) can be found in the report file (see
section 3.4.1 on how to declare a file name for the report).

In the following we explain how the former information can be interactively accessed.

The examples in this section are generic, i.e. not specific to the TriCore architecture.

The control flow graph and the information in the report file are always generated; however, in
order to interactively access value analysis results for individual instructions, an interactive value
analysis has to be started. Inside of a value-analysis view, this can be done by clicking on the
button in the tool bar or by selecting Analysis→Interactive from the menu. In contrast
to WCET or stack analysis, the generated control flow graph will not be annotated with analysis
results. Instead, the value information at an instruction can be accessed by first selecting the
node which belongs to the instruction and then pressing v or selecting Show value analysis
results from the context menu. After that, a new view will appear in the section Results
view in the list of available views. The title of the new view is the address of the instruction
considered.
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Figure 7.7: Results view for an instruction not accessing memory (addi r5, r3, +0)

7.2.1 The Tree of Contexts

The results view lists the contexts of the considered instruction on the left in a tree-like fashion
(contexts have been introduced in section 4.3). Figure 7.7 shows the results view for the instruction
at address 0x30. This instruction is located in routine divides called from a loop in prime and
also from even. Since the context parameter max-unroll (see section 5.4) is 2 in this example,
there are two loop contexts and thus three contexts altogether:

0xb4->"prime.L1"[1/2..], 0xc0->"divides"
0xb4->"prime.L1"[2/2..], 0xc0->"divides"
0x7c->"even", 0x50->"divides"

These contexts are displayed in the context panel in a tree-like form (see Figure 7.7). When a
leaf context is selected in this panel, the corresponding value analysis results are displayed in the
Register/Cell tab on the right (see section 7.2.2).

The context panel features a context menu for generating AIS annotations from the value analysis
results (see section 7.2.3).

7.2.2 Registers and Memory Cells

Depending on whether the instruction under consideration accesses memory or not, the
Register/Cell tab will look differently. If the instruction does not access memory as in Fig-
ure 7.7, there is a single table showing the contents of registers and memory cells. If the instruction
accesses memory as in Figure 7.8 there is a second table on the top listing the accessed memory
locations.

Information about register contents and memory cells is shown in at least three columns. The first
column lists the registers and memory cells for which value information is available. Registers
are identified by name and memory cells by their start address and width, separated by a colon,
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Figure 7.8: Results view for an instruction reading from memory (lwz r0, +20(r1))

e.g., 0x3fffd8:4. The incoming column displays the content information right before the
instruction is executed; information about the contents valid after execution of the instruction is
contained in the outgoing columns. If the instruction has only a single successor, there is only
one outgoing column; otherwise, for multiple successors, for example, if the instruction of
interest is a conditional branch, there is one column for every feasible path. If a register or a
memory cell is changed by the instruction, the corresponding row will be highlighted in yellow
(see Figure 7.7); the instruction considered is addi r5, r3, +0, which copies r3 into r5. The
actual content information can be given in several ways:

• [A] means that the value is known to be exactly A.

• [A1..A2] means that there is more than one possible value; the set of possible values is
given by an interval consisting of a lower bound A1 (the smallest possible value) and an
upper bound A2 (the largest possible value).

• [?] means that the analysis was unable to find out anything.

• [?] mod 2ˆk = m means that the analysis did not find any lower or upper bound, but knows
that the lowest k bits of the value form the number m. For instance, [?] mod 2ˆ1 = 1
means that the value is odd.

• [A1..A2] mod 2ˆk = m means that the analysis found a lower bound A1 and an upper
bound A2, and in addition knows that the lowest k bits of the value form the number m.

Information about memory accesses is described in six columns (see Figure 7.8). The Step col-
umn is only of relevance if the architecture contains instructions performing several memory ac-
cesses; in this case there will be a separate row for every access of the instruction. The Access
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column distinguishes read and write accesses. The Width column specifies the width of the ac-
cess. The remaining three columns, entitled by Address, Modulo, and Remainder, describe
the set of possible addresses of the access. The information in the Address column can be a
single address [A], an interval [A1..A2], or [?] meaning that no bounds have been found.
If the Modulo column contains k and the Remainder column contains m, this means that the
lowest k bits of the possible addresses form the number m. In contrast to the table of register/cell
values, this information is also displayed for exact addresses. For instance, Figure 7.8 shows an
exact Address 0x003fffec, Modulo 32, and Remainder 4194284, which is the decimal
representation of 0x003fffec.

7.2.3 Creating AIS Annotations

The value analysis results shown in the Register/Cell tab (section 7.2.2) can be trans-
formed into AIS annotations. These annotations correspond to the incoming information; the
outgoing information cannot be transformed. The AIS annotations for register values are de-
scribed in section 5.10 while those for the values of memory cells are described in section 5.12.5.
These annotations contain only intervals, i.e. lower and upper bounds; the modulo information is
not expressed in the generated AIS annotations.

The transformation into AIS can be started via a context menu in the context panel. If there is more
than one context in the context panel, the context menu features two different commands:

• Create AIS annotations
creates AIS annotations valid for all contexts. These annotations do not contain the values
for a specific context, but values resulting from joining over all contexts.

• Create context-sensitive AIS annotations
creates AIS annotations from the values in a specific context. Since the context cannot be
coded in AIS annotations, these annotations are incorrect when applied to other contexts or
to the general situation with all contexts.

If the context panel contains a single context, then the context menu features only the command
Create AIS annotations.

The generated AIS annotations are on the clipboard. They can be put into arbitrary AIS files by the
usual paste operation. This works in the AIS browser/editor views of a3 and in external editors.

Example: These are the AIS annotations generated with Create context-sensitive AIS
annotations for the specific context shown in Figure 7.9:

instruction 0x30 is entered with "r0" = 0x94..0x94;
instruction 0x30 is entered with "r1" = 0x3fffe8..0x3fffe8;
instruction 0x30 is entered with "r2" = 0xa690..0xa690;
instruction 0x30 is entered with "r3" = 0x3..0x3;
instruction 0x30 is entered with "r5" = 0x2..0x2;
instruction 0x30 is entered with "r7" = 0x3..0x3;
instruction 0x30 is entered with "r12" = 0x0..0x1;
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Figure 7.9: Results view for an instruction not accessing memory (addi r5, r3, +0)

instruction 0x30 is entered with "r13" = 0x4002e4..0x4002e4;
instruction 0x30 is entered with "lr" = 0xcc..0xcc;
instruction 0x30 area 0x3fffd8..0x3fffdb

contains 0x3fffe8..0x3fffe8;
instruction 0x30 area 0x3fffe8..0x3fffeb

contains 0x3ffff8..0x3ffff8;
instruction 0x30 area 0x3fffec..0x3fffef contains 0x94..0x94;

These are the AIS annotations generated with Create AIS annotations at the same instruc-
tion:

instruction 0x30 is entered with "r1" = 0x3fffd8..0x3fffe8;
instruction 0x30 is entered with "r2" = 0xa690..0xa690;
instruction 0x30 is entered with "r13" = 0x4002e4..0x4002e4;
instruction 0x30 is entered with "lr" = 0x68..0xcc;
instruction 0x30 area 0x3fffd8..0x3fffdb

contains 0x3fffe8..0x3fffe8;
instruction 0x30 area 0x3fffe8..0x3fffeb

contains 0x3ffff8..0x3ffff8;
instruction 0x30 area 0x3fffec..0x3fffef contains 0x94..0x94;

Note that some of the intervals are larger now since these intervals are the joins of the intervals for
the specific contexts (the join of a list of intervals is the least interval containing all of them). Some
annotations have disappeared altogether since the corresponding registers have unknown values in
some other contexts.
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7.3 Stack Analysis

This section describes the stack analysis performed by a3 and the visualization of the stack anal-
ysis results induced by a start operation (Analysis→Start or F7 or ) in a stack-analysis
view. The visualization consists of the combined call graph and control-flow graph as described in
section 7.1 annotated with stack analysis results.

TriCore documentation describes a stack for storing parameters, local variables, and temporary
results. The stack pointer for this stack is register A10, also called SP. This stack is called user
stack in a3’s output even if it is used as global interrupt stack.

A special feature of TriCore processors is their automatic context management. When a function
call, interrupt, or trap occurs, the upper context (about half of the registers) is stored in the context-
save area CSA, from which it is restored at the corresponding return from function or return from
interrupt. Hence, the CSA is used like a stack on which the upper context is pushed. Therefore,
the CSA is called system stack in a3’s parlance, and it is part of the task of stack analysis to find
the maximum system-stack usage, i.e. the maximum amount of storage occupied by the saved
contexts in the CSA. Note that the stack usage is always measured in bytes (not the number of
saved contexts) so that the system stack grows and shrinks in portions of 64 byte, which is the size
of a context.

a3 for TriCore computes stack-usage information for two stacks, called user stack and system
stack. The user stack is the stack with stack pointer A10, no matter whether it is used as user
stack in the sense of the TriCore documentation or as global interrupt stack. The system
stack is the context-save area CSA, which is used like a stack, but not called stack in the
TriCore documentation.

Stack analysis calculates stack levels. The stack level for a stack is the amount of bytes stored
on this stack. The stack level relative to a program point P0 is the current stack level minus the
stack level at P0. For each routine, a3 computes for both stacks the stack level at each instruction
relative to the routine entry. These routine-local results are then combined to global stack levels
for entire routines, measured relative to the start point of the analysis as specified in the analysis
view (see section 3.5.2). Stack analysis finally yields upper bounds for these global stack levels,
one for the user stack and one for the system stack. These upper bounds are still measured relative
to the start point of the analysis, i.e. the real stack size may be larger because of some stack space
allocated before control has reached the start point. Nevertheless, the results of a3 are useful for
verifying that the user and system stacks fit in the memory areas reserved for them during all runs
of the program. They can also provide hints on how to reduce the sizes of these areas as much as
possible, or to identify the parts of the program that consume too much stack space.

Sections 7.3.1–7.3.3 illustrate the basic stack analysis behavior using some examples. These ex-
amples are based on certain assumptions:

• The start point of the analysis is main.

• exit is declared as not-analyzed in the AIS file (see section 5.15).

• An AIS annotation exists that specifies that the not-analyzed routine exit does not violate
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Figure 7.10: Control-flow graph with stack analysis results

the calling conventions and does not need stack space. (The latter is unrealistic, but adopted
here for simplicity.)

The AIS annotations realizing these assumptions are as follows:

snippet "exit" is not analyzed
and does not violate calling conventions
and uses exactly 0 bytes of user stack
and uses exactly 0 bytes of system stack;

Such annotations have been introduced in section 5.15. Examples for their effects are provided in
section 7.3.4. Section 7.3.5 discusses stack analysis of recursive programs.

7.3.1 Stack Analysis Results at Routines

Figure 7.10 shows a call graph with stack analysis results, which are displayed in pink or red boxes
located to the right of the nodes of the graph. Each result box carries two sets of results: a global
result, coming first, and a local result, following in angular brackets. For instance, routine prime
has global result 8u/[0..128]s and local result 0u/[−64..64]s. Each result consists of two parts:
the first part, labeled by u, refers to the user stack, while the second part, labeled by s, refers to
the system stack. Each part is an interval of possible stack levels. Intervals of the form [n ..n] are
abbreviated to n.

The local result at a routine R indicates the stack usage in R considered on its own: It consists of
two intervals showing the possible range of stack levels within the routine, assuming value 0 for
both stacks at routine entry.

