
Fachprojekt

Real-Time Scheduler Implementation
on Unikraft

computer
science 12

Christian Hakert
Junjie Shi
Prof. Dr. Jian-Jia Chen
Otto-Hahn Str. 16
Technische Universität Dortmund
27.04.2020

Real-time applications are widely present in many fields
of modern computer systems. No matter if control-
ling safety-critical systems in a car, in a plane or in
a spaceship, providing autonomous driving or control-
ling a nuclear power plant, guaranteeing a worst-case
time until a task completes is crucially important to
prevent catastrophes. The area or real-time schedul-
ing provides algorithms and methodologies, which can
guarantee the worst-case time for a task completion
under given conditions. Thus, using real-time schedul-
ing allows to control the aforementioned systems with
computer based controllers.

Figure 1: Earliest-Deadline-First (EDF) schedule

When it comes to embedded systems, resources are
typically constrained. For instance, a system may only
provide several kB of RAM or only a single CPU core
with a few MHz clock frequency. Therefore, using full-
blown operating systems (e.g. linux) is not practicable
on many embedded systems. Special real-time oper-
ating systems have been developed in the past, which
only require minimal resources and still provide the nec-
essary functionality to schedule tasks under real-time
constraints. However, these systems usually lack of
providing standard application libraries or legacy inter-
faces.

Unikraft [1] is a configurable unikernel, which only pro-
vides minimal functionality in the basic configuration.
The resource consumption in this configuration is mini-
mal and it suits even small embedded systems. Unikraft
further allows to configure advanced features into the
system, for instance a python interpreter library can
be selected, if it is required. Due to the fact, that
such a functionality can be selected separately and does
not face many dependencies, high level functionality

(e.g. python) can be even provided on heavy resource
constrained systems.

In this work, students should implement a simple real-
time scheduling library for the unikraft kernel. The
library should not be invasive, i.e. when not selected,
it should have no effect on the kernel. Students are
requested to implement the requires task abstraction
for real-time tasks and to implement a simple, priority-
based scheduling strategy. Hardware independence is
not required, but would be useful.

Required Skills:

• Knowledgeable of C and C++ programming

• Basic knowledge of tasks and schedulers

Acquired Skills after the work:

• Knowledge about modern configurable unikernels

• Knowledge about implementation of real-time sys-
tems.

[1] Kuenzer, Simon. ”Unikraft: Unikernels Made
Easy.” (2018).


