technische universitat
dortmuna

Diploma Thesis

WCET-centric
code allocation for
scratchpad memories

Jan Christopher Kleinsorge

ull

$3 1 *

Dortmund University of Technology
Faculty of Computer Science XII

September 30, 2008

Advisors:

Dr. Heiko Falk
Prof. Dr. Peter Marwedel

To Jiirgen and Monika.

I would like to thank the various people who supported me during the
creation of this thesis.

I thank Dr. Heiko Falk for his valuable advice, assistance and motivation.

A special thanks goes to Paul Lokuciejewski and Sascha Plazar for the
edutainment and cooperation.

Last but not least, I owe a debt of gratitude to David Fischer, Andreas
Schmutzer, Sebastian Senge and Daniel Spitzer for their amicable sup-
port.

CONTENTS

Introduction

1.1 Motivation
1.2 Goals
1.3 Outline

Introduction to WCET analysis

2.1 Worst-case execution time
2.2 Approaches to WCET analysis
WCET-aware tool chain

3.1 IntroductiontoaiT
3.2 Introductionto WCC
3.3 TriCorel architecture
34 WCCextensions

Static scratchpad allocation

4.1 Relatedwork
4.2 Program analysis
4.3 Towards a static optimization
44 ILPModel.
4.5 Implementation

Dynamic scratchpad allocation

5.1 Relatedwork
5.2 Interprocedural lifetime analysis
5.3 Towards a dynamic allocation
54 ILPmodel
5.5 Postprocessing
5.6 Spillcode
5.7 Implementation
5.8 Program transformation

vii

B S R S

CONTENTS

6 Results 105
6.1 Benchmarks 105
6.2 Methodology 106
6.3 Results of static allocation, 106
6.4 Results of dynamic allocation 110
6.5 Comparing static and dynamic allocation. 113
6.6 General limitations e 116
6.7 Specific limitations of the dynamic allocation 117
7 Summary and future work 119
7.1 Summary e e e 119
7.2 Futurework 121
A Benchmark results 123
B Benchmark properties 127
List of figures 129
List of tables 133
List of algorithms 135
Bibliography 137

viii

CHAPTER 1

INTRODUCTION

The advent of embedded computer systems stems from the ever reducing space require-
ments while constantly improving the ratio of performance to energy consumption. The
widespread use of these systems coined the term Ubiquitous Computing [Wei93]. A pri-
mary aspect is that embedded devices perform their duty reliably in the background. Often,
they are responsible for computing tasks that require real-time capabilities. An important
field is signal processing. This can be tasks like music, video, radio recording or genera-
tion, the control of safety-critical systems like drive controls in automobiles and airplanes,
or in medical systems where a precise supervision of patients is required. These tasks can
be distinguished by the requirement that a time bound may be exceeded without imposing a
ciritical threat to the overall system but causing a loss in quality (soft real-time), or the re-
quirement for strict time bounds where a missed deadline can have disastrous effects (hard
real-time) [Mar03]. A soft real-time system is for example the control of a washing machine
whereas triggering the ejection of an airbag timely demands for a hard real-time control.

To deal with hard real-time constraints, it must be possible to analyze the requirements that
software imposes to the hardware in terms of computing performance on the one hand. On
the other, software that is supposed to be executed on such hardware must be consequently
designed to fulfill these demands as well. A key factor are production costs. Software should
be able to run on different machines without the need for modifications while maintaining
the real-time capabilities of the composed system.

To this end, knowledge of the worst-case execution time (WCET) for a given system is
crucial. It is an indicator for the worst possible scenario for which design decisions for
hardware and software alike can be based on. For optimizations of software with hard real-
time constraints, the WCET must be taken into consideration. In general, the optimizations
in many existing compilers are only aimed at average case improvements which can be
inadequate if it cannot be guaranteed that the WCET bound is adhered. The construction of
WCET-aware optimizations is therefore an important field of research.

CHAPTER 1. INTRODUCTION

1.1 Motivation

The memories of many systems form a hierarchy of physical memories accessible through
their address spaces. The aim of an optimization can be to make the best possible use of it.
Existing optimizations in general attempt to distribute data or code fragements among the
given memories so as to achieve improvements. Two paths have been taken until now.

One approach is to utilize the cache memory hierarchy of a system. Caches for data and
instructions are components that are very widespread among different architectures. An
optimal use of these memories can lead to great enhancements. Also, some architectures
offer secondary memories that are not bound to any particular task and that may be arbitrarily
used.

Caches have a great advantage over freely usable secondary memories. They posses a hard-
ware control and are tightly integrated with the overall system. That becomes most striking
when some form of optimization concerning code is performed. An instruction cache is
usually invisible to the processor because it overlaps with another underlying memory in
the address space. As no control from the software side is required or possible, no mod-
ifications to the program code have to be performed to make use of this faster memory.
Fragments of instructions are buffered and overwritten without the need to interact with the
cache. Therefore, they are a very efficient means to improve the average execution time of
a program.

This simplicity comes at a price. Additional hardware is required to make the cache work.
For one, additional memory needs to be reserved to store cache-line tags, and comparison
logic needs to be implemented. When it comes to energy reduction, a cache can deteriorate
the performance. Moreover, a cache stores fixed sized blocks of memory, which means that
also memory objects are stored which are irrelevant from the perspective of optimization.
Secondly, there is only a limited number of cache lines and reclaiming lines lies in general
beyond the control of the software. Therefore, objects that are important to an optimization
can be overwritten by any arbitrary objects that are mapped into the same cache lines. Also,
for small programs the cache might not even show a great effect as it will only be filled
when an actual access to some memory object has already been performed once. For opti-
mizations related to reducing the worst-case execution time, things get even worse. Since
caches are usually fully hardware controlled and come with undocumented or unpredictable
replacement strategies, it is often impossible to model a cache hierarchy sufficiently precise
so as to be able to predict its behavior. The only way to obtain a safe worst-case time is
to assume cache misses on every access. This might lead to a significant overestimation.
Techniques have been invented to overcome these problems in some cases. As embedded
systems are often required to offer real-time performance and because they are also often
required to minimize their energy consumption at the same time, caches are an inherently
difficult resource to handle when it comes to the precise modeling of a system to perform
any kind of software optimization.

Due to the limitations of caches, some architectures are equipped with fully software-
controllable secondary memories. These are memories that are tightly integrated with the
CPU to achieve best possible performance. These scratchpad memories (SPM) can be ac-

2

1.2. GOALS

cessed directly and are therefore in general well suited for optimizations regarding energy
consumption and execution time. These memories are directly mapped into the physical
address space. When a certain address interval is accessed, the scratchpad is used instead of
the main memory.

Modeling certain optimizations is a lot easier with them, as side-effects like the ones de-
scribed for caches can be neglected now. The strategies to fill this memory can be freely
chosen, insofar as there is no unpredictable behavior involved anymore. The lack of control-
logic also improves the energy-efficiency.

For WCET-centric optimizations, a scratchpad memory is ideal. The precision of the results
of an optimization solely depends on the precision of the model that was employed to reflect
the executing hardware. Worst-case time optimizations can rely on predictable timings. To
optimize for the reduction of the WCET, assorted parts of a program can be placed into the
scratchpad memory.

In this thesis, two different approaches towards the WCET-centric optimization of program
code are investigated. On the one hand, the static selection and assignment of program frag-
ments into the scratchpad memory is investigated. On the other, a dynamic allocation is
proposed. The aim is to make optimal use of the scarce scratchpad memory space by dy-
namically transferring selected code fragments between memories at runtime. The compiler
framework WCC provides the basic WCET-aware infrastructure, so that these optimizations
can be implemented as integrated parts of the compilation process. In this thesis, complete
technical solutions to both problems are presented and implemented as integrated optimiza-
tions within the WCC.

1.2 Goals

The goal of this thesis is to investigate ways to solve the WCET-directed allocation problem
for scratchpad memories. Based on the experiences of similar optimizations for energy
reductions using the scratchpad memory and attempts of other authors towards solving this
problem specifically taking into account the WCET, new optimization techniques shall be
proposed and complete technical infrastructures for their application are to be implemented.
Important aspects of the techniques presented in this thesis are:

e FEfficient infrastructure for convenient handling of memory hierarchies. The presented
optimizations all demand for a model of the memory layout of the target machine.
This information is typically only available at the linking stage during the compilation
process. A framework is to be proposed which enables optimizations on compiler-
internal representations with regard to the target memory model.

o WCET-directed allocation. It will be investigated why existing allocation schemes -
for example for energy reduction - cannot be applied directly. The worst-case time
bound needs to be strictly obeyed. This introduces a variety of problems that need
to be discussed. A key issue is the dynamic change of worst-case execution paths
depending on the optimization decisions.

CHAPTER 1. INTRODUCTION

e Static scratchpad memory allocation. This technique attempts to determine a fixed
subset of program code which is to be loaded into the scratchpad memory prior to
program execution. Challenging aspects of this kind of optimization are the optimal
selection of program code and the consideration of technical constraints.

o Dynamic scratchpad memory allocation. As opposed to a static allocation scheme, a
dynamic allocation approach shall be investigated which allows for the exchange of
scratchpad memory contents during program execution. This requires an analysis of
the program behavior so that decisions depending on the expected execution paths can
be performed.

o [LP-based modeling. Both allocation techniques shall be implemented as ILP mod-
els. It will be discussed why ILP is a viable way for solving WCET-related kinds of
problems like the the enumeration of worst-case execution paths and the modeling
of dynamic effects to the optimized program. New ways to model dynamic infla-
tion of the program size and the individual effects to the program performance due to
optimization decisions shall be proposed.

1.3 Outline

In the following, the outline of this thesis is presented.

In chapter 2, the formal basics are discussed. The worst-case execution time is formally
defined. In addition, it is discussed how the WCET can be determined in theory, and the
problems related to this in practice are presented. Also, existing WCET analysis frameworks
are briefly introduced.

Chapter 3 deals with the existing tool chain which is utilized at the Faculty of Computer
Science 12 of the TU Dortmund. From the analyzers presented in the previous chapter, the
aiT WCET analyzer is used as an integral part of the WCC compiler. Both will be presented.
The target architecture for the optimizations is the Tricorel from Infineon Technologies.
The relevant aspects of it are introduced as well. It is also discussed which extensions to the
existing tool chain are required and what needs to be implemented to make it applicable to
the needs of the optimizations proposed in this thesis.

The static allocation optimization will be presented in chapter 4. Related work in the domain
of static allocations will be discussed and the requirements of the static allocation will be
determined. Among them is the need to obtain a representation of the program structure
from low-level program representations. Such a structural analysis is devised. Next, an ILP-
based model for the static allocation problem is presented and the technical implementation
is discussed.

In chapter 5, an approach towards solving the dynamic allocation problem is proposed.
Although parts of the solution can be based on techniques presented in chapter 4, some lim-
itations become apparent. In particular, the need for a global analysis of object lifetimes
is motivated and an appropriate algorithm is developed. Afterwards, a solution to the dy-
namic allocation problem is dicussed which consists of two solution steps. The first is an

4

1.3. OUTLINE

ILP-based solution which provides decisions related to memory usage. In a second step,
the actual placement of objects within their respective memories is addressed. In addition,
technical problems are alluded and possible solutions are discussed.

The results of both optimizations are presented in chapter 6.

Chapter 7 contains a summary of the conducted techniques, and a conclusion is drawn.

CHAPTER 1. INTRODUCTION

CHAPTER 2

INTRODUCTION TO WCET
ANALYSIS

This chapter deals with the worst-case execution time (WCET). In section 2.1, it will be
formally defined. After that, in section 2.2, different approaches towards the analysis of
WCET information are discussed.