The global result for routine R indicates the stack usage of R in the context of the whole application.
It is a pair of intervals providing bounds for the stack levels while the processor is executing
instructions of R, for all call paths from the start point to R. Thus, the global result at routine R
does not include the stack usage of the routines called by R, nor the stack space allocated before
the start point of the analysis was reached.
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For instance, routine prime has a global result of 8u/[0..128]s because the two calls of prime in
main have stack level 8u/64s, and prime itself has local stack usage 0u/[−64..64]s. Routine
divides has a global result of 8u/[64..128]s because its local stack usage is 0u/[−64..0]s and
it is called in prime.L1 at the accumulated stack level 8u/64s+0u/0s+0u/64s= 8u/128s
and in even at the accumulated stack level 8u/64s+0u/64s+0u/0s = 8u/128s. These two
accumulated stack levels have to be added to the local stack level 0u/[−64..0]s, which gives the
two results 8u/[64..128]s and 8u/[64..128]s. The join of these two results gives the global result
8u/[64..128]s for divides, where the join of two intervals is the least interval containing both.

Information on the derivation of global results is contained in the first info fields of the result boxes,
accessible by selecting the result box(es) and pressing i (see section 8.1.7). For each routine, the
info field documents the chains of calls from the start point that lead to the maximum stack usage
(the upper end of the global result intervals). Here are the contents of the first info fields of the
result boxes of some routines from the example of Figure 7.10:

Routine main:
User/System Stack History:

-> 0u/ 0s <[ 0.. 8]u/[ 0.. 64]s> ’main’
=> [0..8]u/[0..64]s bytes

Routine prime:
User/System Stack History:

-> 0u/ 0s < 8u/ 64s> ’main’
-> 8u/ 64s < 0u/[ -64.. 64]s> ’prime’
=> 8u/[0..128]s bytes

Routine even:
User/System Stack History:

-> 0u/ 0s < 8u/ 64s> ’main’
-> 8u/ 64s < 0u/ 64s> ’prime’
-> 8u/ 128s < 0u/ 0s> ’even’
=> 8u/128s bytes

Routine divides:
User/System Stack History:

-> 0u/ 0s < 8u/ 64s> ’main’
-> 8u/ 64s < 0u/ 64s> ’prime’
-> 8u/ 128s < 0u/ 0s> ’even’
-> 8u/ 128s < 0u/[ -64.. 0]s> ’divides’
=> 8u/[64..128]s bytes

In all lines marked by -> but the last such line, the information in angular brackets < . . .> is the
local stack level at the call of the next routine. In the last line marked by ->, the information in
angular brackets is the maximum local stack usage in this routine (there is no next routine to call).
In any case, the information at the beginning of the line plus the one in angular brackets yields the
information at the beginning of the next line, which thus provides the accumulated stack level till
this point.
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If there are several different call chains leading to the same maximum stack usage, a3 presents
only one of them. All call chains start with the call of the start point (main in this example) at the
initial stack level 0u/0s.

a3 does not document how it obtains the information about the minimum stack usage (the lower
(left) end of the global result interval). If minimum and maximum stack usage are obtained on
different call chains, the lower end of the interval derived in the stack history is different from the
left end of the global result interval.

For the routines shown above, the maximum levels of user stack and system stack are reached on
the same call chain. For other examples, the situation may be more complicated since maximum
user stack level and maximum system stack level are reached on two different call chains, which
are both included in the info field.

The stack analysis results for the entire program (relative to the given start point) are summarized
in a special pink box at the top (see Figure 7.10). For each stack, the interval for the entire program
is the join of the global intervals at the routines, i.e. the smallest interval containing all global
intervals.

The result box for routine R is displayed in red if for one of the two stacks, the upper end of the
routine’s global result interval equals the upper end of the interval for the entire program. Such
results are marked by the phrase ** hits the global maximum ** in the report file
(see section 7.3.2). All other result boxes at routines are displayed in pink. In Figure 7.10, the
result boxes for all routines are red since for all routines, the maximum global user stack level is 8,
the same as the maximum level of the entire program.

a3 selects one routine hitting the global maximum and marks some path from the start point to that
routine by red edges in the call graph. In Figure 7.10, the selected routine is divides.L1. If the
user and system stack maxima are attained at different routines, a3 will draw two red paths, one
for the user and one for the system stack. In programs containing recursion, a red path may follow
the recursion and thus contain loops.

7.3.2 The Report File

If a report file name is specified in the Files view, all results – local and global results at rou-
tines and the call chains in the info fields – are written into the report file specified. Global re-
sults visualized in red because the upper end of the interval for one of the two stacks equals
the upper end of the corresponding interval for the entire program are marked by the phrase
** hits the global maximum ** in the report file:

routine ’divides.L1’
=> maximum usage is 8u/128s
=> ** hits the global maximum **
=> maximum local usage is 0u/0s
=> call-stack:
User/System Stack History:

-> 0u/ 0s < 8u/ 64s> ’main’
-> 8u/ 64s < 0u/ 64s> ’prime’
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Figure 7.11: Some instructions with stack analysis results

-> 8u/ 128s < 0u/ 0s> ’even’
-> 8u/ 128s < 0u/ 0s> ’divides’
-> 8u/ 128s < 0u/ 0s> ’divides.L1’
=> 8u/128s bytes

The report file is overwritten when a new timing, value, or stack analysis is started.

7.3.3 Stack Analysis Results at Basic Blocks and Instructions

Basic blocks and instructions are annotated with local stack analysis results. The results at in-
structions are determined by assuming a stack level of 0u/0s at routine entry, and then taking the
effects of each instruction into account. The result at a basic block is the join of the results for its
instructions. Similarly, the local result at a routine is the join of the results for its basic blocks and
the value 0u/0s assumed at routine entry. Here, the join of a collection of intervals and numbers
is the smallest interval containing all these intervals and numbers. The calculations for user stack
and system stack are performed in parallel and independent from each other.

The result box at a block in a routine R is dark gray if the upper end of the result interval for one
of the two stacks equals the upper end of the corresponding interval of the local result of routine
R. Similarly, the result box at an instruction in a block B is dark gray if the upper end of the result
interval for one of the two stacks equals the upper end of the corresponding interval at B. All other
result boxes at blocks and instructions are light gray.

Figure 7.11 shows the instructions of a routine called Proc0 with result boxes at instructions
and blocks. The result at an instruction box describes the situation immediately after executing
the instruction. Therefore the second instruction sub.a a10, 0x50 is annotated with 80u/0s
because it changes the user stack pointer a10 by a decrement of 80 (which means 80 bytes). Since
the user stack of the TriCore grows downward, a decrement of the stack pointer by 80 actually
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means the allocation of 80 bytes of stack space so that the user stack level (the amount of bytes on
the user stack) increases by 80.

For a call instruction, “immediately after executing the instruction” refers to the situation after
the call instruction, but before the first instruction of the routine called (not after returning from
the call). The call instruction in Figure 7.11 saves the upper context in the context save area,
called system stack by a3. Therefore, the call instruction pushes 64 bytes on the system stack,
changing the system stack level from 0 to 64. The corresponding return instruction in the called
routine restores the upper context and thus removes these 64 bytes again so that the next instruction
ld.w d15, 0xc0000020 is executed with stack level 80u/0s.

The final ret instruction of Proc0 restores the upper context and thus pops the 64 bytes from the
system stack that have been pushed by the call instruction calling Proc0. Since the user stack
pointer a10 is part of the upper context, it is restored to the original value 0 by the ret instruction.
Therefore the stack level at the very end is 0u/−64s relative to the level at routine entry. This is
typical for routines adhering to the calling conventions.

7.3.4 External and Not-Analyzed Routines

When a3 analyzes the stack usage of a program, it does not determine the stack usage of external
or not-analyzed routines. External routines are called but not defined in the executable so that there
is no routine code that could be analyzed. Not-analyzed routines are excluded from analysis by
means of AIS specifications (see section 5.15). The stack usage and stack effect of all external and
not-analyzed routines reachable from the start points must be specified in the AIS file as described
in section 5.15.

Up to now, all the examples in this manual were created in presence of the AIS annotation

snippet "exit" is not analyzed
and does not violate calling conventions
and uses exactly 0 bytes of user stack
and uses exactly 0 bytes of system stack;

This annotation specifies that exit should not be analyzed, that it does not use stack space (which
is not realistic), and that it satisfies the calling conventions, i.e. behaves like a routine normally
does. Figure 7.12 shows the analysis results for this standard AIS annotation. Although this
annotation says that exit does not allocate stack space, the global analysis results for exit are
8u/0s. This is because main allocates 8 bytes on the user stack before it calls exit, and the
call of exit in main is a tail call implemented by a jump that does not allocate space on the
system stack. Similarly, the global analysis result for exit is 28u/0s (see Figure 7.13) if the
stack behavior of exit is declared as

snippet "exit" is not analyzed
and does not violate calling conventions
and uses exactly 20 bytes of user stack
and uses exactly 0 bytes of system stack;
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Figure 7.12: Results for the standard AIS annotation

Figure 7.13: Results if exit uses 20 bytes of user stack

Note that the red path has now split into two since the routine with the greatest user stack level
(exit) is now different from the routines with greatest system stack level.

If the AIS file does not contain a stack usage declaration for exit, the stack level of exit is
marked as unknown (see Figure 7.14). An unknown stack usage is considered as higher than any
known usage. This is the reason why now exit is the routine with the highest user and system
stack level. The unknown stack level of exit leads to an unknown stack level for the whole
program. The result box for the whole program therefore shows a stack level of ? for both stacks.

While the stack usage assigned to exit has a visible effect, this is not true for the stack effect.
It does not matter whether exit violates the calling conditions or not, and in case of violation,
the stack effect assigned to exit does not matter either. The reason is that the executable reader
exec2crl knows that exit never returns so that the stack effect of exit never takes effect.

The situation is different if even is declared as not analyzed. Any stack effect assigned to even
by means of an AIS specification is observable since even does return and so there is some code
after the call of even. To begin with, Figure 7.15 shows the effect of the specification

snippet "even" is not analyzed
and uses exactly 0 bytes of user stack
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Figure 7.14: Results if the stack usage of exit is unspecified

Figure 7.15: Result if even is not analyzed and does not violate calling conventions

and uses exactly 0 bytes of system stack
and does not violate calling conventions;

which asserts that even satisfies the calling conventions, which means that it removes 64 bytes
from the system stack. The corresponding declaration with explicit stack effect is

snippet "even" is not analyzed
and uses exactly 0 bytes of user stack
and uses exactly 0 bytes of system stack
and leaves behind exactly 0 bytes of user stack
and removes exactly 64 bytes of system stack;

which yields the same result. Figure 7.16 shows the call site of even in prime, showing that the
declared stack effect 0u/−64s of even changes the stack level from 0u/64s at the call to even
to 0u/0s at the subsequent jz instruction, which is the normal behavior for a routine. The same
would happen if even were included in the analysis and there were no AIS specification about its
properties. The end of prime shows that it again exhibits this standard stack effect of 0u/−64s.

The following declaration specifies a non-standard stack effect:
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Figure 7.16: Effect of even on prime without violation of calling conventions

Figure 7.17: Result if even has a non-standard stack effect

snippet "even" is not analyzed
and uses exactly 0 bytes of user stack
and uses exactly 0 bytes of system stack
and leaves behind exactly 20 bytes of user stack
and removes exactly 0 bytes of system stack;

The resulting call graph is depicted in Figure 7.17, and the call site of even in prime is shown in
Figure 7.18. The declared stack effect 20u/0s of even now changes the stack level from 0u/64s
at the call to even to 20u/64s at the subsequent jz instruction, The return instruction ret of
prime restores the user stack pointer from the upper context. Hence, the final user stack level is
0, the same as if even respects the calling conventions (Figure 7.16), i.e. the user stack effect of
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Figure 7.18: Non-standard stack effect of even in prime

even is confined within prime and has no effect outside of prime. In contrast, the system stack
level at the end of prime is 0 in Figure 7.18 compared to −64 in Figure 7.16. Thus, the system
stack effect is not confined within prime and influences the global results of all routines (compare
Figure 7.17 with Figure 7.15; there are two calls of prime in main, and the first call influences
the second).

7.3.5 Recursion

a3 does not know the maximal call depth of recursive calling loops unless this information is
specified in the AIS file. If the analyzed program contains recursion and the AIS file does not
contain a call depth bound for all recursive loops, a3 does not complete stack analysis and reports
about the reason in the messages view.

The possible call depth specifications are described in section 5.19.1. There are basically two
forms:

ROUTINE R INCARNATES Bounds;
ROUTINE R1 CALLS TO R2 INCARNATES Bounds;

The first form provides bounds for the number of occurrences of routine R on the call stack, while
the second form specifies bounds for the number of occurrences of the call from R1 to R2.

Figure 7.19 shows the stack analysis results for

routine "fac" incarnates max 1;

204



Figure 7.19: Recursive function with call depths 1 (left) and 2 (right)

on the left and

routine "fac" incarnates max 2;

on the right. The lower part of the figure shows the contents of the first info field of the result
box next to routine fac. With bound 1 for fac, a3 only considers call chains with at most
1 occurrence of fac. Since fac is called in main via main.L1 at stack level 0u/64s and
has local stack result 0u/[−64..64]s, the call chain main→main.L1→fac yields a global
result of 0u/[0..128]s for fac. With bound 2 for fac, a3 considers call chains with at most 2
occurrences of fac. The call chain main→main.L1→fac→fac yields a global result of
0u/[64..192]s shown in the info field. This result is joined with the result 0u/[0..128]s for the call
chain main→main.L1→fac, leading to the final result 0u/[0..192]s shown in the annotated
call graph. The same result is obtained with

routine "fac" calls to "fac" incarnates max 1;

which limits the number of occurrences of fac→fac to 1.

In general, an incarnation bound l for a routine R restricts the call chains considered by a3 to those
with at most l occurrences of R. If for instance A calls B and C, B calls A, and C calls A, unrestricted
recursion can be avoided by a bound on A, or by bounds on B and on C.

Note that a3 has no possibility to check whether a given bound is a true property of the application.
If the user provides a bound that is not supported by specific measures in the code, the results of
a3 can only be used as hint what would be the stack usage if the bound were respected by the
application. A bound bound> 0 for a directly recursive routine R can for instance be enforced by
a static counter in R:

... R (...) {
static int counter = 0;
counter += 1;
if (counter < bound) { ...; R(...); ...; }
counter -= 1;

}

205



Figure 7.20: Graphs resulting from Analyze

7.4 Timing Analysis

When a start operation (Analysis→Start or F7 or ) is performed in a timing-analysis
view, a3 performs a WCET analysis and then displays a combined call graph and control-flow
graph annotated with the results of the analysis. Apart from the annotations, this graph looks like
the graphs without analysis results described in section 7.1. In this section, we describe only the
differences between the graphs with WCET annotations and the basic graphs of section 7.1.

7.4.1 Overall Worst-Case Execution Time

Graphs resulting from WCET analysis contain a special pink box at the top. This box tells the
computed overall worst-case execution time of the analyzed program part in processor cycles, and
in real time provided there is a clock rate specification – see section 5.2. Figure 7.20 shows two
examples. The left example has no clock rate specification, while the right example includes a
specification

clock exactly 40 MHz;

Call edges belonging to the WCET path computed by a3 are red instead of dark blue (see sec-
tion 7.4.5 for more details about the WCET path). For instance, routine main in the left example
of Figure 7.20 contains a conditional that calls min in the then-part and max in the else-part. Since
the else-part including max takes longer than the then-part including min, the call of max is on
the WCET path, while the call of min is not. Routine swap is called several times; some calls are
on the WCET path and some are not.

7.4.2 WCET Contributions and Contexts of Routines

Graphs with WCET results carry information on WCET contributions and contexts in the second
info fields of routine nodes (see section 8.1.7 for accessing this information in aiSee). Examples
are provided after the following description.

There are four kinds of information in these info fields:
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• A Predicted WCET Contribution (in processor cycles, and in real time provided
there is a clock rate specification – see section 5.2). This is not the WCET for one invocation
of the routine, but the sum of the estimated WCETs of all routine invocations along the
WCET path. It covers only the instructions of the routine itself, not those of the extracted
loop routines or those of the routines called. The estimated WCET of the entire analyzed
code as given in the pink box at the top is the sum of the predicted WCET contributions of
all routines.

Routines that are not on the WCET path (such as min in Figure 7.20, left) contribute nothing
to the WCET; the Predicted WCET Contribution in their second info field is 0. These
routines are only reachable via dark blue call edges. Routines on the WCET path are those
that can be reached from the start point via a red call path.

• A Cumulative WCET contribution (in processor cycles, and in real time provided there is
a clock rate specification – see section 5.2). Like the Predicted WCET Contribution,
this is not the WCET for one invocation of the routine, but the sum of the estimated WCETs
of all routine invocations along the WCET path. In contrast to the Predicted WCET
Contribution, it covers not only the instructions of the routine itself, but also those of
the extracted loop routines and those of the routines called.

The calculation of cumulative WCETs is a license feature. Cumulative WCETs are not
shown if they are not included in your license.

• The predicted WCET contribution is broken down according to the various routine contexts.
In the resulting list, the contexts are identified by their number. A description of the contexts
is provided in the last part of the info field (see below). For each context, the part of the
WCET contribution belonging to that context is listed in processor cycles. Note that the
contribution may be 0 for some contexts if some calls of the routine are not on the WCET
path.

The WCET contribution only refers to the routine itself, not to the extracted loop routines
or to the routines called by that routine. Therefore, a cumulative contribution is added in
parentheses that adds up the contributions of the routine itself and all routines called by it.

If the call string length is restricted by the max-length parameter in the AIS file (see
section 5.4) so that some call strings are pruned, the cumulative WCET contribution
becomes unknown (written as ?) for some routines.

• A list of calling contexts (see section 4.3 for a general introduction of this notion). The
contexts depend on the context parameters specified in the AIS file (see section 5.4). For
each context, the list displays the context number under the heading Contexts, an internal
number under the heading Position (omitted in the examples below), and the call string
of the context as introduced in section 4.3.

Example 1. The first example is the one whose call graph is depicted in Figure 7.20, left. Routine
main calls min, max, and swap, and routine max contains two calls of swap. The example was
run with max-length=inf, which means unrestricted call string length in contexts. There is no
clock rate specification so that only cycle numbers are displayed.
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Second info field of routine main:

Predicted WCET Contribution: 102 cycles
Cumulative: 306 cycles

Predicted WCET Contribution per Context (cumulative):
Context 0: 102 cycles (306 cycles)

Contexts Call String
0 no-history

Note that the cumulative WCET of main equals the overall WCET of this example. It results as
the sum of the WCET contribution of main itself (102 cycles) and of the cumulative contribution
of max (204 cycles – see below).

Second info field of routine min:

Predicted WCET Contribution: 0
Cumulative: 0

Predicted WCET Contribution per Context (cumulative):
Context 0: 0 cycles (0 cycles)

Contexts Call String
0 0xd400015d->"min"

This routine is not on the WCET path and thus has a WCET contribution of 0 cycles.

Second info field of routine max:

Predicted WCET Contribution: 92 cycles
Cumulative: 204 cycles

Predicted WCET Contribution per Context (cumulative):
Context 0: 92 cycles (204 cycles)

Contexts Call String
0 0xd400016d->"max"

The cumulative WCET of max is its own WCET (92 cycles), plus the WCETs of the two calls of
swap in max (56 + 56 cycles, see below).

Second info field of routine swap:

Predicted WCET Contribution: 112 cycles
Cumulative: 112 cycles

Predicted WCET Contribution per Context (cumulative):
Context 0: 0 cycles (0 cycles)
Context 1: 56 cycles (56 cycles)
Context 2: 56 cycles (56 cycles)

Contexts Call String
0 0xd400014a->"swap"
1 0xd400016d->"max", 0xd400011d->"swap"
2 0xd400016d->"max", 0xd400012f->"swap"
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The call of swap in main is not on the WCET path. Therefore the WCET contribution of swap
in the corresponding context (context 0) is 0. This is also the reason for the blue color of the
edge from main to swap in Figure 7.20, left. Since swap does not call any other routine, its
cumulative WCET contribution equals its own WCET contribution in every context. The overall
WCET-contribution of swap (112) is the sum of the contributions per context (56+56).

Example 2. The second example is the one whose call graph is depicted in Figure 7.20, right.
Routine prime calls even, which calls divides. Routine prime contains a loop that is ex-
tracted as prime.L1 by the loop transformation (see section 4.1). The loop contains a call of
divides, which contains a compiler-generated loop extracted as divides.L1. Again, the ex-
ample was run with max-length=inf, which means unrestricted call string length in contexts.
The loop bound is 21, but the number of loop contexts was restricted by max-unroll=3, so
that at most 3 loop contexts are distinguished for prime.L1: a context [1/3..] for the first
iteration, a context [2/3..] for the second iteration, and a context [3/3..] for the remaining
19 iterations. In contrast to the first example, there is a clock rate specification of 40 MHz so that
the WCETs are displayed in cycles and in real time units.

Second info field of routine prime:

Predicted WCET Contribution: 44 cycles = 1.1 us
Cumulative: 1100 cycles = 27.5 us

Predicted WCET Contribution per Context (cumulative):
Context 0: 44 cycles (1100 cycles)

Contexts Call String
0 no-history

The cumulative WCET 1100 of prime, which equals the overall WCET of this example, is the
sum of the non-cumulative WCET of prime (44), the cumulative WCET of even (46), and the
cumulative WCET of the loop (1010, see below).

Second info field of routine even:

Predicted WCET Contribution: 3 cycles = 0.075 us
Cumulative: 46 cycles = 1.15 us

Predicted WCET Contribution per Context (cumulative):
Context 0: 3 cycles (46 cycles)

Contexts Call String
0 0x8000002c->"even"

The cumulative WCET 46 of even is the sum of its non-cumulative WCET (3) and the cumulative
WCET of divides in context 0 (43), which is the context corresponding to the call of divides
from even (see below).

Second info field of routine prime.L1:

Predicted WCET Contribution: 317 cycles = 7.925 us
Cumulative: 1010 cycles = 25.25 us

Predicted WCET Contribution per Context (cumulative):
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Context 0: 10 cycles (1010 cycles)
Context 1: 22 cycles (967 cycles)
Context 2: 285 cycles (912 cycles)

Contexts Call String
0 0x8000003a->"prime.L1"[1/3..]
1 0x8000003a->"prime.L1"[2/3..]
2 0x8000003a->"prime.L1"[3/3..]

As explained above, the loop has 3 contexts, of which contexts 0 and 1 correspond to the first 2
iterations, while context 2 corresponds to the remaining 19 iterations. It turned out that the first
iteration takes 10 cycles, the second iteration takes 22 cycles, while all other ones take 15 cycles.
This leads to the non-cumulative WCET 19 · 15 = 285 in context 2. Since loops are analyzed as
recursive routines (see section 4.1), the cumulative WCET of each iteration includes the WCETs of
the later iterations and the cumulative WCETs of the corresponding calls of divides. Thus, the
cumulative WCET 912 in context 2 results from the non-cumulative WCET 285 and the cumulative
WCET of divides in the corresponding context 3, which is 627 (see below). The cumulative
WCET 967 in context 1 results from adding the non-cumulative WCET (22) and the cumulative
context-2-WCET of divides (33) to the cumulative WCET of context 2 (912). The overall
non-cumulative WCET (predicted WCET contribution) of the loop (317) results from adding the
non-cumulative WCETs in the various contexts (10+22+285).