2.1 Worst-case execution time

Estimated execution time
A

Actual execution time
A

| Safety Precision

| Time

0 Tmin T;zvg Tmax Test
Figure 2.1: The WCET bound

The WCET reflects the maximum execution time of a given program. The value is usually
specified in execution cycles. In figure 2.1, its value is reflected by the value of 7,,,,. The
interval [T,in, Tnax] denotes the total range of execution times that can potentially be en-
countered. Unfortunately, these bounds cannot be determined precisely. This is due to the
fact that the problem of determining when a program terminates is undecidable [Weg99].
Moreso, it is even undecidable if it terminates at all. The best we can do is estimating the
the WCET by considering the information available. Running the program multiple times
with a variety of inputs only reveals an average time 7y,,, which is an unsuitable indicator
for the execution under real-time constraints. A common approach is to construct an ab-
stract model of the executing machine and to simulate the program’s execution. Such an
estimation must be safe which means that

Tmax S Test

7

CHAPTER 2. INTRODUCTION TO WCET ANALYSIS

is guaranteed. A particular problem is that any “abstraction loses information, so the com-
puted WCET bound usually overestimates the exact WCET” [WEE"07]. The quality of
such abstractions therefore determines how precise the estimations are. Ideally, the result
should be as close to the real WCET as possible:

1oy — Tingx — min

2.2 Approaches to WCET analysis

The process of estimating a program’s WCET can be broken down into solving two sub-
problems. Firstly, the actual path through the program which leads to a worst-case behavior
is to be determined. Secondly, the actual execution time along this path must be known.
Both problems are discussed in section 2.2.1 and 2.2.2 in detail. In 2.2.3, existing analyzers
are briefly presented.

2.2.1 Determination of execution paths

The execution path through a program is defined by a sequence basic blocks.

Definition 2.2.1. A basic block is a maximal sequence of instructions that can be entered
only at the first of them and exited only from the last of them [Muc97].

Given a typical RISC architecture, the first instruction of a basic block can be the entry point
of a function, a target of a jump or the first instruction executed right below a conditional
jump or a function return. Since they do not impose any side effects of the flow of execution
except at its final instructions, a directed graph consisting of basic blocks can be constructed
which represents all possible execution paths.

Definition 2.2.2. A control flow graph (CFG) is a cyclic, directed graph G = (V, E) whose
nodes V' corresponds to basic blocks and whose edges E' connect two nodes v;,v; € V if and
only if v; is executed immediately after v;.

Conventionally, a CFG models the control flow within a single function (intraprocedural).
Opposed to that, an interprocedural CFG models the control flow of an entire program.

Definition 2.2.3. A program PROG = {Py, ..., P, } is the set of all possible paths through the
(interprocedural) control flow graph G = (V,E) starting from a unique source node vg € V
and ending in a unique sink node vy € V:

VP; € PROG : P; = (vg,...,v)

To determine the WCET T, it is essential to know the execution times of the basic blocks
as well as the path in the program that maximizes the accumulated costs reflected by the
separate execution times. This is referred to as the worst-case execution path (WCEP)
Pwcer € PROG.

2.2. APPROACHES TO WCET ANALYSIS

One approach towards the determination of this path is to interpret the individual costs as
distances between the nodes of the CFG and to solve the Longest Path Problem [CLRSO01]
from source to sink. Unfortunately, solving this problem is NP-complete. Therefore this
explicit path enumeration can become very expensive quickly. This is due to the typically
exponential growth in the number of possible paths.

a; aj
ai—i-aj:ak—l—al

ay a;

Figure 2.2: Example-constraint for flow-preservation

A widely used technique is the implicit path enumeration technique (IPET) [Wil05]. The
problem to be solved is to maximize the overall flow through the control flow graph. The
variable a; € N corresponds to a node v; € V and reflects the number of times a basic block
is being executed. In addition ¢; € N reflects the time it takes to execute this single basic
block. The WCET T of a program is the sum of the individual execution costs of the basic
blocks multiplied by their respective execution counts.

Tow = Y, aiXc

iv;eV

The variable a; needs to be restricted according to the structure of the problem. A basic
block can only be executed as often as all of its predecessors together. For every node v € V
in the CFG, the following equation holds true:

Ya- Y a

icin(v) icout(v)

This equation is also known as the Kirchhoff’s Current Law. Figure 2.2 illustrates an exam-
ple. To determine the WCET, an integer linear programs (ILP) [Sch98] can be constructed
from these equations. They are presented in detail in [LM95, BR0O6, WEE"07, EES00].

The IPET is very flexible because besides the base model that constrains the selection of a
path, additional constraints can be added easily to model any abitrary supplemental infor-
mation that could contribute to a more precise result. A drawback is that the WCEP is not
explicitly apparent from the result. Also solving an ILP is NP-complete. The complexity of
the model as well as the size of the input can have a large impact on the solving times.

2.2.2 Analysis of execution times

Up to his point we have assumed that the execution times of basic blocks are already known.
However, this timing analysis gives rise to a number of separate problems which shall be
discussed now.

CHAPTER 2. INTRODUCTION TO WCET ANALYSIS

One possible timing analysis is to fully simulate the target machine. The fact that the pro-
gram is actually executed on its full duration makes this dynamic analysis a less favorable
choice in many respects. The most critical aspect of it, however, is that the execution time
can largely depend on the input to the program. So, a safe estimation is not possible in gen-
eral which draws it generally unsuitable for the determination of the worst-case execution
time.

The static analysis [Fer04] does explictly not strive for an actual execution of the program.
Instead, it is attempted to retrieve a WCET estimation directly from the static representation
of a program, like from its binary image file. Usually, different techniques are applied in
conjunction to this input to get an estimation as tight as possible. Some of which are:

e Control flow analysis: From the static representation of the program a control flow
graph is reconstructed. This is fundamental for applying any of the path techniques
discussed earlier.

e Static value analysis: The input is examined for static information that could indi-
cate what paths are potentially taken during a real execution (feasible) or which are
guaranteed to be never taken (infeasible) [Kir03]. Equally, it is attempted to extract
information on iteration counts of loops.

e Loop bound analysis: For many loop constructs the determination of exact loop
bounds from static data is not possible. In this analysis an abstract interpretation
[Cor08] on the relevant parts of the program is performed. This can reveal ranges
of iteration counts so that an estimation on the worst-case timing becomes possible
because it limits the length of the paths. The worst-case path without bounded loops
has an infinite length.

o Pipeline analysis: A formal model of the target architecture pipeline is used to esti-
mate its worst-case behavior. Usually, a basic block is considered an atomic unit of
execution.

o Cache analysis: Similar to the pipeline analysis the possible memory accesses of
instructions are tracked and a model of a target architecture’s caches is used to obtain
estimations on the timinings.

An important aspect of the last two analyses is that in fact the timing is sensitive to the
execution contexts. Depending on the state of a pipeline or a cache, an execution of the very
same basic block can lead to different timings. Taking this into account helps increasing
the precision of the analysis. On the other hand, the consideration of execution contexts
significantly increases the complexity of the problem. [Fer04] makes the observation that
for loops the execution behavior stabilizes regarding the state of the pipeline or the cache
after the first iterations and propose a limit on the instantiation of contexts. Interestingly,
this hasn’t been an issue in the early days of WCET analyses [PK89] where the architectures
were comparably trivial. The estimations were in general even more precise [Wil05].

All these analyses can provide assertions on various aspects of the execution and therefore
contribute to the precision of the overall WCET estimation while maintaining its safety.

10

2.2. APPROACHES TO WCET ANALYSIS

However, the information which can be extracted from a static representation of a program
is often insufficient and an overestimation necessarily results. To cope with this problem
two strategies have been suggested.

Typically, the program has been written in an established language. Dealing with a hard
real-time constraint is nothing any of the widespread languages, like the popular C pro-
gramming language, was specifically designed for. [KS86] propose a language that has
been specifically aimed at this kind of problem.

Introducing a new language is often no option. To deal with this, some WCET analyzers
like aiT [Abs06] can be provided with an external description file that specifically provides
information on program properties that can not be determined otherwise. An example of
this are accesses to array elements which are typically decided at runtime but are limited to
a distinct interval in the address space.

In addition to this, propositions have been made to extend existing languages with so called
flow facts [EES02] that enable the user to provide this extra information directly in the
source code. The compiler then automatically provides that information to an analyzer. A
key problem of this approach is that the input can significantly be transformed by optimiza-
tions so that the resulting low-level output bears little structural commonality [Eng97]. In
[Sch07], the author presents a solution to this problem for an existing compiler framework.
Apart from the issues that have been discussed so far, [Lan92] shows that the problem of
static analysis is even undecidable in general.

To obtain better results, certain programming techniques are to be avoided, like this is often
the case with pointers when used to achieve dynamic behavior [KS86]. Moreso, use of
pointers is generally made to alias objects. [Ram94] shows that the alias problem alone is
undecidable as well.

In general, strict limitations have to be applied to the runtime environment. Any side ef-
fects to or by the regular control flow have to be avoided. [LM95] name virtual memory
management, interrupts, DMA transfers etc.

Another critical aspect is that many systems are equipped with caches to speed up accesses
to instructions and general data. This is similar to the issues just named. A cache implies
side effects. During execution, accesses to the main memory are tracked and a logic places
chunks of data into a faster but usually much smaller memory. For frequent accesses to the
same memory locations this significantly improves the execution performance. Otherwise,
if the locality of the accesses isn’t high, the positive effect can heavily decrease. Moreso, the
cache logic maps the global address space into the limited address space of the cache mem-
ory. Different global addresses can possibly be mapped into the same cache locations. The
improvements imposed by the cache can therefore heavily depend in the execution history.
To the WCET analysis this is critical. The memory accesses have to be modeled as pre-
cise as possible. A static analysis can often not determine the access pattern due to runtime
dynamic behavior and aliasing. Moreover, the algorithm of the cache logic is not necessar-
ily known either. However, the cache can have a large impact in the overall performance
and therefore on the WCET. Depending on the ability to model the cache behavior the pre-
cision of the analysis can differ significantly. For this reason some architectures provide
software-programmable cache logics or fast on-chip memories which leaves the selection of

11

CHAPTER 2. INTRODUCTION TO WCET ANALYSIS

contents entirely to the software. The issues concerning WCET and caches are discussed in
[CPIMO5], [FPTO7] and [APO3].

It remains to conclude that the determination of a tight and safe WCET bound is a com-
plex task. The ever increasing complexity of architectures continuously demands for better
models. This in turn has an impact on the performance of the analysis. A trade-off between
precision and performance seems inevitable.

2.2.3 Analyzers in practice

Numerous research projects are dealing with the problem of WCET analysis. The analyzer
HEPTANE [CPO1] developed by the IRISA follows a structure-based approach towards the
determination of the WCET. The analysis is bound to the syntax of the input program. It is
capable to operate on binary or source code inputs likewise and performs its analysis steps
in a fully integrated fashion. The timing analysis makes use of pipeline, instruction cache
and branch prediction models. However, it is not aware of compiler optimizations which
poses a problem to the structure-based analysis. The code is expected to be generated by the
GCC compiler. Another framework is SWEET [GEEQ7]. It consists of multiple interacting
modules for the different analysis stages. It is capable of determining flow information that
otherwise would have to be provided through external annotations. Moreover, it provides
different approaches towards the path analysis (“fast path”, IPET, clustered). The framework
has been integrated into a research compiler. A third project which shall be named here is
calc_wcet_167 [KP04]. Under this project various different tools related to the WCET anal-
ysis have been developed. They are integrated into a Matlab/Simulink framework called
SETTA. It encompasses analyzers for static analysis and a so-called “measurement-based”
technique for dynamic execution time analysis. However, the latter, despite being fast, can-
not guarantee safe time bounds. The frameworks are targeted at different architectures and
model these with different levels of detail. They can in general be compared by the tech-
niques they incorporate. [WEE07] provides a thorough comparison of techniques and
tools.