Second info field of routine divides:

Predicted WCET Contribution: 384 cycles = 9.6 us
Cumulative: 736 cycles = 18.4 us

Predicted WCET Contribution per Context (cumulative):
Context 0: 27 cycles (43 cycles)
Context 1: 17 cycles (33 cycles)
Context 2: 17 cycles (33 cycles)
Context 3: 323 cycles (627 cycles)

Contexts Call String
0 0x8000002c->"even", 0x80000024->"divides"
1 0x8000003a->"prime.L1"[1/3..], 0x80000040->"divides"
2 0x8000003a->"prime.L1"[2/3..], 0x80000040->"divides"
3 0x8000003a->"prime.L1"[3/3..], 0x80000040->"divides"

This routine has 4 contexts. Contexts 1–3 correspond to contexts 0–2 of the loop, while the remain-
ing context 0 corresponds to the call of divides in even. It turned out that that call, which is the
first call of divides, takes 27 cycles, while all other calls take only 17 cycles. The WCET 323
in context 3 adds up the times of 19 calls of divides (19 · 17 = 323) since context [3/3..]
of the loop corresponds to 19 loop iterations. The cumulative WCETs of divides equal the
non-cumulative ones plus the WCETs of divides.L1. The overall non-cumulative WCET (pre-
dicted WCET contribution) of divides (384) results from adding the non-cumulative WCETs in
the various contexts (27+17+17+323).

The distribution of WCETs among the various loop iterations is not always as regular as in
the examples presented above. As explained in section 7.4.3, the WCET contribution for one
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Figure 7.21: Basic block graphs resulting from Analyze

iteration may be 0 because it is added to another iteration. This seemingly strange behavior
does not affect the overall WCET, but only its distribution among the various contexts. It
may also happen that only part of the WCET contribution of one iteration is accounted in
another iteration.

7.4.3 WCET Information for Basic Blocks

Figure 7.21 shows the basic block graphs of an ordinary routine (left) and of a loop routine (right).
Most edges are annotated by a white box displaying two numbers. The meaning of these numbers
becomes clearer when looking at the second info fields of these white boxes. For instance, the
second info field of the white box at the outgoing edge of the loop-entry node 0x80000040
contains under the heading Details the lines

0: cycles=2, count=1
1: cycles=14, count=1
2: cycles=7, count=19

The numbers in these lines refer to the three contexts of the loop routine, namely

Context 0: 0x8000003a->"prime.L1"[1/3..]
Context 1: 0x8000003a->"prime.L1"[2/3..]
Context 2: 0x8000003a->"prime.L1"[3/3..]
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This example was run with max-unroll = 3 so that three loop contexts are distinguished: con-
texts 0 and 1 for the first two iterations and context 2 for the remaining 19 iterations. In general,
the second info field of a white box at an edge e displays two numbers for each context c:

• the worst-case traversal count C(e,c) for edge e and context c as determined by path anal-
ysis (see section 4.4.4),

• and the estimated worst-case execution time in cycles for edge e and context c as deter-
mined by the combined cache and pipeline analysis (see section 4.4.3). This is the estimated
WCET of the instructions in the basic block at the beginning of e provided that the block is
left via e. Loop call blocks like loop call prime.L1 and loop call rec prime.L1
do not contain instructions by themselves and therefore have no white boxes at their outgoing
edges.

In the second info fields of the white boxes, contexts are identified by their number. A description
of the contexts can be seen in the second info field of the surrounding routine.

The information in a white box itself is derived from the information in its second info field as
follows:

• sum # indicates the sum of the count values, taken over all contexts.

• max t indicates the maximum of the cycles values, taken over all contexts.

Consider again the white box below block 0x80000040 in Figure 7.21. Part of the info field of
this box has been presented above. It shows that the execution count in contexts 0 and 1 is 1, while
the count in context 2 is 19. Thus, the sum # entry in the white box is the sum of 1, 1, and 19,
which is 21. The execution time is 2 in context 0, 14 in context 1, and 7 in context 2. Thus, the
max t entry in the white box is the maximum of 2, 14, and 7, which is 14.

Since the first two contexts in the example above correspond to the first two loop iterations and the
third context to the remaining 19 iterations, it seems very natural that the execution counts in the
three contexts are 1, 1, 19. Thus it is a bit surprising that the execution counts assigned to the three
contexts may also be 1, 0, 20, or even 0, 0, 21. The reason is that the counts are determined by path
analysis using integer linear programming (see section 4.4.4). If the execution times in contexts 1
and 2 were identical, the count distributions 1, 1, 19 and 1, 0, 20 would yield the same WCET, and
path analysis would choose some arbitrary distribution.

Figure 7.22 shows another example. This program involves a loop

for (i = 1; i <= 10; i++)

The AIS file for this example contains the correct, but quite imprecise specification

loop "main" + 1 loop min 0 max 11;

The example was run with context specification

interproc flexible, max-length = inf;
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Figure 7.22: Example with infeasible paths

(see section 5.4) so that the number of loop contexts is derived from the specification in the AIS
file. Since the position of the loop head is not specified there, a3 assumes the worst case, which
is test at the beginning. Therefore, the specification in the AIS file implies that the loop test is
executed at most 12 times, and thus, 12 loop contexts should be distinguished, but a3 finds out that
the last two contexts are infeasible, i.e. do not correspond to any loop iteration. These contexts are
suppressed so that there are only 10 contexts, which are numbered 0–9:

Context 0: 0x80800000->"main.L1"[1/12]
Context 1: 0x80800000->"main.L1"[2/12]
Context 2: 0x80800000->"main.L1"[3/12]
Context 3: 0x80800000->"main.L1"[4/12]
Context 4: 0x80800000->"main.L1"[5/12]
Context 5: 0x80800000->"main.L1"[6/12]
Context 6: 0x80800000->"main.L1"[7/12]
Context 7: 0x80800000->"main.L1"[8/12]
Context 8: 0x80800000->"main.L1"[9/12]
Context 9: 0x80800000->"main.L1"[10/12]

In reality, the loop test is at the end, namely at the end of the first and only block of the loop.

Value analysis is able to determine the value of i in each iteration since each iteration is performed
in a new context. Hence it can predict that block 0x80800006 (the loop test) is left via the left
edge leading to the next iteration in the first 9 executions of the test (contexts 0–8), but is left via
the right edge leading to the block after the loop in the 10th and last execution (context 9). The left
white box in main.L1 therefore lists the following Details in its second info field:

0: cycles=13, count=1
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1: cycles=16, count=1
2: cycles=14, count=1

3- 8: cycles=6, count=1
9: infeasible

The right white box lists the following:

0- 8: infeasible
9: cycles=6, count=1

Note that adjacent lines with the same information are collapsed into a single line tagged by a
range of contexts.

Besides the Details information as presented above, the second info field of the white boxes
contains some summary information under the heading Statistics. The Statistics infor-
mation of the second info fields of the two white boxes in routine main.L1 looks as follows (with
some parts replaced by “...”):

Statistics: | Statistics:
Number of contexts: 10 | ...: 10
Number of infeasible contexts: 1 | ...: 9
Common infeasible contexts: 0 | ...: 0
Additional infeasible contexts: 1 | ...: 9
Total execution count: 9 | ...: 1
Total contribution (cycles): 79 | ...: 6
Maximum count over contexts: 1 | ...: 1
Maximum execution over contexts: 16 | ...: 6

The Statistics part lists the following information:

• Number of contexts indicates the number of contexts of the routine in which the
white box occurs. In the example, the number is 10 for both white boxes, which are in the
same routine main.L1.

• Number of infeasible contexts indicates the number of contexts for which
value analysis has found that the edge through the white box is infeasible, i.e. never taken as
a control path. In the example, the number is 1 for the left box that is infeasible in context 9,
and 9 for the right box that is infeasible in contexts 0–8.

• Common infeasible contexts indicates the number of contexts in which both
edges are infeasible. In the example, this number is 0 since the contexts in which both
boxes are infeasible have been suppressed.

This information appears only if several different edges emanate from a single basic block B
(block 0x80800006 in this example). The displayed number is then the number of contexts
in which all the edges emanating from B are infeasible, i.e. the number of contexts in which
B itself is infeasible.
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• Additional infeasible contexts is the difference between the Number of
infeasible contexts and the number of Common infeasible contexts. Like
the latter, it appears only if several different edges emanate from a single basic block.

• Total execution count is the sum of the execution counts over all contexts. This
is the same as the number sum # displayed in the info field itself. In the left box, this sum is
9 since the count is 1 in contexts 0–8.

• Total contribution (cycles) is the sum of the product of count and cycles
over all contexts. In the left box, this sum is 13+16+14+6 ·6 = 79. This number can be
understood as the contribution of the edge through the white box to the overall WCET. (In
contrast, the number max t displayed in the info field itself is the maximum of the number
of cycles in the various contexts, without considering the execution counts.)

• Maximum count over contexts is the maximum of the execution counts over all
contexts. In the example, this is 1 for both boxes.

• Maximum execution over contexts is the maximum of cycles over all con-
texts. This is the same as the number max t displayed in the info field itself. In the left box,
this is the maximum of 13, 16, 14, and 6, which is 16.

7.4.4 Loop Count Information

The results of automatic loop bound detection and the user-specified loop bounds appear in the first
info fields of loop call nodes of the form loop call R.Ln. These are the loop call nodes that
mark the place where the loop has been extracted by the loop transformation. See section 8.1.7 for
accessing info fields in aiSee.

Example 1: If the first info field of loop call prime.L1 in Figure 7.21 were opened, you
would see

User specified bounds:
iteration-min: 1
iteration-max: 21

Analyzed bounds:
[?] in context 0: no-history

Automatic loop bound detection did not obtain any useful result in this example.

For this example, the specification in the AIS file has been

loop "prime" + 1 loop min 0 max 20 begin;

claiming that the loop test is at the beginning of the loop. Nevertheless, the info field gives bounds
of 1 and 21. The reason is that the numbers in the AIS file refer to executions of the loop body,
while the numbers in the info field refer to executions of the loop test. If the loop test is at the be-
ginning, it is executed once more than the loop body. If the AIS file had contained the specification
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loop "prime" + 1 loop min 0 max 20 end;

claiming that the loop test is at the end of the loop, the info field would have contained bounds of
0 and 20.

Example 2: The first info field of loop call main.L1 in Figure 7.22 contains:

User specified bounds:
iteration-min: 0
iteration-max: 12

Analyzed bounds:
[10] in all contexts

Here the user specified

loop "main" + 1 loop min 0 max 11;

which applies to the loop body. Since the user did not specify whether the loop test is at the
beginning or the end, the iteration bounds 0–11 for the loop body lead to bounds 0–12 for the
number of executions of the loop test. Automatic loop bound detection was successful for this
example. It found that the loop test is executed exactly 10 times. This result is valid for all
contexts of main (in fact, there is only one in this example). In general, automatic loop bound
detection may find one result for each context of the routine containing the loop.

Note that user annotations supersede the results of loop bound detection unless they are default
annotations. Therefore, the analyzed bound of 10 in the example above gets used only if the
imprecise user annotation is deleted or tagged with by default.

7.4.5 The Worst-Case Execution Path

Path analysis determines a worst-case traversal count for almost every edge in each context (see
section 4.4.4). These traversal counts are contained in the second info fields of the white boxes
in the basic block graphs (see section 7.4.3). The white boxes themselves contain the sum of the
execution counts taken over all contexts, labeled by sum # (see Figures 7.21 and 7.22).

All edges with a non-zero worst-case traversal count are colored light red. Those which correspond
to “false” edges are dotted to distinguish them from the “true” and normal edges. Often, the light
red edges form a worst-case path through the basic block graph. This path need not be the real
worst-case path because it might be infeasible without being recognized as such by a3. Consider
for instance code such as

if (x > 0) b1; b2; if (x < 0) b3;

where x may hold any positive or negative value depending on the inputs and is not modified in
any of the three blocks. Then the path b1→b2→b3 that includes both b1 and b3 is infeasible
because b1 and b3 cannot be executed together in the same run through this code snippet. Yet
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each of the three blocks is feasible since there are runs that execute b1 and other runs that execute
b3. Path analysis does not track conditions and will display the infeasible path b1→b2→b3
as worst-case execution path. Despite this behavior, the WCET computed by a3 is a safe ap-
proximation of the real WCET since the infeasible path b1→b2→b3 needs more time than the
feasible paths b1→b2 and b2→b3. Thus, the computed WCET is still an upper bound of the
real WCET. Taking into account infeasible paths only reduces the precision of the analysis, i.e.
increases the difference between computed WCET and real WCET.