There are only few commercial analyzer frameworks available. Examples are Bound-T
[Tid08] and aiT [Abs06] which are both stand-alone WCET analysis tools. They both oper-
ate on existing binary program images without the need for explicitly providing a high-level
description of them. The former has been developed by Tidorum Ltd. and is under contract
with the European Space Agency and supports the verification of software for spacecrafts.
The analyzer aiT has been developed by Absint Angewandte Informatik GmbH and be-
sides its commercial purpose, it finds its use in research projects at the Faculty of Computer
Science 12 at the TU Dortmund. Because of its central relevance to this thesis, chapter 3
dedicates an own section to this tool and its application.

12

CHAPTER 3

WCET-AWARE TOOL CHAIN

In this chapter the tool chain is presented into which the optimizations presented in the
following chapters will be integrated. In the previous chapter, different WCET analyzer
frameworks have been presented briefly. The aiT analyzer plays a central role for the de-
termination of the WCET for the optimizations presented in this thesis. It is presented in
section 3.1.

Although the aiT analyzer is a stand-alone software, it is used as an integral part of the
compilation process of a compiler framework WCC for which the optimizations in this
thesis are developed. In section 3.2, the framework itself and the integration of the aiT
analyzer are discussed in detail.

WCC is currently aimed at the TriCorel processor architecture. Basic information of its
features and limitations is therefore provided in section 3.3.

In section 3.4, the curret limitations of the WCC regarding the requirements of the opti-
mizations presented in this thesis are addressed. The mandatory extensions to the compiler
framework and their implementation presented in detail.

3.1 Introduction to aiT

Among the commercially available WCET analyzer products is the aiT WCET analyzer
[Abs06] developed by the AbsInt Angewandte Informatik GmbH. The software is able to
perform WCET estimations for a multitude of different architectures and is generally inde-
pendent of any specific compiler framework. It operates on compiled program binaries and
performs a static program analysis.

aiT is a suite of different basic analysis tools and a graphical user interface that allows to
conveniently perform overall analyses on programs by automatically invoking and coordi-
nating the actual analysis tools.

From the input to aiT, the control flow is reconstructed by reading the instructions. An inter-
nal representation, called control flow representation language CRL, is generated. All sub-
sequently invoked tools operate solely on this CRL representation. The employed version
of the aiT WCET analyzer operates on CRL2. It is capable to describe items of a program

13

CHAPTER 3. WCET-AWARE TOOL CHAIN

like routines (functions), basic blocks, instructions and general data. Since a control flow
is modelled, each of these components are provided with their respective execution context.
The context reflects the current point in the execution history. For example, a basic block
within a loop can be executed multiple times. The processor pipeline might potentially be
in a different state depending on what iteration it is executed. This differentiation assist in
increasing the precision of the WCET analysis. Throughout the steps, the CRL is enriched
with the results of the analyses, respectively.

Figure 3.1 illustrates the general workflow of a complete WCET analysis using aiT. We will
now briefly investigate which steps are taken to obtain the WCET of a program.

Binary input

Binary to
CRL
conversion

Path
analysis

Static
analysis

Graphical
representation

Loop bound
analysis

Optional annotations

Pipeline

Figure 3.1: Workflow of aiT

The reconstruction of the program’s control flow graph is performed during the CRL con-
version. As can be seen, the CRL serves as the program representation throughout all the
analysis steps. Particularly, it is attempted to identify loops that existed in the original source
program. This is mandatory to properly model the path of execution through the program,
so that the WCET can be correctly estimated. In addition to the binary program, an op-
tional annotation file can be provided. This file contains - for example - specifications for
the number of executions of loops (upper and lower loop bound), targets for specific jump
instructions, recursion depths and architecture specific information [Abs06]. Annotations
for execution flows, such as loop bounds, need to be provided by defining a mapping of the
address of a specific instruction to that information. Such a manual annotation is hard to
maintain. Figure 3.2 gives an example of such annotations:

1 | INSTRUCTION 0xa000001e CALLS "Test";
LOOP 0xd4000400 begin MIN 20 MAX 20;

3 |LOOP 0xd400040a begin MIN 20 MAX 20;
RECURSION 0xd4000448 max 20;

5 | INSTRUCTION 0xa00000a8 ACCESSES "Array";
INSTRUCTION 0xa0000096 ACCESSES "Array";
7 | INSTRUCTION 0xd4000470 ACCESSES "Array";
INSTRUCTION 0xd400042c ACCESSES "Array";

Figure 3.2: Example of aiT annotation-file

14

3.2. INTRODUCTION TO WCC

In the next step, a loop bound analysis is performed. Its task is to partly redeem the developer
from manually annotating loop bounds by attempting to discover them automatically. In
practice, this only works well for very simple loop constructs, so that manual annotations
usually remain mandatory.

The loop bound analysis interacts with the static analysis. Specifically, the value analysis
provides possible value ranges for variables. In addition to the loop bound determination,
the value ranges serve as input into the cache analysis. Since the possible instruction and
data accesses are known, an estimation on the performance of one or multiple system caches
can be made. To achieve the estimation, a formal cache model is used which can be param-
eterized in multiple aspects (line width, access times, etc.).

Another integral part of the static analysis is the pipeline analysis. A pipeline state is main-
tained throughout an abstract execution that is performed per basic block. The state of a
previous block is taken into consideration when interpreting its successors. Clearly, de-
pending on the current state, the results can be different for one and the same basic block.
Because of this, the abstract interpretation of a basic block is bound to a specific context.
The number of contexts per block can be configured.

The path analysis uses the WCET results from the previous step to calculate the overall
WCET of the program. The IPET approach, as presented in chapter 2, is used to determine
this. In aiT, the ILP is solved with the open-source software Ip_solve or the commercial
CPLEX. The overall precision of the result usually largely depends on the proper annotation
of the input.

Finally, the results can be investigated graphically. The viewer displays the reconstructed
program control flow. The input program can be investigated down to instruction level.

3.2 Introduction to WCC

The WCET-aware C Compiler (WCC) is an ANSI C compiler framework that is specifi-
cially aimed at WCET-related development tasks. It has been developed at the Faculty of
Computer Science 12 of the TU Dortmund. A key feature is the tight integration of the
WCET analysis software aiT. In [EES*99], such an integration is considered the best pos-
sible solution for industry-strength development environments. The integration allows to
easily obtain WCET information during the compilation process and is the basis for various
WCET-related optimizations. The current WCC is aimed at the TriCorel architecture (see
section 3.3).

In the following, the relevant aspects of the WCC compilation process are presented. In
section 3.2.1, the stages of compilation are addressed. Between these stages, the input is
transformed into two primary representations. A high-level representation called ICD-C IR
is presented in section 3.2.2. A code selection stage (section 3.2.3) performs a transforma-
tion into a low-level representation, the ICD LIIR, which is dicussed in section 3.2.4. Last
but not least, the integration of the aiT analyzer into the WCC framework is presented in
section 3.2.5.

15

CHAPTER 3. WCET-AWARE TOOL CHAIN

3.2.1 Compilation process

wcCC

Parsing

Al D-dADI

[Optimizations

41 D-adI

Code selector

AITT ADI

ICD LLIR
[Optimizations J

AITT AdI

Target-specific optimizations

AIT1 AdI

[Code generator

Assembler

[Linker

Figure 3.3: WCC compilation stages

2p02 122190 K1quiassy

As most C compilers, the WCC compilation process consists of multiple stages transforming
an input in form of C programming language source files into machine instructions. The
various stages in the WCC are illustrated in figure 3.3. During compilation of the source
files, two intermediate program representations are generated in succession from the input.
These are presented in the following sections.

3.2.2 ICD-CIR

The source files are parsed by a front-end framework called ICD-C which has been devel-
oped at Informatik Centrum Dortmund e.V. [ICDO0S5]. This stage consists of lexical analysis
and parsing of the input. The internal representation generated during parsing is a high-level
intermediate representation (IR). Its purpose is to provide data structures that directly repre-
sent the input language. That means that statements of the input language (like if-then-else,
do-while, arithmetic expressions, etc.) have a direct correspondence in form of abstract data
types in a connected graph. Figure 3.4 gives an example. As can be seen, the input shown
on the left hand side is represented by a directed graph. In this, the separate components
identified by the parser are represented by abstract data types.

16

3.2. INTRODUCTION TO WCC

(T A

(| IR_WhileStmt H IR_BinaryExp ‘

l IR_SymbolExp l l IR Integer l

=/

while (x > 3) < ~ ~
X /= 2; | IR_ExpStmt H IR_BinaryExp ‘

l IR_SymbolExp l l IR _Integer l

\ N =

Figure 3.4: Example: ICD-C representation of source-programs

The representation is completely independent of the other parts of the compiler and can be
used for arbitrary tasks related to C source code processing. It allows the recovery of the
original source program with almost no loss of information. In addition, this IR can be
annotated with user-defined information. These pragmas are usually stated in the source
code to provide additional information to the program. For example, source files to the
WCC can be enriched with information that is originally provided as a separate annotation
file to aiT, as alluded above. This means that the developer is relieved from providing this
information separately. We will investigate the integration of aiT in detail in section 3.2.5.
In addition, various optimizations can optionally be applied to this IR which are also part of
ICD-C. For the optimizations presented in this thesis the IR is not relevant.

3.2.3 Code selector

The high-level representation is finally transformed into a low-level itermediate representa-
tion (LLIR) by the code selector. The task of this stage is to optimally match given high-
level constructs against patterns of possible instructions that could be generated to provide
the necessary semantics in the assembly language. Since often multiple alternatives exist for
a transformation from the IR to the LLIR, the best fit regarding the execution performance
is selected. The technique is called tree pattern matching [FHP92].

3.24 ICD LLIR

The low-level intermediate representation (LLIR) generated by the code selection stage is
an abstraction of the assembly code that will be generated as the output of the compiler.

Equally to the ICD-C IR, the LLIR can in fact be used independently of the actual compiler.
It serves as framework to model any kind of machine instructions. This representation can be
used both as an architecture-dependent or -independent program abstraction. It also provides
a set of optimizations that are not specifically aimed at a target architecture. As was shown
in figure 3.3, the LLIR in the WCC is finally transformed into the actual instructions which
are then further processed by an assembler before a linker generates the final executable
image. We shall now investigate the LLIR in some detail.

The ICD LLIR is a framework that encompasses the low-level representation and various

17

CHAPTER 3. WCET-AWARE TOOL CHAIN

é Structural dependency
LLIR,
----) Control flow

h 4

LLIR_Instruction LLIR_Instruction _
LLIR Dataobject

Figure 3.5: ICD LLIR outline

analysis and optimizations techniques. But apart from being a mere container for abstract
target instructions, the LLIR provides a hierarchy of types that assist in managing and ma-
nipulating the structure of a program.

The most important low-level components of this LLIR are outlined in figure 3.5.

As can be seen, the representation forms a hierarchy of object abstractions. At its highest
level, the data type LLIR corresponds to a single compilation unit, which is a container hold-
ing all local functions. This is similar to the organization in a C language source program.
Functions themeselves are composed of basic blocks. They contain the actual instructions.
The ICD LLIR is capable of handling bundled instructions. That is, multiple operations can
be part of a single instruction. This serves the need of VLIW architectures. On Tricorel,
these operations in fact represent the actual assembly output. Because on this architecture
each instruction encompasses just a single operation, it is not explicitly shown in the figure.

Besides forming just linear sequences of functions, basic blocks and instructions, the ICD
LLIR also maintains a control flow graph, as it is exemplary illustrated as dotted lines in
figure 3.5. This way, the final physical layout of the program can be analyzed by means of
linear representations of objects, and also the control flow relations among different objects
become apparent.

In addition to this, general data objects have an explicit representation in the ICD LLIR.

The representation is not aimed at a specific architecture. An external machine description
provides the necessary information on the actual architecture so that specific instructions
with their respective operands can be generated.