In the discussion above, we assumed that the light red edges form a path. Yet in reality, they may
fail to do so. As explained in section 4.3, each routine is analyzed several times, once for each
context. Sometimes, path analysis assigns the same execution counts in all contexts, but it may as
well happen that execution counts are 0 in one context and non-zero in another, i.e. the computed
worst-case paths depend on the context. An edge is colored light red if its execution count is non-
zero in at least one context. Hence, the collection of light red edges does not represent a single
worst-case path in general, but the union of the worst-case paths of the various contexts. This
applies in particular to loop routines where usually almost every edge is light red. In loops, you
may also consider the light red edges as a single path that loops around so that nearly every edge
belongs to it. In ordinary routines, the worst-case path is usually more visually recognizable, e.g.,
in Figure 7.21, left. Call edges are colored light red if at least one of the calls they represent has a
non-zero worst-case traversal count, i.e. lies on the worst-case path. The remaining call edges are
still dark blue (see for instance Figure 7.20, left).

7.5 Graphs with Cache and Pipeline States

When an “interactive” operation (Analysis→Interactive or ) is issued in a timing-
analysis view, a3 performs a WCET analysis and then displays a combined call graph and control-
flow graph that looks like the graphs with WCET results described in section 7.4, but additionally
provides access to the cache and pipeline states created by the analysis (and to the values in regis-
ters and memory cells by pressing v, see section 7.2).

When you select a basic block with the left mouse button and press the p key, a3 opens a context
selection box displaying all contexts for the basic block selected. When a context is selected and
the Ok button of the context selection box is clicked, a3 opens a new graph-browser view showing
the cache and pipeline states of the selected basic block for the selected context (this may take
some time).

The collection of possible cache and pipeline states for a basic block and a context is displayed
as a graph. Figure 7.23 shows such a state graph, in low magnification. The large gray rectangles
correspond to the instructions of the basic block the state graph belongs to. The smaller rectangles
with a colored frame are individual states. A red frame indicates start states (relative to an instruc-
tion), a green frame indicates end states, states with a blue frame are states in-between, and states
in a white frame do not belong to the control-flow considered and must be deleted. The end states
of an instruction correspond to the start states of the next instruction.

The cyclewise evolution of the states is indicated by the arrows connecting them. Each layer in the
picture corresponds to one CPU cycle. Branches in the trees are caused by case distinctions that
cannot be statically evaluated. On the other hand, two states fall together when details they differ
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Figure 7.23: Analyzer states

in leave the pipeline. This happened for instance at the end of the second instruction. Two pairs
of end states are identical and fall together, which is indicated by the arrows to the orange boxes
that stand for the results of the identification. Consequently, the third instruction has only two start
states, which again split into two successor states each.

Figure 7.24 shows the lower left part of the second gray box from Figure 7.23 in greater mag-
nification. The two states with the green frame are – except for the cycle count – identical with
each other. These two states fall together into one, which is indicated by the arrows labeled by
subsume and subsume2 leading to an orange box representing the result of the identification.
This orange box is labeled by the maximum of the cycle counts of all states identified in it.

Because of the identification, the last gray box starts with two states (those with a red frame in
Figure 7.23). In the control flow graph, the corresponding instruction node has two successors, a
“true” successor and a “false” successor. Accordingly, each state splits now into two, one indicating
what happens if the “false” edge is followed, and one for the “true” edge. Yet in each case, only
one of the successors is compatible with the prefetch decision taken previously. The incompatible
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Figure 7.24: State subsumption

Figure 7.25: Analyzer states in larger magnification

ones are deleted (white), while the compatible ones are end states (green frame) to be propagated
to the next basic block (the “true” successor and the “false” successor respectively).

Figure 7.25 shows such a situation in larger magnification so that the text panels included in the
states become readable. Such text panels can also be seen in Figure 7.24. These text panels contain
the following information:
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• instruction address indicates the address of the current instruction, i.e. the instruction
that is being retired at the end of the surrounding gray box. Initial states form an exception:
they usually still display the address of the previous instruction.

• mnemomic: code shows the disassembly of the instruction at the address displayed one
line before.

• cycles = number counts the cycles from the beginning of the basic block.

• flag = . . . presents the kind of the state (as also indicated by the frame color). Initial
states (red frame) do not display the flag, intermediate states (blue frame) are labeled in
progress, incompatible states (white) are labeled deleted because they are removed
from the set of states without a successor state, and final states (green frame) are usually
labeled as done.

There is another possible label for final states. Since the processor may retire several instruc-
tions at once, it may happen that an initial state is already final since the current instruction
has already been retired together with the previous one. In this case, a3 still draws two dif-
ferent states , but the final state is marked by the flag instantaneous, and the cycles
counter is not incremented, but has the same value in the two states (see Figure 7.25).
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Chapter 8

The aiSee Graph Viewer

aiSee is AbsInt’s graph viewer. It reads a graph description written in GDL (Graph Description
Language), computes a layout for this graph, and displays this layout on the screen.

In a3 aiSee graphs are embedded as views. Whenever a control flow graph or the results of a
successful analysis are visualized, a new view is appended to the Graphs section in the list of
available views. By selecting one of the available Graphs views, the graph is displayed in the
right part of the a3 window; menu and tool bar are extended by several entries for accessing aiSee
functions.

When the detach button in the right upper corner of a graph view is clicked, the graph view is
detached into a separate window. When such a detached window is closed, the graph displayed
in it returns into the main a3 window as a graph view. Closing a graph view completely is only
possible in its non-detached state by clicking the close button .

The following sections contain an introduction to the operations of aiSee: how to navigate through
a graph and how to access initially hidden information. The description is biased towards the
browsing of graphs generated by a3. For detailed information and more advanced features, consult
the separate aiSee manual.

If you are used to the old version 2 of aiSee, keep in mind that this chapter solely addresses the
new version 3.

The examples in this chapter are generic, i.e. not specific to the TriCore architecture.

8.1 aiSee Basics

8.1.1 Command Invocation

Most aiSee commands can be invoked in three ways: by hitting a key on the keyboard, by clicking
a tool bar button, or by invoking a command from a menu. Furthermore, some commands are
accessible from the context menu.
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8.1.2 Operation Modes

aiSee has several operation modes for collecting operands or additional information: in Selection
Mode you can select a node, several nodes, or a graph area; in Zoom Mode you can zoom in and
out; finally, in Pan Mode you can drag the graph.

You can enter different modes either by using the tool bar or the Mode menu. For details refer to
sections 8.1.3.2 and 8.1.4 below.

8.1.3 Scrolling and Scaling

Most graphs are too large to be displayed completely (unless the nodes are displayed extremely
small). Therefore, aiSee usually shows only some part of the graph. This part can be scrolled, and
scaled up or down by zoom operations.

8.1.3.1 Scrolling the Graph

A graph can be scrolled by hitting the arrow keys ↑, ↓, ←, and →. For faster vertical scrolling
you can also use the PgUp and PgDn keys. Vertical scrolling can also be achieved by turning the
mouse wheel (if available), and arbitrary scrolling by moving the mouse while holding down the
middle mouse button (if available). When the letter o is hit, the graph is scrolled so that its “origin”
(a fixed point somewhere near the upper left corner of the graph) sits in the upper left corner of the
graph window. All these operations work in any mode.

If there is no middle mouse button available, you can still scroll the graph with the mouse by
entering Pan Mode: click on the button in the tool bar or select Mode→Pan in the menu.
Then you can scroll by moving the mouse while the left mouse button is pressed.

8.1.3.2 Scaling the Graph

For scaling the graph you can use the following commands:

• + or magnifies (scales up) by a factor of 1.41.

• - or reduces (scales down) by a factor of 0.7.

• 0 (zero) or scales to some fixed medium magnification.

• m or scales and scrolls so that the whole graph fits in the window (approximately).

• h or scales and scrolls so that the whole graph vertically fits in the window (approxi-
mately).

• w or scales and scrolls so that the whole graph horizontally fits in the window (approxi-
mately).
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The commands +, -, and 0 (zero) scale the distances from a point near the center of the graph
window. All those commands can also be invoked from the View menu.

While all the previous commands can be used in any mode, you can also enter the Zoom Mode:
either by clicking on the button in the tool bar or by choosing Mode→Zoom in the menu; then
click with the left mouse button anywhere in the graph to scale up or hold additionally the Shift
key pressed to scale down. If you move the mouse while its left button is pressed, you can select a
rectangular region of the graph. When the left mouse button is released, the graph is scrolled and
magnified so that the selected area extends through the entire aiSee window.

8.1.4 Selection of Graph Elements

In order to select certain elements from the graph, you first need to enter one of the selection
modes. Depending on whether you want to select only nodes, only graphs, or both, choose the
corresponding entry in the Mode→Select menu or click on the corresponding button in the
family in the tool bar. Elements can then be selected by left-clicking on them. Usually, selected
elements are highlighted, that is, are shown in a kind of inverse video mode.

By holding the Shift key down while clicking on nodes, you can select or deselect several el-
ements. When Shift is held down, each left-click on a node toggles between selection and
non-selection. Another way to select several nodes is to move the mouse while the left mouse
button is held down. This draws a rectangle and selects all nodes met by the rectangle. The key
combination Ctrl+A selects all graph elements.

All selections are undone at once by pressing Esc.

8.1.5 Show Panner

With the Show panner function you can create an overview of the whole graph. By pressing
s, clicking on , or selecting View→Show panner in the menu the graph is magnified in
such a way that it is completely visible and a rectangle can be moved with the mouse to focus a
certain area of the graph; in the window this region is lighted. By clicking the left mouse button,
the corresponding part of the graph is magnified such that it fills the entire window. To exit this
function without modifying the current viewing perspective press Esc.

8.1.6 Resetting aiSee

Sometimes it is desired to read the input file again and return to the initial viewing perspective of
the graph. This can be done by clicking on the button or by selecting Edit→Reload in the
menu.

8.1.7 Accessing Info Fields

Nodes in GDL graphs can be associated with up to three information fields. To access them, first
select the nodes whose fields you want to show. Then press i, click on the button in the tool
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bar, select View→Show info in the menu, or choose Show info from the context menu. A
subwindow will pop up; in its left upper corner, there are numbered buttons to switch between the
three information fields. Buttons leading to empty information fields are inactive. The texts in the
info fields are shown in normal size no matter how the graph is scaled.

By proceeding as above you can open several information windows. When you move the mouse
over one of them, the node to which the current information belongs will be highlighted.

When several information fields are opened, a huge part of the graph might be covered. To make
the whole graph visible again, you can switch on / off the display of the information subwindows.
To this end press Ctrl+i, select View→Info fields visible, or click on the button
in the tool bar. Repeatedly doing this toggles between showing and hiding the opened information
boxes.

8.2 Exposing and Hiding Subgraphs

8.2.1 The Hierarchy Levels of Control-flow Graphs

The control-flow graphs generated by a3 are structured in three hierarchical levels:

1. The nodes of the call graph represent routines. All routines except for externally defined
ones and those declared not-analyzed contain basic block graphs, which are initially hidden,
but can be exposed by aiSee commands.

2. The nodes of the basic block graphs represent basic blocks. All basic blocks except for the
exit blocks and the loop-call blocks introduced by the loop transformation contain instruction
sequences, which are initially hidden, but can be exposed by aiSee commands.

3. The nodes in the instruction sequences represent assembly instructions.

From the point of view of aiSee, the relationship between routines and basic block graphs is the
same as the relationship between basic blocks and instruction sequences, and the same aiSee com-
mands can be used at both levels. Put in more general terms, this means that aiSee supports the
concept of graphs whose nodes may contain subgraphs, whose nodes in turn may contain sub-
graphs, etc.

8.2.2 Visualizing Subgraphs

There are several different ways to visualize a subgraph:

• Folded
The subgraph is shown as a single node called a summary node. The nodes and edges of the
subgraph are not visible.

In the call graph that is initially shown by aiSee, all subgraphs are folded as in Figure 8.1
(unless the Boxed routines flag in the Visualization view is activated – see sec-
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Figure 8.1: Graph with folded subgraphs

Figure 8.2: Call graph with boxed routine even

tion 3.4.6). The yellow nodes representing analyzed routines are summary nodes that stand
for basic block graphs whose inner structure is hidden.

• Boxed
The nodes and edges of the subgraph are visible. They are enclosed in a box which represents
the subgraph as a whole. Figure 8.2 shows an example. In the boxed state, all edges that
connect nodes of the subgraph with its environment begin or end at the enclosing box in
the visualization. This applies in particular to the call edges (blue arrows) so that it is not
apparent which basic blocks contain which calls if the basic block graph is in the boxed
representation.

• Clustered
As in the case of boxed representation, the structure of the subgraph is visualized in an
enclosing box, but now edges connecting a node of the subgraph with its environment begin
or end at the subgraph node and cross the border of the enclosing box (see Figure 8.3). In
the case of a basic block graph for instance, the clustered representation reveals which basic
blocks call which routines.

The clustered representation is an experimental feature. The layout of clustered sub-
graphs is quite challenging. aiSee includes an experimental implementation of clus-
tered layouts which is not supported or maintained. Nevertheless, many aiSee users
find this feature quite useful.

• Unfolded
In this representation, there is no enclosing box (see Figure 8.4). The subgraph is not only
freely embedded in its environment, worse yet, the nodes of the subgraph are not necessarily
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Figure 8.3: Call graph with clustered routine even

Figure 8.4: Call graph with unfolded routine even

close to each other; there may be other nodes in-between. If several different subgraphs are
shown unfolded, it is no longer apparent which nodes belong to which subgraph.

8.2.3 Switching between the Visual Representations of Subgraphs

When aiSee starts, all subgraphs are folded (unless the Boxed routines flag in the
Visualization view is activated; refer to section 3.4.6). To expose a subgraph, first switch
to Selection Mode and select its summary node. Then invoke any of the following commands:

• Unfold into box: press b or click in the tool bar.

• Unfold into cluster: press c or click in the tool bar.

• Unfold: press u or click in the tool bar.

A subgraph can be folded again by first selecting any node belonging to it and then pressing f or
clicking in the tool bar.

Notice that if you invoke the Unfold into box command on a routine, only basic blocks of the
routine will be exposed in a box; yet, all basic blocks of the routine are folded (unless the Boxed
basic blocks flag in the Visualization view is activated; see section 3.4.6). To also unfold
all basic blocks of the routine in one step, you can use the Unfold into box recursive
function by pressing Shift+B or selecting from the tool bar. Analogous recursive versions
are also available for the other commands.
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Figure 8.5: Window for searching nodes

All the above functions can also be accessed by selecting the corresponding entry in the Folding
menu or Folding context menu.

If more than one node or subgraph in the graph is selected, any fold or unfold operation refers to
all subgraphs which contain one of the selected nodes or to all nodes which are contained in one
of the selected subgraphs.

In principle, it should be possible to switch from any visual representation to any other using
the command belonging to the target representation. However, this is not always possible since
sometimes there is no way to achieve the required selection.

• To put a subgraph into a boxed, clustered or unfolded state, the corresponding summary node
must be selected. If the subgraph is currently folded, this is easily done by left-clicking on
the summary node. (This means move the mouse pointer into the node and then press the left
mouse button.) If the subgraph is currently boxed or clustered, it is selected by left-clicking
into the surrounding box outside any node of the subgraph. If the subgraph is currently
unfolded, there is no way to select it for boxing or clustering. You have to fold it first to get
a summary node that can be selected.

• To fold a subgraph into a summary node, select any of its nodes and then invoke the Fold
command as described above.

8.3 Find Nodes

Control-flow graphs may be huge. Therefore, aiSee provides a Find Node function. It can be
invoked by pressing Ctrl+f, clicking in the tool bar, or choosing Edit→Find node...
from the menu. After that, an auxiliary window for node search will pop up (see Figure 8.5). In
this window you can supply a search string in the upper input field. Figure 8.5 shows the result of a
search for the string divides. The result is given as a list of nodes. For every retrieved node, the
list shows its label, the number of ingoing and outgoing edges, and its current status (for summary
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nodes boxed, clustered, or folded). Labels of nodes that are already visible in the graph will be
shown in black, others in gray. In the example, all routines are folded so that only routine nodes
are visible.

The search performed on the graph is incremental, that is, while you type, the node list will dy-
namically change in such a way that it contains the labels of all those nodes that match against the
current search string (see below).

When the find box is opened for the first time, it does not show anything. A list of nodes
appears only after the first character is written into the input field.

Note that depending on the graph and the search string the list of nodes can be huge since it
contains all nodes from all hierarchy levels (routines, basic blocks including exit blocks with their
label end, and instructions). If the graph is annotated with stack analysis results, the node list even
contains the auxiliary result nodes.

If a node is selected in the list of search results, its position in the hierarchy is shown in the
baseline of the find box. In Figure 8.5 for instance, the selected node bl 0x30 <divides> is
part of block 0x50, which in turn is part of routine even. ((unnamed) refers to invisible nodes
without labels at the top of the hierarchy.) The node selected in the result list is also selected in
the graph picture provided that it is exposed in the graph. If it is hidden because of folding, the
summary node of the subgraph containing it is selected instead. The graph picture is scrolled so
that the selected node is displayed in the center of the graph window. The search-result list offers
a context menu accessible by clicking with the right mouse button on a node. The context menu
includes the following operations:

• Expose and box node: The selected node in the graph picture is unfolded into a
box. This operation is applied once, so maybe the selected node from the result list is still
not visible. The same effect can be achieved by pressing the b key in the graph view.

• Expose and recursive box node: Repeats unfolding all the subgraphs that
contain the selected node from the result list until that node is completely visible. The same
effect can be achieved by pressing Shift+B in the graph view.

By double-clicking on a node n in the result list, the result list is replaced by the list of nodes
adjacent to n. This show-neighbors feature is described in detail in section 8.4.

If you have invoked the Find node function several times, all successful searches are saved in a
history; to browse through them, use the and buttons.

To close the search window press Esc or use the standard close button of the window.

By default, the search string is matched not only against the node labels, but also against the node
titles and infofields.

Since the result list only displays the label, it may happen that the list contains nodes that
seemingly do not match the search string (since it is not contained in their label, but in one
of their infofields).
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Figure 8.6: Configuration window for finding nodes

This default behavior can be changed by clicking on the button. A new subwindow will appear
in which you can configure the search criterion (see Figure 8.6). Furthermore, you can set up
whether the search string should be interpreted as regular expression, whether the search should
be case-sensitive, whether the search should be restricted to nodes which have been selected in the
graph before, and whether only nodes that are currently visible in the graph should be considered
for search results. The regular expressions for finding nodes have the same structure as those
described in section 3.5.5.

8.4 Show Neighbors

In large control-flow graphs, visually following long bent edges may prove difficult. Furthermore,
call edges are not connected to call instructions in the boxed representation so that finding the
routine called by looking at the call edge is impossible without changing the representation. For
these reasons, aiSee provides a method for finding the neighbors of a node. Here, neighbor means
any node connected by an edge, regardless of the direction of the edge. This includes invisible
edges, which are used to attach stack analysis results to routines, basic blocks, and instructions.

Note that the notion of neighbor relies on the specification of the edges in the GDL file that is being
visualized. The nodes declared as source and target of an edge in the GDL file are not necessarily
the nodes connected by the edge in the visualization. For instance, the target of a call edge to
an analyzed routine is not the corresponding routine node, but the first instruction of the routine
called. In the visualization however, the call edge leads to the routine node if the control-flow
graph of the routine called is folded or boxed. In fact, analyzed routine nodes do not have any
neighbors except for the stack analysis result boxes attached to them by invisible edges if stack
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Figure 8.7: Window with list of neighbors

analysis is enabled. The same is true for blocks containing instructions.

When you select a node n and hit Ctrl+n or select Show Neighbors from the context menu, an
auxiliary window listing the neighbors of n appears. Alternatively, you can also access this function
via the button in the tool bar or via Window→Show neighbors in the menu. When you
double-click on a node in the list of neighbors, the list is replaced by the list of neighbors of the
double-clicked node. By repeating this procedure, you can walk through the entire graph (if it is
connected).

Figure 8.7 shows the instructions of routine even with stack analysis results on the left and the
neighbors list of the call instruction bl 0x30 <divides> on the right. Each entry in the list of
neighbors starts with the symbol or . Here, means that the edge connecting the selected
node to the neighbor points from the selected node to the neighbor, while indicates an edge
in the opposite direction. After this symbol, the label of the neighbor, its number of ingoing and
outgoing edges, and its status follow.

The dialog box is actually identical to the Find Node dialog box (see Figure 8.5 and section 8.3).
Thus it also has the functionality that nodes selected in the list are highlighted and centered in
the graph picture. Note that if you (accidentally) supply a search string in the text input field, the
search will refer to all nodes of the graph (that is, not only to the nodes available in the list of
neighbors); in this case you can press to move back to the list of neighbors.

In the example of Figure 8.7, one of the neighbors (with label 16) is the stack result node attached
to the node originally selected, and addi r5, r3, +0 is the first instruction of routine divides,
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whose node is not visible in the graph on the left, and thus colored in gray in the node list. The
other two neighbors are the predecessor (marked by ) and the successor (marked by ) of the
call instruction in the control-flow graph of even. The last node is the light green circle indicating
the call point. The neighbors of such a call point are the nodes belonging to the call instruction and
the instruction immediately following this instruction.
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Chapter 9

Typical Working Patterns

This section lists some working patterns for obtaining useful information or reacting to reported
problems. All mentioned aiSee operations refer to the new aiSee 3 as described in chapter 8.

9.1 Finding a Routine in an aiSee Picture

This section describes a method to find a routine in an aiSee picture by its name.

1. It is recommended, but not necessary, to first bring the picture in a state where only routine
nodes are visible. This can be done using the Reload function by clicking on in the
toolbar, which reads the graph again from the file where it has been stored and shows its
initial layout (see section 8.1.6). Usually this means that only routines and their calling
relationships are displayed.

Remarks:

• If the Boxed Routines flag in the Visualization View is activated (see sec-
tion 3.4.6), the initial layout also shows basic block graphs.

• If the file containing the displayed graph has meanwhile been deleted, the Reload
operation cannot be executed.

In both cases, you should not worry and continue with step 2.

2. Zoom using the + key until individual routines can be clearly distinguished (it does not
matter if most of them are situated off screen).

3. Use Ctrl+f to start a node search (see section 8.3).

4. Write the routine name N in the input field and select the entry N in the node list.

5. The previous step causes the aiSee picture to be scrolled so that the desired routine is situated
close to the center of the window and selected.
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6. When you press b, its basic block graph becomes visible (but not the individual instructions).
When you press Shift+B instead, its basic block graph with all instructions becomes visi-
ble. Details about exposing and hiding subgraphs by these and other operations can be found
in section 8.2.

9.2 Finding an Instruction in an aiSee Picture

This section describes a method to find an instruction in an aiSee picture by its address.