As with the ICD-C IR, the LLIR comes with a set of optimizations. These optimizations are
built in an architecture-independent way but can be specialized for specific target architec-
tures. To support these optimizations, various analysis techniques have been incorporated.

18

3.2. INTRODUCTION TO WCC

These are concerned with the detection of relations among objects such as reachability and
dominance, the determination of data live ranges (data flow analysis), etc. (see [App97]).

In addition to this, the LLIR allows to attach user-defined information to its objects. As was
mentioned in the previous section, also the high-level IR allows this. Thus, it is possible to
pass information provided as part of the input source files through the whole compilation
process [FLO6].

3.2.5 Integration of aiT

The key feature of the WCC is the integration of the aiT software. As was discussed in
section 3.1, the aiT WCET analyzer is a suite of analyzing tools that comes with a graphical
front-end. This separation allows for a great flexibility. In the case of the WCC, the different
stages of the WCET analysis process are triggered as an internal compilation step. The
aim of this is to enable WCET-directed optimizations. The intervention of the user to set
up a WECT analysis shall be kept to a minimum. The overall goal is to provide WCET
information in a convenient way, so that it can be requested at any time during compilation
if necessary.

wcCC aiT

LLIRAIT

CRL Loop bound
analysis

ICD LLIR
[Optimizations]

Target-specific optimizations .

LLIR to
CRL

conversion Static

analysis

CRL to
LLIR

conversion

Value

Path
analysis

Figure 3.6: Integration of aiT into the WCC

Figure 3.6 outlines how aiT has been integrated. Instead of generating a binary image with a
compiler which is read by the WCET analyzer afterwards, the LLIR is directly transformed
into the internal format CRL2 which is used throughout the analysis steps of aiT. After the
WCET has been estimated, the results are read back into the LLIR. In general, this process
is referred to as back-annotation. As was mentioned, the LLIR provides facilities to attach
user-defined information to its objects. The CRL does not only contain information on the
total WCET after the analysis has completed but, for example, also reflects the WCET for
single basic blocks and contains information on the feasibility of control flow paths. All
this information is attached to the LLIR objects. Instead of only being able to calculate
the overall WCET and to view an annotated control flow graph with the aiT GUI, it is
now possible to process this information as part of code optimizations within WCC. The

19

10

CHAPTER 3. WCET-AWARE TOOL CHAIN

integration of aiT has been the topic of the diploma thesis of Paul Lokuciejewski [Lok05]
and shall not be presented here in all detail.

We discussed how the user of aiT is required to manually annotate loops with their iteration
counts or jumps with their respective targets in many cases. This is especially inconvenient
for two reasons. Firstly, WCET analysis is usually performed in conjunction with the de-
velopment of a software that is restricted by certain timing constraints. The fact that aiT
must always be run separately to the compilation wastes a lot of development time and the
insights gained from the analysis cannot be processed automatically easily. Secondly, any
change in the source program potentially results in a different layout of the final binary pro-
gram. Unfortunately, the user is required to provide the flow annotations with the relocation
address of the referenced structure. The user is essentially required to manually look up
those addresses and update the annotations.

In WCC, the process of code annotations is fully integrated. Instead of providing a separate
annotation file, the user is enabled to provide the required flow annotations as pragmas
within the C source codes directly. The whole process of manually annotating low-level
structures is avoided by passing the annotations through all transformation and optimizations
stages of the compilation process down to the LLIR. The integration into the WCC has been
developed by Daniel Schulte and was the topic of his diploma thesis [Sch07].

f) _Pragma (" marker OUTER");
2 [for (int i = 0; i < 5; ++i)
_Pragma("loopbound min 5 max 5"); for (int j = i; j < 5; ++j)
for (int i = 0; i < 5; ++i) 4 if (work(i, j))
_Pragma("loopbound min 1 max 10"); break;
for (int j = 0; j < 10; ++j) 6 _Pragma (" marker INNER");
if (work(i, j)) }
break ; 8 |}
} _Pragma (" flowrestriction
} 10 1*INNER >= 15%xOUTER");
N\ Y,
(a) Loop bounds (b) Flow restrictions

Figure 3.7: Flow facts in C sources

Flow facts in WCC basically come in two flavors. Figure 3.7a shows a snippet of C code
that has been annotated by so called loop bounds. An annotation is always provided with a
pragma statement directly in front of the statement to be described. In the example, the two
loops are annotated with their minimal and maximal loop iteration counts, respectively, A
more elaborate approach to the specification of execution counts is shown in 3.7b. Instead
of direct annotations of statements, markers can be freely placed in the source code. In
addition, so called flow restrictions define the relation of execution counts of markers in the
control flow of the program. They can be used to model arbitrarly complex scenarios where
iteration counts are not obvious. Examples are complex loop nests or recursions.

In addition to manually annotating the source files, a loop analyzer can be used to automati-
cally detect the iteration counts of loop constructs. Although aiT itself comes with a simple
loop analyzer, Daniel Cordes developed an analyzer specifically for ICD-C for his diploma

20

3.3. TRICORE1 ARCHITECTURE

thesis [Cor08].

The WCET analysis is available as a library within the WCC. It does not only serve to
determine WCET information at a specific point during the compilation process but can be
used abitrarily within the optimization stages.

3.3 TriCorel architecture

The basics of the optimizations presented in this thesis are largely independent of a specific
target architecture. However, the technical solutions presented later are all aimed at the
TriCorel architecture. We will now summarize the most important facts about it.

The TriCorel is a RISC processor aimed at embedded systems developed by Infineon Tech-
nologies. It features DSP as well as general-purpose capabilities. Like most RISC archi-
tectures, it uses a load/store scheme for memory accesses. The instruction set architecture
(ISA) is based on 32bit and 16bit wide instructions. In many cases, one and the same op-
eration can be performed with a 32bit wide instruction or a 16bit wide variant. The latter
is limited in terms of operator sizes or utilizes predefined registers implicitly. The smaller
instructions significantly reduce the consumption of space and energy. Apart from a set
of general purpose instructions, it features a multitude of DSP-related ones. This includes
saturated arithmetic as well as extended abilities to perform bitwise operations.

This processor features two major and one minor pipeline. The former are both four-stage
pipelines, sharing the fetch stage. One of them is dedicated to integer arithmetic only, the
other to loading and storing. In theory, all instructions but ones related to multiplication and
branching can be executed within just one cycle. The minor pipeline serves the execution of
zero-overhead loops. This allows to largely avoid multicycle instructions. Typical problems
at this point stem from data dependencies and accesses to slower memories. Both major
pipelines will stall if only one of them has to wait.

There exist 32 general purpose registers (GPR), divided into 16 data and sixteen address
registers, each of which is 32bits wide. A predefined mapping allows to access a pair of
GPR by means of a single extended register which makes continuous, 64bit wide registers
generally available.

Its address space is limted to 4GB, equally divided into 16 segments. It can be accessed by
means of physical addresses or by optionally utilizing the virtual memory capabilities. The
TriCorel is a full-featured multi-tasking CPU. Therefore, it provides common capabilities to
define and restrict per-process resources. The virtual memory is part of these mechanisms.

Branching on the TriCorel is supported by means of a static branch prediction. Figure
3.8 illustrates the predicition scheme. As can be seen, all 16bit wide jump instructions
are considered taken, as well as 32bit wide jumps with a backward displacement. These
two cases cover situations that usually occur when it comes to skipping short sequences
of instructions' or for repeating loop bodies. As opposed to that, a 32bit wide instruction

IThis frequently occurs in code generated from the C language for many conditional statements.

21

CHAPTER 3. WCET-AWARE TOOL CHAIN

32bit conditional jump, backward displacement

16bit conditional jump, any displacement

32bit conditional jump, foward displacement

Figure 3.8: Static branch predicition

performing a forward displacement is considered not taken. Depending on the prediction
and the actually issued instruction, a jump can cause a delay in the execution.

Predicted

Taken | Not Taken
Issued Taken 1 2
Not Taken 2 0

Table 3.1: Static branch prediction and timing

Table 3.1 lists the delay cycles resulting from the static branch prediction depending on
whether the prediction held true. As can be seen, a stall of up to two cycles can potentially
occur. Mispredictions can significantly degrade the overall performance. In particular, since
a stall in one of the major pipelines causes the other to stall as well.

The specific implementation of the TriCorel that is supported by the WCC is the TC1796.
Figure 3.9 illustrates the primary memories and busses. As can be seen, separate physical
memories are dedicated to instruction codes and data. These memories are all on-chip.

Instruction codes are executed right out of the flash memory. This access can be cached uti-
lizing the instruction cache. The scratchpad memory is tightly coupled to the CPU core and
therefore allows 1-cycle access permanently. As opposed to instructions, the flash memory
dedicated to data is not cacheble at all. In addition two memories, the local memory and the
scratchpad memory exist for fast accesses. The latter allows for 1-cycles accesses. Also, a
separate stand-by memory exists to keep data in low-power states.

For the optimizations that are described in this thesis, only the flash memory and the scratch-
pad memory for instruction codes are relevant.

3.4 WCC extensions

In the upcoming sections, extensions to the WCC are presented. In the light of the re-
quirements of the optimizations presented in this thesis, certain limitations in the exising
implementation become apparent. Specifically, modeling of the target memory hierarchy

22

3.4. WCC EXTENSIONS

Floating Point Unit
Program Memory FPU Data Memory
Interface Interface
PMI = Tt = DMI K=
CPU
48KB SPRAM 56KB LDRAM
16KB ICACHE CPU Slave Interface 8KB DPRAM
CPS
3
Program Local Data Local o
Memory Bus Memory Bus [
PBCU DBCU | £||
PLMB DLMB 2 a
nq_) o
i}
Program Memory Data Memory g
Unit LMI Unit g
EBU (— | PMU DMU
16KB BROM Local Memory-to- 16KB SBRAM
2MB PFLASH Y 64KB SRAM
128KB DFLASH FPI Bus Interface
LFI-Bridge
Emulation Memory
Interface System
Peripheral Bus
To Emulation Memory SPB

(Emulation device only)

LDRAM = Local Data RAM EBU = External Bus Unit
DPRAM = Dual-Port RAM LMl = Local Memory Interface
SPRAM = Scratch-Pad RAM PBCU = Program Local Memory

ICACHE = Instruction Cache Bus Contol Unit
SBRAM = Stand-by RAM DBCU = Data Local Memory

SRAM = Data RAM Bus Control Unit
PFLASH = Program Memory Flash

DFLASH = Data Memory Flash

BROM = Boot ROM & Test ROM

Figure 3.9: TriCorel architecture

requires a rework. In section 3.4.1, the current implementation is addressed and it is mo-
tivated why an extension is required. The additions are then dicussed in detail in section
3.4.2.

3.4.1 Existing framework

In section 3.2.5, we discussed the integration of the aiT WCET analyzer into the WCC. It
was explained how a user can provide flow fact annotations within the source code which
are then provided as input into aiT. It was noted that such annotations originally had to
be provided by means of an external file that mapped the annotations to specific memory
addresses. In the original implementation of the aiT integration, these adresses are provided
as object attributes into the CRL. Due to the structural similarity of the LLIR and the CRL
representations?, addresses can be assigned directly. Specifically in the CRL, objects like
functions, basic blocks or instructions posses an address attribute which is to be specified.
The addresses are calculated by accumulating the sizes of the LLIR objects, starting from
the base address of a specific memory. For example, the default setup uses the base address

2Refer to [LokO05] for details.

23

CHAPTER 3. WCET-AWARE TOOL CHAIN

of the program flash memory which is illustrated in figure 3.9. These addresses need not be
logically correct but need to be valid. For code objects they are valid only if they point to
an address range which is readable, executable and do not overlap. Data objects in contrast
may overlap. Therefore, the address attributes for code objects are obtained by summing up
instruction sizes. For data, even only a single address is provided for all objects.