1. Press Ctrl+f to open the Find Node subwindow (see section 8.3).

2. Press the button to change the search preferences.

3. Within the Search Preferences subwindow (see Figure 8.6) solely select Info 2 in
the Search for section and press OK.

4. Back in the Find Node subwindow provide the instruction address in the input field.

5. Ideally, there is now a single node in the node list. Select it, and in case the corresponding
node is hidden by folding, that is, its entry is depicted in gray, click with the right mouse
key on it and select Expose and recursive box node from the context menu. This
causes the routine and basic block containing the instruction to be put into the boxed state so
that the desired instruction becomes visible in the aiSee picture. Clicking on it again in the
find-node dialog causes the picture to scroll so that the desired instruction is situated near
the center of the window.

9.3 Finding the Place of Maximum Stack Usage

If you want to find the place of maximum stack usage, you should perform a stack analysis with
a report file. Reporting is activated by specifying a file name in the Report file field in the
Files view in the Configuration section (see section 3.4.1). After a successful stack anal-
ysis with reporting enabled, the report file will contain analysis results for all routines. Routines
where the global maximum of the system or user stack usage is attained are marked by the phrase
** hits the global maximum **. Thus they can be found by searching for this phrase
in the report file. Note that there may be several different such routines, some for the system and
some for the user stack.

The report file does not only contain the global and local stack analysis result for each routine, but
also the call chain leading to the global result, e.g.,

routine ’divides.L1’
=> maximum usage is 8u/128s
=> ** hits the global maximum **
=> maximum local usage is 0u/0s
=> call-stack:
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User/System Stack History:
-> 0u/ 0s < 8u/ 64s> ’main’
-> 8u/ 64s < 0u/ 64s> ’prime’
-> 8u/ 128s < 0u/ 0s> ’even’
-> 8u/ 128s < 0u/ 0s> ’divides’
-> 8u/ 128s < 0u/ 0s> ’divides.L1’
=> 8u/128s bytes

Section 7.3.1 provides details about the meaning of global and local stack results at routines and
the interpretation of the call chain.

If you would like to see a visualization of the place of maximum stack usage, search for the
routine with maximum stack usage in the aiSee picture of the application with stack analysis
results as described in section 9.1. Once you have found the routine, the stack analysis result box
attached to it provides the same information as the report file: global and local stack analysis results
form the box label, and the call chain is displayed when you select the first information field (see
section 8.1.7).

9.4 Avoiding State Explosion

If the number of combined cache and pipeline states excessively increases in a basic block, a3

warns about this “state explosion”:

tricorepipe: Info: In "dry2_1.c", line 15:
At address 0x80000494 in routine ’strcpy_x.L1’:

Possible state explosion from 266 entry states
to 30736 final states.

Please use further annotations

The given address is the address of an instruction, say I, in a basic block, say B. In this example,
the analysis of block B starts with 266 states, which evolve into 30736 states after instruction I.

Often, a state explosion results from a sequence of memory accesses to unknown addresses. If
there are n memory areas with different properties, every such memory access splits each state
into n successor states, one for every area that may be accessed. Thus you should watch out for
unknown accesses near the address specified. This can be done in the report file, maybe together
with the graph picture. (See section 9.2 for how to find an instruction by its address in the picture).

The state explosion can often be avoided if you add some information about the addresses of
memory accesses near the point where the explosion occurs (of course, this is only possible if you
possess such information). Two kinds of annotations are useful for this purpose: First, you may
provide direct address information by means of an access annotation

INSTRUCTION ProgramPoint ACCESSES Range1, ..., Rangen ;

as described in section 5.9. Such address information is valid for a single access only. Second, if
addresses are formed by adding a known offset to an unknown register value, the address is known
once you specify that register value (provided you know it). This can be done in the form
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INSTRUCTION ProgramPoint IS ENTERED WITH
Register1 = Expr1, ..., Registern = Exprn ;

as described in section 5.10. Such information may be more economic than an ACCESSES speci-
fication since it may affect several accesses via the same base register.
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Appendix: Document History

This appendix describes the revision history of this manual. Dates are written in the format
YYYY-MM-DD.

A manual release is a release version of the manual. The manual release number occurs on the
title page after the heading “Manual Release”. Note that manual releases are not necessarily corre-
lated with product releases. The installation package of a product release contains the most recent
manual release available when the package was created.

The manual release number is incremented when there is a new version of some manual. In con-
trast, the build number and the date, also appearing on the title page, are incremented on a daily
basis.

The document history given in the sequel documents all changes in this manual. Therefore, it
includes the dates when certain product features were first described in the manual. Yet note that
these dates are usually different from the dates when the product features were added to the product.
Usually, it takes some time to describe a new product feature. Sometimes, it even happened that a
product feature was not yet documented in this manual when the product with the new feature was
released.

2008
2008-11-27 Initial version of manual describing a3 for TriCore.

Manual Release 00037
2008-12-05 Some details added to description of graph browser aiSee (chapter 8).

Manual Release 00039
2008-12-11 Clarification: Timing analysis does not support accesses

spanning multiple memory areas (6.3).
Manual Release 00040

2008-12-12 New check box Show MD5 sums in the Files view (section 3.4.1).
Description of TriCore view (section 3.4.2).
New target TriCore 1797 supported.
Manual Release 00041

2008-12-16 Update of description of Analyses view (3.4.3) and Registers view (3.4.4).
Computed calls are indicated by a red border (no longer dotted; 7.1.1.1).
Manual Release 00042
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2009
2009-01-16 Clarification: Instruction fetches from Data Flash, Boot Rom, and LMI

are not modeled in case of TC1766 and TC1796 (6.3).
Manual Release 00045

2009-01-22 Sizes of caches and local memory can be specified in the TriCore view (3.4.2.4).
AIS annotations for assumed alignment (5.9.5).
More exact description of assumed alignment (3.4.3.4, 5.9.5).
Manual Release 00046

2009-02-02 Update of Visualization view (3.4.6):
– Preview and Color scheme added;
– Fast animation removed;
– Trace-like pipeline state visualization added.
Renaming of chapter 7 and its sections.
Manual Release 00047

2009-02-19 New: Show per context info in XML report in Analyses View (3.4.3.2).
The font for labels in graphs can be selected in the Visualization view (3.4.6).
Register values may refer to other registers (section 5.10).
Manual Release 00048

2009-02-26 Shortcut for Analysis→Start is now F7 (formerly F6).
Shortcut for Project→Start all analyses is now F6 (formerly F5).
Addition of value analysis (chapter 5, in particular 5.12, 5.17.3, 5.23)

and viewing of value analysis results (7.2).
Manual Release 00050

2009-02-27 Legend for color scheme replaced by hint to legend built in a3 (section 7.1).
Manual Release 00051

2009-03-19 Description of configuration files added (new section 2.2).
Manual Release 00052

2009-03-31 Infeasible routines are shown in gray
(they previously have been omitted in graphs with analysis results).
Paragraphs with stack-analysis examples promoted to subsections (7.3.1 – 7.3.3).
Manual Release 00053

2009-06-04 New: Output worst-case execution path in XML report
in Analyses View (3.4.3.2).
Description of Results view (now called Overview view) added (3.5.4).
Description of disassembly views added (3.5.6).
Description of source code and debug views added (3.6).
Manual Release 00055

2009-07-30 Additional execution time can be product or selection (5.13).
Description of user registers added (section 5.10).
Register specifications may involve general AIS expressions (5.10).
Infeasibility can be conditional (5.17, in particular 5.17.2).
Condition values can be conditional (5.18, in particular 5.18.2).
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Description of parametric loop bounds added (5.20, in particular 5.20.1 and 5.20.2).
Description of AIS expressions added (5.28).
Mirrored memory areas are handled like different non-mirrored areas (6.1).
Manual Release 00056

2009-08-21 Navigation through view list and view history (beginning of chapter 3).
New field XML result file in the Files view (section 3.4.1).
New Source files view uniting the former Includes and
Replacements views (3.4.5).

Clarification: Areas containing data values are constant, not read-only (5.12.5).
Manual Release 00058

2009-09-02 The initial stack pointer value may be important for stack analysis (section 3.4.2).
Manual Release 00059

2009-09-15 New section on avoiding state explosions (section 9.4).
Manual Release 00060

2009-09-30 New field XML stylesheet in the Files view (section 3.4.1).
Update of analysis management: Overview and Results view
transformed into Create and Overview view (section 3.5).
WCET path and infeasible code marked in Disassembly view (3.5.6).
New view showing the section table of the executable (3.6.5).
Manual Release 00061

2009-11-18 Machine settings can be specified via hardware control registers (3.4.2.3).
Manual Release 00062

2009-11-23 Remark on unresolved source positions added (section 5.31.1).
New expressions value (5.28.14), restrict, defined, bounded, try (5.28.6).
Examples for the new expressions (5.20.2).
Memory cells can be referenced in expressions (5.28.5).
Manual Release 00063

2009-12-01 More command line options (section 2.1).
Difference analysis is mentioned (section 3.5.1).
Path analysis with the ILP method based on prediction files does no longer require
full unrolling of loops and recursive procedures (3.4.3.7, 5.4).
New annotation IS A TAIL CALL (section 5.8.1).
Information on the WCET contribution of non-routine snippets can be requested (5.14).
Manual Release 00065

2010
2010-01-13 New command line option -B for “interactive” batch mode (section 2.1).

New command line option -i to start specific analyses in batch mode (2.1).
Manual Release 00066

2010-01-15 Updates in Help menu (3.2) and Project menu (3.3).
Unified Preferences dialog box (3.3 and 3.5.6).
No more global XML report file (3.4.1).
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New textual and XML report files local to analyses (3.5.2).
Messages local to analyses in Overview view (3.5.4).
Reorganization of global Information views (3.6).
Manual Release 00067

2010-01-18 Labels defined in the AIS file (5.25) can be used as analysis start (3.5.2).
Such AIS labels can refer to areas (previously only single program points) (5.25).
AIS labels can be forced to replace routine names in graphs and report files (5.25).
Manual Release 00068

2010-01-23 The keyword EXACTLY is optional in loop bounds (section 5.20.1).
Additionally takes now admits general expressions (5.13).
Therefore, certain old annotations have to be modified (5.13.1).
New AIS expression undef giving an undefined value (5.28.3).
New switch expressions in AIS (5.28.13).
Space and time units such as bytes and cycles in expressions (5.28.16).
New logical operator always in AIS expressions (5.28.12).
AIS assertions, possibly about values of registers or memory cells (5.11).
Manual Release 00069

2010-01-27 Additional start points for timing analysis (section 5.5).
For these, instructions accessing some memory area can be counted (5.24.1).
Manual Release 00070

2010-02-03 Not accessing instructions, but accesses to some memory area are counted (5.24.1).
Manual Release 00071

2010-02-05 Directives to disable cache and pipeline flushes at excluded snippets (5.15.6).
Manual Release 00072

2010-02-19 New option Reduce number of identical messages (3.4.3.4).
Manual Release 00073

2010-02-26 Frequency of external clock at pin BFCLKO can be specified (3.4.2.5).
The sections in the AIS overview are marked with the analyses that they affect (5.1).
Manual Release 00074

2010-03-09 The max-unroll parameter can be set for individual loops (5.4).
Manual Release 00075

2010-03-23 Description of target check and how to switch it off (section 5.8.4).
Access counting now works for the main start point, too (relocated section 5.24.1).
Manual Release 00076

2010-04-01 Export feature in Project menu for copying input files (section 3.3).
GUI support for XTC interface to T1 tool (3.3).
Maximum memory usage in percent (section 3.4.3.8).
Flag Enable widening instead of widening threshold (3.4.3.8).
New AIS expression inf making undef obsolete (5.28.3).
Manual Release 00078

2010-04-09 Descriptions of calls or branches via tables may involve indirections (5.8.3).
Arrays may be null-terminated, and the access may be restricted to special indices.
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New syntax for requests for the WCET contribution of non-routine snippets (5.14).
Therefore, existing requests have to be modified (5.14.1).
Operands of unary operators should be parenthesized in AIS expressions (5.28).
The results of value analysis can be converted to AIS annotations (7.2.3).
Manual Release 00079

2010-06-21 Special value nan is replaced by (−inf .. inf ) (5.28, in particular 5.28.2, 5.28.8).
The predicate defined that tested for nan has been removed

(use bounded instead, see section 5.28.6).
The former round operation is now called int (5.28.9).
Manual Release 00081

2010-07-13 New WCET computation mode Local best-case (3.4.3.6).
Manual Release 00082

2010-07-27 New operator exact in AIS expressions to test if a value is exact (5.28.6).
Document structure: Introduction of proper chapters and four hierarchy levels.
Reorganization of chapter 3 to match the structure in the GUI.
Preferences dialog box: Code view part renamed into Disassembly (3.5.6).
There can be more than one interproc specification (5.4).
Manual Release 00085

2010-07-30 Description of timing specifications for loops (5.21).
Clarification about positions of the form "A" + 0 bytes (5.9.1).
Description of the Position .. + n bytes abbreviation (5.9.1 and 5.12.1).
Description of align operation in program-point specifications (5.29).
Manual Release 00086

2010-08-03 New annotation might contain data for memory areas (5.12.4).
AIS expressions can produce and process modulo information

(5.28, in particular 5.28.2 and 5.28.10).
New operators uint and sint for casting arbitrary values

to unsigned and signed integers of given bit width (5.28.10).
New operator exactly== for comparing two sets of possible values (5.28.11).
Manual Release 00087

2010-08-04 Execution times of code snippets excluded from analysis may be expressions (5.15.3).
The option Disable visualization in the Visualization view

now only takes effect in batch-mode runs of a3 (3.4.6).
Manual Release 00088

2010-08-13 Simplified syntax for referencing memory contents in AIS expressions (5.28.5)
(not fully backward compatible if units or lbf/hbf have been used).

Manual Release 00089

240



Index

Symbols
* in title bar, 17
+ (aiSee), 222, 223
- (aiSee), 222, 223
⊥ (stack analysis result), 180

Numbers
0 [zero] (aiSee), 222, 223

A
About... (a3 Help menu), 19
AIS file (Files view), 22
AIS files, 22
AIS format, 66
AIS Quick Reference (a3 Help menu), 19
aiSee, 221
aiSee Manual (a3 Help menu), 19
aligned data accesses, 30
alloc, 178
alloca, 178
analysis phases, 60
:Anon_A, 40, 55, 183
anonymous routines, 55, 183
any-history (context), 57
arrays of function pointers, 78
arrow keys (aiSee), 222
assembly instruction, 187, 224
assembly name of routine, 54
assertion (AIS language), 13, 66
Assume aligned data accesses, 30
Auto (TriCore view), 24
availability of a3, 12

B
Shift+B (aiSee), 226
b (aiSee), 226

basic block, 185, 224
basic block graph, 184, 224
batch mode, 15
black arrow, 186, 188
blue arrow, 186, 225
Boxed basic blocks (Visualization

option), 38
Boxed routines (Visualization option), 37
boxed subgraph, 225

C
c (aiSee), 226
C source code, 38
cache analysis, 62
Cache size (TriCore view), 26
call edge, 183, 186, 225
call graph, 182
calling conventions, 178
calloc, 178
CLOCK (AIS file), 68
clustered subgraph, 225
Color scheme (Visualization option), 38
Comma as decimal sign (Visualization

option), 37
COMPILER (AIS file declaration), 69
computed call, 76, 183

via array of function pointers, 78
computed jump, 76, 186
conditional jump, 186
configuration file, 15
context specification, 69
contexts, 55
Control-Flow Graph (a3 Analysis

menu), 42
Create AIS annotations, 193
create view, 39
Ctrl+f (aiSee), 227
Ctrl+i (aiSee), 224
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Ctrl+n (aiSee), 230
Cumulative WCET contribution, 207

D
dark gray stack analysis result boxes, 199
dark red arrow, 186
Data cache mode, 30
declaration (AIS language), 13
declarations (AIS language), 66
default-unroll, 70
defining analyses, 39
details (WCET info field), 213
Disable data accesses to PMI

(TriCore view), 25
Disable extended feasibility analysis, 34
Disable visualization for batch

mode (Visualization option), 39
Disable writes via LMI (TriCore

view), 24
Disassembly (a3 Analysis menu), 42
disassembly view, 45
Display analysis messages (a3

Analysis menu), 42
Display analysis results (a3

Analysis menu), 42
Display source code (Visualization

option), 38, 184, 188
Display WCET profiles (Visualization

option), 38
DMA accesses, 104
Do not analyze values of memory cells, 35
dummy call, 55, 185
Dump AIS files to report, 29
dynamic data structures, 178

E
Enable widening for cache states, 34
END (AIS file), 73
end (in displayed graphs), 185
ENTRY (AIS file), 73
entry block, 185
environment variables, 13
Esc (aiSee), 223, 228
Exceptions never occur, 30
Executable text field (Files view), 22

exit block, 185, 186
Export (a3 Project menu), 20
Export of machine settings, 25
external routines, 180, 200
extract annotations from source files, 29, 64,

174

F
Ctrl+f (aiSee), 227
f (aiSee), 226
“false” edge, 186
Files view, 22, 191, 192
find node (aiSee), 227
Find node... (aiSee Edit menu), 227
finding nodes (aiSee), 227, 229
First free CSA (TriCore view), 24
folded subgraph, 224
Font (Visualization option), 38
function pointers

arrays of, 78

G
Generate pipeline basic block statistics, 33
global results (for routines), 196
graph selection (aiSee), 223
gray routine, 183
gray stack analysis result boxes

dark gray, 199
light gray, 199

green arrow, 186

H
h (aiSee), 222
Help menu (a3), 19
hierarchy levels in graphs, 224

I
Ctrl+i (aiSee), 224
i (aiSee), 223
ILP solver, 33
Import of machine settings, 25
INCLUDE (AIS file), 144
include directories, 65
inf, 147
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infeasible problem, 64, 75, 120, 135
Info fields visible (aiSee View

menu), 224
info fields

access, 223
at basic blocks, 185
at instructions, 187
at routines, 183, 206
first info field, 197, 215
second info field, 186, 187, 206, 211, 216
third info field, 183, 186

Inline loop routines (Visualization
option), 38

Instruction cache mode, 30
instruction sequence, 187, 224
interactive batch mode, 15
interproc (context specification in AIS), 69
invocation, 14
irreducible loops, 54, 128, 129, 136

J
jump

computed, 186
conditional, 186
unconditional, 186

K
keep temporary files, 23

L
LABEL (AIS file), 142
left mouse button (aiSee), 223, 227
License... (a3 Help menu), 19
license key, 12
light gray stack analysis result boxes, 199
light red arrow, 216
line information, 174
Loading machine settings, 25
local results (for routines), 196
longjmp, 178
loop bound analysis, 61
loop bound missing, 129
loop bounds, 128
loop transformation, 50

loop without exit, 75

M
m (aiSee), 222
malloc, 178
Manhattan edges (Visualization option), 37
Manual (a3 Help menu), 19
max t, 212
max-length, 57, 60, 69
max-unroll, 59, 70
Maximum memory usage, 34
MD5 sums, 23
Memory size (TriCore view), 26
Mode menu (aiSee), 222
mouse dragging (aiSee), 222, 223
multi-entry loops, 54, 128, 136

N
Ctrl+n (aiSee), 230
names of routines, 54, 183
NEVER EXECUTED, 120
New (a3 Project menu), 39
New project (a3 Project menu), 19
no-history (context), 57
node selection (aiSee), 223, 227, 229
nonterminating loop, 64, 75
normal edge, 186, 188
Normal layout (Visualization option), 37,

188
not-analyzed routines, 109, 180, 183
Number of CSAs (TriCore view), 24

O
o (aiSee), 222
Open file (a3 Project menu), 20
Open project... (a3 Project menu), 19
operation modes (aiSee), 222
orange routine, 183
Output worst-case execution path in XML

report, 29
overview view, 42

P
Pan (aiSee Mode menu), 222
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parametric loop bounds, 128
path analysis, 63
path analysis options, 32
Path analysis variant, 32
path replacement, 65
pathan2, 64
PgDn (aiSee command), 222
PgUp (aiSee command), 222
phases of the analysis, 60
pink stack analysis result boxes, 198
pipeline analysis, 62
Predicted WCET Contribution, 207
Preferences... (a3 Project menu), 21
Project menu (a3), 19
Project messages verbosity level, 29
project tool bar, 18, 19

Q

Quit (a3 Project menu), 21

R
Recent Projects (a3 Project menu), 20
recursion, 183, 186, 204
red arrow

dark red, 186
light red, 216

red border, 75, 183, 185
red stack analysis result boxes, 198
Reduce number of identical messages, 30
Registers view, 35
Reload (aiSee Edit menu), 223
Report file (Files view), 22, 61, 128,

198
report file, 198
report file verbosity level, 29
resetting (aiSee), 223
return instruction, 76
routine names, 54, 183
routines, 54, 183

S
s (aiSee), 223
safe patterns, 30, 61
Save project (a3 Project menu), 20

Save project as... (a3 Project menu),
20

scaling (aiSee), 222
scrolling (aiSee), 222
SDA base (TriCore view), 24
SDA2 base (TriCore view), 24
Search Preferences window (aiSee),

229
Select (aiSee Mode menu), 223
selection

of graphs, 223
of nodes, 223, 227, 229
of project files, 19
of subgraphs, 227

self-loop, 64
Set as default button (Visualization

option), 39
setjmp, 178
View→Show info (aiSee View menu),

224
show MD5 sums, 23
Show neighbors (aiSee Window menu),

230
show neighbors (aiSee), 229
Show panner (aiSee View menu), 223
show panner (aiSee), 223
Show per context info in XML report, 29
skip target check, 82
snippets, 108
source code, 38, 188
source code annotations, 174
Source files view, 35
Stack address (TriCore view), 23
stack analysis, 195
Interactive (a3 Analysis menu), 42
Start (a3 Analysis menu), 41
Start all analyses (a3 Project menu),

21, 42
state explosion, 234
statistics (WCET info field), 214
Stop analysis (a3 Project menu), 21, 42
strip compilation path, 30, 65
stripped executables, 55
subgraph, 224

boxed, 225
clustered, 225
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folded, 224
selection, 227
unfolded, 225

subgraph selection (aiSee), 227
sum #, 212
summary node, 224
switch statement, 186

T
T1 (by Gliwa), 20
Target (TriCore view), 26
target check, 82
temporary files, 12, 23
termination (a3), 21
termination (analysis), 21, 42
textual successor, 186
timing specifications for loops, 135
title bar (of a3), 17
Trace-like pipeline state

visualization (Visualization
option), 38

TriCore view, 23
“true” edge, 186
TRY (AIS files), 143

U
u (aiSee), 226
Unable to resolve . . . , 143
unbounded problem, 64, 129
unconditional jump, 186
unfolded subgraph, 225
unreachable code, 180
unresolved computed call, 75
unrestricted recursion, 180
Use only safe patterns, 30, 61

V
v (aiSee command; value analysis), 190
value analysis, 62
verbosity level

project messages, 29
report file, 29

Version... (a3 Help menu), 19
View menu (aiSee), 223

Visualization view, 37, 182
volatile memory area, 98

W
w (aiSee), 222
WCET computation mode, 31
Welcome (a3 Help menu), 19
Welcome view (a3), 18
widening, 34

X
XML result file (Files view), 23
XML stylesheet (Files view), 22
XTC (a3 Project menu), 20

Y
yellow routine, 183

Z
Zoom (aiSee Mode menu), 223
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