This approach was sufficient for simple analysis tasks but lacks flexibility in a major aspect.
The analysis of instruction codes that execute from different memories is impossible since
all corresponding addresses are set off from a fixed base address of a single memory.

This is a problem we have to overcome since the optimizations we will propose in the
following chapters of this thesis specifically have to take multiple memories into account.
In this section, an extension to the aiT integration is presented which allows to model and
analyze arbitrarly distributed program objects within a freely definable memory hierarchy.
This work also contributes to solving the problem of indeterminate data accesses although
this is not of a concern in this thesis. Felix Rotthowe extended the LLIR in this regard. This
is thoroughly discussed in his diploma thesis [Rot08].

The requirements for such an extension are that a flexible yet simple memory model can be
defined and that objects from the LLIR can conveniently be assigned to those memories to
the effect that the aiT WCET analysis can rely on this information.

The fundamental idea of this extension is to make information on the memory model avail-
able in the optimization stages of the LLIR. At its current state, the LLIR enfolds machine
information only to the extent of CPU related information like instructions, their operand
encoding and registers. The output of the LLIR is assembly code which is translated into
object code by an assembler (figure 3.10). This binary output is still independent of the
actual memory layout. Only in a final step, a linker relocates the object code according to a
memory description to obtain an executable binary.

To enable a user to define such memory assignments during a compilation step, the informa-
tion that is normally only available to the linker in a usual compilation process needs to be
provided already within the compiler itself. This is motivated by the fact that the integrated
WCET analysis requires detailed information on these assignments. The stand-alone im-
plementation of aiT used a readily relocated binary which allowed it to obtain the required
address right from the image. Now that aiT is used as an integral part of the compilation
framework, the relocation steps being omitted need to be simulated to achieve the same
degree of flexibility.

At this point, we shall present the terminology used in the upcoming discussion. The im-
plementation of the address handling and relocation on the LLIR is guided by the workflow
found on the GNU platform [FouO8]. The formats and conventions comply with the EABI
specification for the TriCorel architecture as defined in [InfO7]. The assembly instruction
codes emitted by the WCC compiler directly correspond to the instructions defined in the
LLIR. In addition, assembler directives are generated that help organizing such code con-
cerning their assignment to specific memory addresses. Such directives define sections that
serve as abstract containers. The TriCorel EABI defines a predefined set of such section
names for instructions (.zext) and initialized data (.data) in general, for read-only data (.ro-

24

3.4. WCC EXTENSIONS

data) and uninitialized data (.bss®). When the code is assembled, the binary codes will be
assigned to their respective sections in an object file as defined by the ELF specification
[TIS95]. This is shown in figure 3.10.

(C code) /Assembly code) (Object file)
const int x = 50; .section .rodata Symbols
int y[8] = {15.0}; X: 00000000 .rodata X
int z; .word 50 ; Allocate x 00000000 .data y
.section .data 00000000 .bss z
int main() { y: 00000000 .text main
z = 1; .word 15 ;Allocate y[0] 00000012 .text _Ll1
while(z < x) { .space 28 ;Allocate y[l-7]
ylz & 7] = .section .bss
y[0] * z; «comm z, 4 ;Allocate z
++27; .section .text
} main :
return y[7]; mov %d8 , 1
} movh.a %al2, HI:z
st.w [%al2] LO:z, %d8 { :SSZ;H
movh.a %al4, HIl:z 0 R
movh.a %al5, HI:x
_L1: (~.rodata)
Ild.w %d8, [%al4] LO:z
Id.w %d9, [%al5] LO:x
jge %d8, %d9, _L2 m
lesc]] 00000000
. J . J . J

I
Compilation Assembling T

Figure 3.10: Object file layout from assembly code

From every compilation unit, a single object file is generated. For all references between
objects that require absolute addressing, an entry in a separate table is created. Absolute
addressing is always required for references across sections, including references to objects
not even in the current compilation unit. As opposed to that, all relative references can
already be resolved. These occur for the majority of jump instructions on TriCorel.

Every such object file is equipped with at least the binary representation of the assembly
code organized in sections and a symbol table. The latter maps object names to addresses
relative to their respective sections and also contains entries for unresolved references.

To generate the final program binary, all object files that make up the program are combined
by the linker. The WCC utilizes the linker /d from the GNU binutils [Pro07] package. The
following description explicitly refers to its features.

To model how this combining is to be performed, an external description file (referred to as
a linker script) is provided. Within such a file, so called SECTION directives define how the
source sections shall be laid out in a single target section. An example is given in figure 3.11.
Here, all sections with the prefix “.text” are combined into a single section labeled “.text”,
each additional section is placed on top of the previous one in no specific order, aligned to a
1024 byte boundary and with the gaps that could occur within this address space filled with
a bit pattern of “Oxff”. This shall only serve as an example.

Next, the combined sections can be assigned to a specific memory address region. The same
linker script in general also contains a description of the address space layout by means of
MEMORY directives. With these, address space intervals can be specified. It is defined by

3Historic naming. Originally “Block Started by Symbol”, but has no such meaning in this context.

25

CHAPTER 3. WCET-AWARE TOOL CHAIN

(o) (s - B
Object file X Linker-script
[— Linker e —
CERD ext_cflash (n):
- —— org = 0xa0100000 ,
: — len = 1024K
- }
TV T SECTIONS {
Object file .text BLOCK(1024):
{ =*(.text) }
N —

Figure 3.11: Example of /d linking process

its base address and a length. As can be seen in the example, the section “.text” is assigned
to the memory named “ext_cflash”. Summing this up, the linker script describes how a
program should be loaded into the memory and takes actions accordingly.

Linker

Relative Offset from

combined section

>@<
y
+)¢ Memory
base address
Code relocation '

Figure 3.12: Example of address translation

symbol address

While sections are combined, unresolved symbols from one object file are matched against
the symbol tables of others to obtain the actual addresses. These depend on the placement
of source sections into the target section and are relative to the latter. A new symbol table
reflects these changes. The calculation of the final addresses is drafted in figure 3.12. Apart
from the simple accumulation of object sizes, a multitude of attributes can take effect, which
is not shown in the figure.

Due to the assignment to memory regions, it is now possible to calculate the final, absolute
addresses that will be used in the executable program image by setting off all section-relative
addresses by the target memory’s base address. The affected address references within the
instruction code are patched accordingly. Now that the physical addresses are set, the sym-
bol tables can be discarded. All symbolic references should be resolved at this point and the
final binary image can be generated. *

4Dynamic linking techniques are irrelevant at this point.

26

3.4. WCC EXTENSIONS

3.4.2 Framework additions

What has just been described is the typical workflow that occurs for stand-alone TriCorel
programs. Such an image can afterwards serve as the input to the aiT WCET analyzer.
Obviously, it is advantageous that all address references within the instruction code are
now fully known. This way, it is easy to determine where memory accesses take place.
The problem is that it is unknown what objects have been accessed, which is the reason an
external annotation file was needed to describe this. On the other hand, due to the integration
of aiT, information on objects being accessed can be conveniently provided instead but the
physical layout is unknown. Because of this, we will extend the LLIR to offer the ability to
dynamically model the section assignments and the memory layout, and to provide symbol
tables to enable a user to conveniently access address information on most objects abstracted
by the LLIR. The role of the symbol tables in this particular case is to deliver information
on absolute, memory layout-dependent addresses to aiT so that it operates exactly as if a
readily linked binary image had been provided as its input. This extension restores its full
capabilities.

*L LLIR JI
LLIR _Function J

~I, 7.

. LLIR_ObjectSection .‘, .-' LLIR_ObjectSymbol
. .

L LLIR_ObjectSectionLayout J ..‘.

. .
: :
N LLIR_ObjectSection || .- ,J, B LLIR_ObjectSymbol

L LLIR_ObjectSymbolTable J

LLIR_Basicblock

(O
—)L LLIR Dataobject J

Figure 3.13: ICD LLIR extensions to model object file sections.

As was illustrated in figure 3.5, the top element of the low-level hierarchy is a type named
LLIR. It corresponds to a single compilation unit. In the design of the extensions, the work-
flow, as described in the previous section, is adopted. Many attributes that can be specified
in a linker script can also be applied to the ICD LLIR. Each abstract data type of the LLIR
is responsible for managing the assignment to sections for its subordinate types. This is true
for LLIR functions, basic blocks and data objects. Although also instructions could be eas-
ily assigned separately, it is hard to imagine a use case for this and it is entirely unnecessary
for the specific needs of this thesis. The extensions for the LLIR itself are shown in figure
3.13. A type called LLIR_ObjectSectionLayout is attached to the LLIR. It is responsible
for managing the separate objects of type LLIR_ObjectSection representing single sections.
Sections can be dynamically created or destroyed at runtime and hold attributes that exactly
match the ones that can be specified in linker script SECTION directives. The LLIR types
representing functions, basic blocks and data objects are extended to hold references to sec-
tion instances. They can be dynamically attached and detached from them. Before these
changes, the code generator was responsible for generating assembly directives. These were
static and conformed to the EABI specification. Now that the LLIR is entirely responsible
for this, a set of default section objects is generated and the affected LLIR objects are at-

27

CHAPTER 3. WCET-AWARE TOOL CHAIN

tached to them upon initialization. An important requirement of the extensions was that the
whole section management remains fully transparent to guarantee full backward compati-
bility. Software that made use of the unmodified ICD LLIR has to be kept in fully working

condition without any changes.

In addition, a symbol table named LLIR_ObjectSymbollable was introduced. Its basic pur-
pose is to provide a mapping from symbols to memory addresses. Such symbols can be
function names, labels of basic blocks, names of variables but also ones that have no direct
correspondance in the LLIR type hierarchy like markers for certain places in the address
space. Per LLIR, there exists only a single symbol table which lists all of its symbols. The
table is sensitive to sections and distinguishes LLIR-local symbols like basic block labels
from external symbols like function names®>. The symbol table also allows for reversed
lookups, which means that names can be looked up by providing a section name or an ad-
dress.

p
LLIRAIT

afe00000 .rodata X
afe00004 .data ¥
afe00024 .bss

20100000 .text main
20100012 .text _L1

LLIR_MemoryRegion
LLIR_MemoryRegionLayout
LLIR_MemoryRegion

Memory-layout | Memory-mapping
' LLIR_ObjectSection
LLIR_ObjectSection

Figure 3.14: Extension to LLIRAIT

" Sossotppe [eosAg + b

description

LLIR _ObjectSectionLayout

Data Flash with non—cached
ccess

LLIR to CRL
conversion

O
[\S]

a;
[DFLASH-NC]
origin = 0xafe00000

CRL to LLIR
conversion

At this point, all addresses are calculated relative to the currently assigned section. To
calculate the final addresses, the memory layout must be taken into account. Similarly
to the linker script, this can be modeled by an external layout file. Figure 3.14(1) il-
lustrates how the format looks like. Similarly to the design of the section layout, a type
called LLIR_MemoryRegionLayout is responsible for the dynamic management of a set of
LLIR_MemoryRegion types. The layout manager reads the external description and gener-
ates the region objects accordingly. Again, the possible attributes conform to the ones that
can be specified in a linker script.

The section layout and the region layout in combination are generally capable to abstract
from a fully featured linker script and it would be entirely possible to generate one from just

SExcluding C functions attributed static, therefore also being only locally visible.

28

3.4. WCC EXTENSIONS

the information now available through these extensions. This results in a large flexibility
concerning optimizations that are specifically aimed at utilizing memory hierarchies, such
as the ones that will be presented later in this thesis.

The final issue to be solved is how the individual sections can be assigned to their respec-
tive memory regions, so that the calculation of absolute addresses becomes possible. The
description file for the memory layout also includes a mapping attribute that defines which
sections shall be included in the regions (figure 3.14(2)). This is different from the workflow
in a linker script where the sections per object file are usually first assembled in a single sec-
tion and then assigned to a memory region. This mapping determines the assignment of all
sections with a specific name from all LLIR instances into a single region. Equally to the ac-
tions taken by the linker, the objects are assigned to a region sequentially taking into account
attributes like the address alignment. After this, the final addresses can be calculated (figure
3.14(3)). The individual addresses of objects relative to the start of their section, the offset
imposed by the assembling of sections and the base address of the target memory region are
taken into account to fill a symbol table which serves as input to the LLIR2CRL-conversion
directly (figure 3.14(4)).

In conclusion, we have now fully modeled the flow of the information that is relevant for an
aiT WCET analysis from an internal representation to the point where an executable binary
file would be available. The library that manages the translation from the LLIR into the CRL
is adopted to this new infrastructure. The static memory model that was originally applied
is discarded.

29

CHAPTER 3. WCET-AWARE TOOL CHAIN

30

CHAPTER 4

STATIC SCRATCHPAD ALLOCATION

In this chapter, a program optimization technique is presented that aims for a reduction of
the WCET by utilizing a scratchpad memory (SPM). The general idea is to allocate selected
parts of the instruction code to that memory to achieve improvements.

In section 4.1, we will first investigate techniques that have been applied to SPM-related
optimizations in general. We will come to the conclusion that modeling an ILP is a a viable
and well understood method in this regard. In addition, generally WCET-directed optimiza-
tions will be discussed briefly. From this, we can conclude that an ILP approach with the
goal to solve our problem along implicit paths through the program is promising.

Next, in section 4.2, a technique called structural analysis is presented which will assist in
the determination of the program structure. The need for such an analysis is motivated. It
will also help in understanding problems particularly related to the low-level representation
of programs within the WCC. Ways are shown to overcome these.

Subsequently, the optimization problem is formally described (section 4.3) and an ILP-
based model is motivated that will serve as the basis for the actual optimizng model which
is presented afterwards in section 4.4. There, a complete ILP model is formalized that will
address all the specific problems we previously discovered to solve the static allocation
problem.

Afterwards, in section 4.5, the workflow to establish the ILP as an integrated compiler op-
timization is discussed. It will be shown how the analysis presented in 4.2 is utilized to
generate the model and what additional steps are required to apply the results from the ILP
model to the input program.

4.1 Related work

In the domain of static allocations of objects to different memories various different ap-
proaches have been pursued. The basic idea has always been to enhance a system’s perfor-
mance by smartly utilizing the existing memories. Performance is of course not restricted to
the decrease of the WCET. Most approaches are concerned with the enhancement of power,
time or space requirements. According to [AMF"04], different ways have been taken to
achieve the aforementioned effects. All ground on the idea to utilize different kinds of

31

CHAPTER 4. STATIC SCRATCHPAD ALLOCATION

memories to achieve improvements. However, specifically for optimizing program code, a
certain commonality can be seen. The basic idea is to select basic blocks, sequences of basic
blocks or complete functions under certain criteria and to place them into a faster memory so
an improvement crops up. For optimizations related to the reduction of energy dissipation,
the most expensive basic blocks are chosen. As pointed out in [VWMO04a] and [SWLMO02],
simply picking a greedy strategy can lead to suboptimal or even worse results. In addition,
the overhead created by placing the code in a different memory has to be considered. An
improvement only occurs when the placement of the program code into a different memory
exceeds the costs of the overhead. To solve this problem optimally, an ILP is used. It allows
to state the problem as linear equations that constrain a set of integer variables while trying
to maximize or minimize an objective function that depends on these variables. Among
all techniques proposed for these kinds of optimization problems, ILP is the most popular
one. This is because it is easy to model costs expressed as execution cycles or energy con-
sumption. The aim is always to either maximize a gain or to minimize the costs. Additional
costs related to certain assignments of values to variables can easily be intergrated by simply
adding new equations that further constrain the problem.

One approach to optimization is to statically lock contents in the cache. Cache lines are
explicitly filled, then the cache is locked. A requirement is that the cache can be software-
controlled in the desired way. When this is possible, the cache can be treated almost like a
general purpose memory, except that the cache logic needs to be taken into account. This
method requires that the system allows for controlling the cache in such a way. Therefore,
this method is not generally applicable. Given that a cache locking optimization is to be
performed, the cache itself has to be modeled as an ILP. Using a scratchpad memory sig-
nificantly reduces the complexity of the problem. However, they are not as widespread as
caches.

Concerning WCET-centric optimization, several techniques have been proposed concerning
cache locking. A particular problem with WCET optimizations is that simply picking the
most expensive basic blocks (regarding their execution time) is insufficient because they
may not lie on the most expensive execution path at all. This issue will be discussed in
depth later. In [CPIMOS], a genetic algorithm is presented that aims at optimally solving
the assignment problem. However, this does not necessarily yield optimal results. Another
approach has been presented in [FPTO7]. An explicit search for the most expensive paths
is performed and an optimization along this path is performed. It relies on repeatedly in-
vestigating the control flow graph is therefore expensive to perform. Another interesting
approach has been presented in [Pua06]. Here, optimizations along the most expensive path
is performed multiple times. After a certain number of steps, the partially optimized pro-
gram is analyzed again, so that all information on the costs of basic blocks is now updated.
The most expensive path is explicitly recalculated and the optimizations continue.

To overcome the problem of changing worst-case paths, [SMRCO0S5] propose a simple ILP
scheme that is able to implicitly model such paths. This approach is well suited for this kind
of problem as explicit path searches can be very time consuming. Reducing the number of
reevaluations, however, can lead to a loss of precision. The presented approach is limted to
data allocations. Still, the fundamental approach is interesting and we are getting back to it
further below.

32

4.2. PROGRAM ANALYSIS

4.2 Program analysis

In this section, a technique will be presented that fundamentally supports our efforts to
optimize instruction codes of a program. Prior to performing any modifications on the input,
a thorough knowledge of its structure is vital. Independent on the actual optimization we will
present later, the discussion in section 4.2.1 will emphasize the problems encountered for
inputs as low-level program representations and motivate the need for an extended analysis.
Briefly, two well known alogrithms for program analysis will be presented. The deficiencies
observed will motivate the use of a different approach than these. Namely the structural
analysis. This technique will be presented in all detail in section 4.2.2. Since this gives
us an intimate understanding of the structure of the input, it is presented prior to the actual
optimization.

4.2.1 Overview

Performinig program optimizations related to the control flow of a program requires sub-
stantial information on the structure of the code.

This structural information can encompass the control flow between pieces of code within a
single function as well as information on how functions are related to each other. Moreover,
in code generated from a structured programming language like C, an understanding of how
structures are nested is required so as to be able to identify, manipulate or replace code that
is included in those.

The ICD LLIR does not carry any information on what high-level constructs transformed
into which instruction fragments. Therefore, it is in general not possible to easily reconstruct
a high-level view of the program from the LLIR. Furthermore, significant transformations
through the application of optimizations on both, the high-level and the low-level represen-
tation, could have further changed the layout in considerable ways.

The optimization we attempt to perform is carried out on the ICD LLIR. As we heavily rely
on information on the program structure, it is evidend that a way to recover this information
has to be found. The goal is to generate an abstract, tree-like view on the program after all
other optimizations have been performed.

A popular class of analysis methods is known as interval analysis. This kind of program
analysis attempts to find and identify well defined structures formed by the nodes of a control
flow graph. After identification, the found structure is replaced by a single representing node
in the control flow graph. This basic scheme is repeated until the control flow graph has been
reduced to a trivial graph consisting of just a single node. In fact, what the algorithms are
trying to identify is referred to as an interval.

Definition 4.2.1. An interval /() in a control flow graph is a maximal, single entry subgraph
in which A is the only entry to /() and all closed paths in /(%) contain A.

This definition implies that an interval can either be a some kind of cyclic structure (loops)
or acyclic structure with both only having a single entry point. We will now examine three

33

CHAPTER 4. STATIC SCRATCHPAD ALLOCATION

approaches to interval analysis. One of them, called structural analysis, was found to be
best suited for the optimizations we will perform later.

One of the oldest approaches is the T71-T2 analysis [Ull73]. Its basic workflow consists of
two steps. The first is the identification of control flow graph nodes forming self-loops and
the removal of the back edge. The second step then searches for any pair of nodes with the
leading node being the only predecessor of the other and the replacement of the two nodes
by a single representing one. During the removal of back edges and the replacement of pairs,
a separate data structure can be build that will represent the nesting structure of a function.
This approach is not useful for our needs as it only reveals information on loops that it finds
in an abitrary order. It only reveals nesting but is not capable of reflecting the actual control
flow through different structures of the program in an unambiguous way.

Another classic approach is the interval analysis proposed by [AC76]. Once an interval
has been identified, all the nodes that make up this interval are being replaced by a single
representing node. The edges that lead into such an interval are corrected accordingly. The
result is another valid control flow graph on which the next interval is to be found. During
classification of intervals, a data structure will hold information on what nodes of the control
flow graph comprised such an interval and what kind of interval was just found. Therefore,
such a data structure finally can deliver information on intervals and their nesting structure.
The advantage over the T7-72 analysis is that the control flow graph is not simply reduced
in an arbitrary way but that it is attempted to find maximal intervals. Furthermore, it allows
the identification of intervals that cannot be unambiguously identified given the definition
of an interval.

Although being more detailed, it still lacks the ability to reveal the actual control flow struc-
ture of a program as we can only distinguish loops and non-loops. However, for our problem,
it would be advantageous to identify high-level structures within such an analysis so as to
avoid doing this later. What we would like to have, is the detection of the exact structures
that result from the transformation of the source program (into a low-level representation
and the application of optimizations) that are relevant to our own optimization.

4.2.2 Structural analysis

The structural analysis is one of the most powerful analysis techniques as it can identify
constructs of a high-level language only by analyzing a low-level representation of a pro-
gram. It is not only possible to just identify loops and intervals. But it allows to explictly
identify what kind of structures are comprised by a set of control flow graph nodes.

An example are loops. While interval-based techniques can only reveal that a loop exists
around a certain set of nodes, the structural analysis can distinguish between different kinds
of loops. From the C programming language we distinguish two kinds of loops: while and
natural (do-while). While the former is a loop whose condition is tested at the top, the latter
has its loop condition at the bottom. As we will see later, the distinction between different
kinds of loops is inevitable for our optimization. Also, loops can be constructed by using
goto statements. The structural analysis will identify the loop constructs that is expressed
through this, although even the high-level representation would not reveal this. Therefore,

34

4.2. PROGRAM ANALYSIS

the structural analysis is well suited for our needs as it fully classifies the control flow graph
into nested, unambiguously identified structures.

The ideas for this analysis originally stem from [Ros77] but was aimed at code structures
typically found in Fortran77 programs. [Muc97] applied the basic concepts to typical rep-
resentations of the C programming language. Although providing detailed instructions on
how the analyis can be constructed technically, a largely simplified input is assumed. There-
fore, we extend the proposed algorithm, so that the result fits our requirements regarding the
code selector of the WCC.

The basic idea of the structural analysis is not to identify sequences of maximal size as
in the interval analysis approaches but to match the current control flow graph against a
set of structural patterns. During compilation of a program, each high-level construct is
transformed into a low-level representation by generating certain control flow patterns in the
code selection phase. This analysis is capable of identifying those patterns and to generate
a data structure that will reflect all these structures and their nesting accordingly.

After having identified such a match, the subgraph is replaced by a single representing node.
All egdes that originally were connected to any of the subgraph’s nodes are reconnected to
the newly created node. This process repeats until the control flow is reduced down to a
single node.

This process is unambiguous because each reduction only removes a single structure whose
possibly nested structures have already been reduced in an earlier step. The result of such an
action is again a valid control flow graph. Valid means that the graph resulting from a reduc-
tion is equivalent to a graph that would have resulted from removing the identified structure
from the high-level representation right away. It literally disappears without affecting other
parts of the graph.

Prior to presenting the algorithm, we need to define a few graph properties. A control flow
graph of a function only has a single entry node (source) and a single exit node (sink). In a
programming language like C, multiple refurn statements can exist which cause the graph
to have multiple sinks. To be able to deal with this, a virtual sink can be attached to the
graph to which all sinks are being connected by an edge. For the sake of simplicity we will
assume that our graph only has a single sink.

A control flow graph can have back edges. Given the graph would be traversed by using
the well known depth first search algorithm, a back edge is an edge whose head node has
already been visited but whose tail has not yet been finished. A more formal definition coins
the term dominance.

Definition 4.2.2. For a graph G = (V,E), the function dom : V xV — {0, 1} forms a binary
relation of nodes u,v € V so that

1 if u is on every path from the source node to v.
0 otherwise.

dom(u,v) = {

In other words, u dominates v if and only if dom(u,v) = 1. This relation is reflexive, transi-
tive and antisymmetric. With this property known, we can define back edges as follows:

35

CHAPTER 4. STATIC SCRATCHPAD ALLOCATION

Definition 4.2.3. A back edge is an edge e € E in the control flow graph G = (V,E) whose
head dominates its tail.

The structural analysis works correctly on graphs that are reducible (or well-structured).
According to [Muc97]:

Definition 4.2.4. A flowgraph G = (V, E) is reducible if and only if E can be partitioned into
disjoint sets of Er, the forward edge set, and Ep, the backward edge set, such that (V, EF)
forms a directed acyclic graph in which each node can be reached from the entry node, and
the edges in Ep are all back edges as defined in 4.2.3.

A graph that violates this property is called irreducible. Such a graph contains a structure
whose dominance property is ambiguous. In a reducible graph, each back edge defines a
single loop. The central property as defined by the dominance relation is that loops only
have a single entry node. Irreducible graphs are ones that contain loops with multiple entry
nodes. In the C programming language it is possible to construct such irreducible graphs by
using the goto statement to perform jumps into loop bodies. In general, this is considered
bad programming practice. Such constructs practically very rarely appear ! and can usually
be easily avoided. Although there are ways to deal with it, the explicit handling is neglected.
Only applying the standard language constructs always leads to well-formed control flow
graphs.

The algorithm for the structural analysis is now presented. Figures 4.2, 4.1 and 4.3 show the
patterns that the analysis is capable to detect. Each one of those patterns has the property
that there only exists a single entry into the structure.

In general, two kinds of pattern classes can be distinguished. We refer to patterns not sur-
rounded by a back edge as acyclic whereas the ones being surrounded by a back edge are
referred to as cyclic. The patterns presented here are constructed specifically for the output
of the code selector of the WCC. Though, in general, they would fit any low-level represen-
tation of a C program.

The acyclic patterns consist of patterns named block (4.1a), ifthen (4.1b), ifthenelse (4.1c)
and proper (4.1d). A block pattern is a sequence of basic blocks that is entered through the
basic block at the top and left through the basic block at the bottom. Thus, no other edges
lead into or escape from this sequence otherwise. When a block pattern is encountered it is
attempted to maximize it by extending the sequence along the path until the block property
as just defined is violated. This pattern is the first one matched against the control flow
graph prior to all other patterns. The ifthen and the ifthenelse pattern match against high-
level constructs of the C programming language of the same name. They identify conditional
branching in the control flow graph. It is characterstic that both cases branch conditionally
and join again in a single node. A special case is the proper pattern. It identifies acyclic
constructs that have no directly corresponding structure in the C programming language. Its

1 [Muc97] refers to a survey of D.E. Knuth by which over 90% of a selection of Fortran77 programs have
reducible graphs. The tests run for this thesis verify this result for C programs. Commonly used constructs that
lead to irreducible graphs are Co-Routines [Knu73b], Duff’s device [Duf83] and the inconsiderate use of goto
statements.

36

4.2. PROGRAM ANALYSIS

(a) BLOCK (b) IFTHEN (c) IFTHENELSE (d) PROPER

Figure 4.1: Acyclic patterns

main characteristic is that it branches just like in the ifthenelse case but has an edge escaping
the structure in one of the branches, thus not having a unqiue point where the control flow
joins again. Such a control flow usually appears in C switch statements where the case
branches are not separated by a break statement. Switch statements with properly terminated
case branches have the form of a continuously nested ifthenelse pattern. Although [Muc97]
suggests a separate switch pattern that would catch both the cases just described, it proved
completely unsuitable here because it would result in a more complex pattern matching and
violates the constraint of atomicity. That is, no pattern contains another one as a sub-pattern.

@
nod
@ “ @

(a) WHILE LOOP (b) NATURAL LOOP (c) SELF-LOOP

Figure 4.2: Cyclic patterns

Besides these, basically three kinds of cyclic patterns can be distinguished. The while (4.2a)
pattern matches any loop that consists of two nodes and a backedge from the bottom node
to the top node. In addition, the loop is escaped from the top node by a branch. The bottom
node has the back edge as its only outgoing edge. The natural (4.2b) pattern matches a loop
very similar to the while pattern. The difference is that the topmost node does not branch. In
opposition, the bottom node does. The latter has two outgoing edges, one leading to another
node not inside the match, the other being a back edge to the top node. A third pattern is the
selfloop (4.2c). It comprises of just a single node reaching itself through a back edge.

With the patterns described so far, most control flow graphs generated from a C language
input can be reduced. However, there exist a couple of special cases. The iteration of a
loop can be irregularly interrupted by using break statements within the C language. Such a

37

CHAPTER 4. STATIC SCRATCHPAD ALLOCATION

(a) LOOP BREAK (b) WHILE/CALL LOOP (c) IMPROPER

Figure 4.3: Special patterns

statement causes an unconditional and immediate escape from the loop bypassing all regular
loop condition testing. The regular test is performed at the top for while and at the bottom
for natural loops. The control flow continues at the node which would have been executed
after the regular loop condition would have failed. Therefore, a single break statement in a
loop would create a pattern as shown in (4.3a). The primary characterstic of this pattern is
that there exists a conditional branch within the loop with one edge continuing the loop and
the other escaping the loop. The latter edge leads to the node directly following the loop
in the control flow. It is noteworthy that the pattern shown is just schematic. In fact, the
escape condition can be arbitarily deeply nested within other structures - not being loops or
a switch statement - within the loop. The strategy to overcome the problem of not knowing
the enclosing loop yet when matching such a pattern is to simply discard the escaping edge
upon reduction. It is not necessary to verify correctness here because the parsing phase of
the compiler would already fail if a break statement was used outside a loop (and outside a
switch statement).

Another problem arises with the use of function calls within the condition expression of
a while loop. This inevitably leads to the splitting of the loop condition into two separate
basic blocks. This is shown in 4.3b. The corresponding pattern is named a while/call pat-
tern. Such a situation can unambiguously be identified by the following facts. The topmost
node has two incoming edges, of which one is a back edge coming from the bottom node.
The node beneath the topmost node is unconditionally reached by the latter and has two
outgoing edges. One egde leads into the loop the other escapes the loop to a node outside
of it. The fact that neither the top nor the bottom node performs any conditional branching
distinguishes this pattern from the break pattern in the case of ambiguity. The reduction of
a match in the control flow graph consists of just discarding the two topmost nodes. The
consequence is that this loop can be matched against a while pattern immediately. Figure
4 3c illustrates an example of an irreducible structure.

In figure 4.4, an example is given to show the effect of matching and reduction. Given
the control flow graph, the algorithm proceeds from the bottom up. The first match is an
ifthenelse structure (1). The complete pattern is replaced by a single node, all edges that
were connected to nodes within the match are reset to the new node j. The search continues

38

4.2. PROGRAM ANALYSIS

Figure 4.4: Example of structural analysis

and matches a block (2). Again, the match is replaced. Since the search reached the topmost
node, the process is restarted at the bottom. In (3) a natural loop is identified and replaced.
The final pattern that matches is a ifthenelse structure (4). After handling the latter, only a
single node is left (5) and the algorithm terminates.

Function .
‘ Function ’
Block
IfThenElse
IfThenElse)
‘ Block ’ ‘ IfThenElse ’
[\
allb 1
WhileLoop
‘ IfThenElse ’ ‘ WhileLoop ’
[\ [\
C d e f g ' h
(a) Nesting (b) Control-tree

Figure 4.5: Nesting structure and control-tree of example 4.4.

39

CHAPTER 4. STATIC SCRATCHPAD ALLOCATION

While matching the graph against the given patterns, we need a way to recall what patterns
we identified and what nodes were enclosed by them. The data structure to do this is referred
to as a contol tree. A contol tree is a n-ary tree whose root node represents the fully reduced
graph and whose leafs represent the basic blocks of the function represented by the control
flow graph. Every other node represents a matched and reduced structure. Nesting is ex-
pressed by attaching structurally enclosed structures as successors to other nodes. The given
example that demonstrates the reduction of the graph in figure 4.5, shows the corresponding
control tree that would have been generated by the algorithm.

After having discussed the fundamental ideas of the algorithm, we can now examine how it
is actually implemented.

Algorithm 1: Algorithm of structural analysis
1: {cfg is input control flow graph}
2: v: node
3: region: set of nodes
4: depth_first_search(cfg) {determine order of processing}
5: v := post_order_start(cfg)
6: while |v| > 1 do
7. region := find_acyclic_region(v) {see algorithm 2}
8: if Iregionl = 0 then

9: region := find_cyclic_region(v) {see algorithm 3}
10 if [regionl = O then
11: v := post_order_next(v)
12: else
13: v :=reduce(region)
14 end if
15: else
16: v :=reduce(region)
17: endif

18: end while

As already mentioned, a repetitive matching of patterns and the reduction of matches is per-
formed. The actual strategy is to traverse the graph in its reverse topological order. This
is achieved by applying a depth first search on the control flow graph. A depth first search
can assign numbers to nodes while traversing it. These numbers define the order in which
the nodes have been visited. Usually the numbers are assigned in pre-order. This means the
numbering is performed when a yet unvisited node is reached. The fact that the control flow
graph is matched against the patterns starting with the entry node of each pattern makes such
an ordering useless for our needs. When a reduction took place, it is not clear where to con-
tinue the search for matches since the patterns can have multiple exiting edges. Therefore,
it is more convenient to step through the graph in post-order. This means that the nodes are
numbered when a node is completely processed. That ordering implies that the exit node
receives the lowest number. Now, when a match was found and a reduction took place, we
can simply assign the highest number of a node of a matching subgraph to the replacement

40

4.2. PROGRAM ANALYSIS

node and continue our matching right at the current node. All in all, we are traversing from
the bottom upwards. This is shown in algorithm 1.

After each step, the known patterns are matched against the current node and its succee-
dors. The acyclic structure are tested with the function find_acylic_region in line 7. If
this fails the current node is tested for whether is matchs a cyclic structure by the func-
tion find_cylic_region as shown in line 9. If any pattern matches a subgraph, the latter is
discarded from the control flow graph and replaced by a representing node. This is done
by the function reduce in line 16. All edges that originally lead into the subgraph are re-
set to be connected to the newly introduced node. The search is then continued with the
next node according to the order defined by the post-order depth first search numbering
(post_order_next). Once the whole control flow graph has been traversed, we start at the
bottom once again. Every single pass through the graph detects at least one match.

Algorithm 2: Function to detect acyclic regions
1: {uis input}
region =0
v, 1, r: node
region := maximize_block(u)
v := head_node(region)
if |region| > 2 then
insert_ctree_node(v, region, block)
return region
else
1 := left_succ(v), r := right_succ(v)
if out_degree(l) = out_degree(r) = in_degree(l) = in_degree(r) = 1
A succ(l) = succ(r)
then
12: insert_ctree_node(v, region, ifthenelse)
13: return region
14: end if

R A A

—_ =
_ O

15: end if

We will now investigate how the patterns are matched against the graph in detail. The
detection of acyclic structures is partly presented in algorithm 2. The function is called with
the starting node as its argument. Firstly, it is attempted to find a block of maximal size. As
figure 4.1a suggests, a block structure is a sequence of nodes only entered at the top node
and only left from the bottom node. The function maximize_block in line 4 first searches
along the control flow until a node is encountered that violates the block property. Next
a search from the starting node upwards is performed. The node v represents the head of
the block afterwards. If a block structure has been detected it consists of at least 2 blocks
(line 6). If this is true, the function insert_ctree_node generates a new node in the control
tree. Since the pattern detection works from the most deeply nested structures upwards, the
control tree is constructed bottom-up. Since we can easily determine which existing nodes

41

CHAPTER 4. STATIC SCRATCHPAD ALLOCATION

are contained in a structure by looking at their corresponding control flow graph nodes, the
control tree can conveniently by constructed. The arguments to the function are the leading
node of the match (according to the control flow direction), the complete set of control flow
nodes that comprise the match and the type of the match. After creating such a control tree
node, the set of nodes comprising the structure is returned so that it can be reduced.

If no block has been found, the adjacent nodes of the head node are examined to determine
other acyclic patterns. In line 10 of algorithm 2, an example of how to detect a ifthenelse
structure is shown. The test is straight forward. If the subgraph matches, again a control tree
node is generated like explained earlier and the set of nodes is returned.

Algorithm 3: Function to detect cyclic regions

1: {uis input}
2: region:=uU{veV|IweV :has_fp(v,w)\has_fp(u,v) Nhas_bp(w,u)}
3: if |region| = 1 then

4: insert_ctree_node(n, region, selfloop)

5: return region

6: end if

7: if |region| = 2 then

8: v:=region \ u

9: if in_degree(u) =2 A out_degree(u) =2 A

in_degree(v) =2 A out_degree(v) = 2 then

10: insert_ctree_node(n, region, while)
11: return region

12: end if
13: end if

Given that all tests for acyclic patterns failed, the function find_cylic_region as shown in
algorithm 3 is invoked. Again, the input is a node of the control flow graph. To detect
whether the argument node is the head of a cyclic pattern and what nodes are enclosed in
this structure we perform the test in line 2. A cyclic structure contains node « and it contains
any node v for which there exists a possibly empty path to a node w (the bottom node of a
possible loop) so that u does not lie on the forward path from v to w but there does exist a
back path from w to the head node u. All nodes v of the control flow graph that fullfil this
property are enclosed in some cyclic structure of which u is its topmost node. If the set of
nodes just determined has the size of 2 we can match it against the loop patterns presented
above. The handling of the structure after detection is equivalent to the actions performed
when an acyclic structure is found.

The structural analysis is a powerful tool when it comes to reconstruction of typical control
flow structures. The advantage over methods that only partition the graph into acyclic and
cyclic structurs is that a full identification is also performed. The creation of a control
tree that fully models a function’s control flow simplifies any optimization that relies on
modification of only well defined parts of a program. The algorithm presented here is only
a rough outline of the steps necessary to perform. In [Muc97], it is presented in much

42

4.3. TOWARDS A STATIC OPTIMIZATION

more detail. However, the description there is still incomplete. It is noteworthy that the
structural patterns as shown above might need additional modifications to suit the low-level
presentation generated by other code selectors. The ones here are set up for the WCC.

4.3 Towards a static optimization

Program code has the property that it is in general not altered at compile time. Also jump
targets are usually decided at compile time. Therefore, a static model of a program’s control
flow can be established. It is understood that for modeling a globally complete control
flow, all functions involved, and their local control flow need to be known. The proposed
optimization only needs to deal with local control flows. Although also here the complete
set of called functions needs to be known, it is not necessary to know the global control flow
between functions. Such a control flow would reveal the order in which function invocations
would appear. This information is not required for this static optimization.

That said, the strategy of this optimization is to select subsets of a program at compile time so
as to achieve an optimal reduction of the WCET given a scratchpad memory of certain size.
The static assignment to a scratchpad memory resembles the Knapsack Problem ([Weg99]).

Definition 4.3.1. Knapsack Problem (KP)

Given a knapsack with a weight limit of W and n objects o; € O. The function w: O — N
denotes the weight, the function v : O — N the usefulness of an object.

Find a subset O,,; C O so that Y, . v(0;) is maximized while the weight limit is not ex-
ceeded. Thatis ¥, cow(0;) <W.

In our case the knapsack is the scratchpad memory and the objects would be any type of
program code objects like functions, basic blocks and instructions. The weight of an object
is the accumulated size of the objects. The usefulness is the gain we can achieve by moving
such an object from the main memory into the scratchpad memory. Such gain can be the
reduction of execution time. In our case the aim is to reduce the upper worst-case execution
time bound.

Moving single instructions makes little sense since the the different memories are located
in different places in the address space and jumps would be necessary to reach each one
of them. Assigning basic blocks to different memories makes use of the fact that such a
block only has a single entry point at the top and a single exit at the bottom of a sequence
of instructions (see definition 2.2.1). This implies that a block either ends with an implicit
or an explicit jump. The latter being conditional or unconditional. A basic block has no
side-effects on the control flow. Therefore, only a block’s tail would require modifications
to correct the execution path so that a program would run utilizing both memories. We will
investigate this issue later.

Moving a basic block into the faster memory just because its isolated gain is high does not
consider the overhead caused by jumps between memories. Given that a sequence of basic
blocks is connected solely by implicit jumps, it would be comparably expensive to move
some of them into a different memory. This would require the introductio of additional jump

43

CHAPTER 4. STATIC SCRATCHPAD ALLOCATION

instructions which have negative effects on the execution performance. Because of this,
many optimizations proposed so far attempt to form groups of basic blocks to achieve better
results. Typically, sets of basic blocks that are executed in forward direction (in the direction
of the control flow) are chosen. Loop bodies are such sequences. As long as the graph is
reducible as defined in 4.2.4, only loops with a single entry node and a single successor node
are encountered. Such sequences are also referred to as traces (see [VWMO04b]). Since the
code in a loop is executed repeatedly, moving it into a faster memory alltogether potentially
would yield the best results.

Another option is to move entire functions. This comes with two problems. From the
function entry many different execution paths may lead through it. Some of which are
rarely exectuted or result in a low gain when moved into a faster memory. Picking whole
functions can be too coarse grained, and space occupied by rarely executed instructions is
better off used for code that would increase the gain.

Although manifold code optimizations utilizing scratchpad memories exist - some of which
have been mentioned above - they are all unsuitable for the problem of optimizing the
WCET. The reason for this is that all proposed optimizations need not consider a worst-
case time bound. They have in common that most expensive parts of a program are picked
and moved into a different memory. For energy reduction the expected energy dissipation
is considered. For optimizations concerning the average execution time, the expected exe-
cution of each such fragment is considered. This kind of average case optimization can be
precisely mapped onto the KP as described above. Compared to that, WCET-centric opti-
mizations need to actually know the upper execution time bound. As has been described in
chapter 2, this bound can be calculated either implictly using IPET or by explicitly searching
the worst-case execution path (WCEP). Since our aim is to optimize the worst-case bound
we need to model this path in some way, so that optimization decisions are correct. Those
decisions are the allocation decisions on program code. The fact that this path is poten-
tially unknown prior to evaluating the problem, makes the selection of traces an unsuitable
method. Such a selection is solely based on the assumption that an expensive trace ought
to be allocated in the scratchpad memory irrespective the fact that such a trace might not be
part of the actual WCEP. Therefore, this static precomputation would not lead to an optimal
result.

Figure 4.6: Dynamically changing WCEP during optimization

44

4.3. TOWARDS A STATIC OPTIMIZATION

In figure 4.6a, an example path through a program with a marked WCEP is illustrated. The
nodes are labeled with a fictive WCET. If an optimization is applied that leads to a change
in any of the separate WCET, the WCEP can change dynamically as shown in 4.6b. This is
the key problem for all WCET-directed optimizations. A modification during an optimiza-
tion potentially leads to a change of the WCEP. For techniques making use of explicit path
information, a repetitive reevaluation of this path is inevitable.

As has already been pointed out, single basic blocks might be too fine grained to justify
their isolated allocation. Given, we ignore this problem for a moment, another major issue
comes up. Whatever selection of basic blocks has been performed, as the program does
usually not fit into the faster memory as a whole, some modifications to program code
need to be done, so that the control flow remains equivalent to the unoptimized program.
For basic blocks that are executed sequentially through an implicit jump, an explicit jump
would need to be generated if those were distributed among the memories. Depending on
the architecture, multiple additional instructions might be required. For implicit jumps such
correction inevitably leads to a growth of program size. But also for explicit jumps cases,
this might be the case. RISC architectures are especially prone to this due to the limited size
of their operands. To give an example, the TriCorel architecture assigns address intervals
of 256MB to each memory. There exists just a single unconditional jump instruction which
takes an immediate, signed 24bit address operand. This means that at most a range of SMB
is immediately addressible. Other jump instructions are even less powerful. The only way
to achieve such long distance jumps is to jump indirectly by loading the jump address into
a separate register and execute an indirect jump instruction. That way, the result is at least
one additional instruction. And the case just described is only one of the more trivial cases.
This issue is thoroughly discussed in section 4.5.2. Either way, the inflation of the program
due to such an optimization of the code is difficult to track precisely. The inflation occurs
upon deciding for a certain allocation and has immediate impact on the blocks involved and
the adjacent ones. This is where caches have a clear advantage, as has already been pointed
out. They are fully transparent to the instruction fetch unit, thus requiring no additional
modifications. It is remarkable that this issue hasn’t been addressed yet in any optimization
of program code for scratchpad memories - whether they were related to energy reduction or
were WCET-centered. In conclusion, the problem we are going to solve cannot be reduced
to the KP anymore. Decision on the objects have impact on both measures, weight and
usefulness. In the upcoming sections, a solution will be presented.

The WCEP consists of the basic blocks that make up the WCET. To identify the WCEP,
two basic approaches are known. In [Pua06], a repetitive reevaluation of the WCEP is
performed. A certain number of allocation decisions is allowed, then a complete WCET
analysis is performed and the most expensive path is explicitly determined. This approach
comes with two drawbacks. On the one hand, just a single allocation decision for a basic
block (or any other grouping that was chosen) can lead to a change of the WCEP. The path
along which the optimization is performed might not be the most expensive one anymore.
Still, further decisions are made. These decision are never cancelled even if that leads to
suboptimal results. On the other hand, the repetitive evaluation comes at the cost of long
solving times.

The second approach is the one presented in [SMRCO05]. Their aim is to optimize program

45

CHAPTER 4. STATIC SCRATCHPAD ALLOCATION

cost(b) + cost(d) cost(c) + cost(d)

WCET =
max(cost(b) + cost(d),cost(c) + cost(d))

Figure 4.7: WCEP property: Accumulating WCET

data. But the basic idea can also be applied to program code. It is an implicit enumeration
problem. Just like with IPET, the attempt is not to explicitly discover paths through the con-
trol flow graph but to implicitly take the longest path into consideration. The key to solving
the allocation problem for program code is to take the worst-case path into consideration on
each single decision and to not decide for allocation if this proves suboptimal in any way.
Because of this, constructing an ILP is the favorable way to get a solution. The central dis-
covery presented in the paper referenced above is that the total WCET along the WCEP is
the sum of all WCET of its components. Let’s consider just basic blocks and a trivial control
flow without loops as presented in figure 4.7.

The WCET from the bottom node to the top node is equal to the WCET from the bottom
to the node following the top node plus the WCET of the top node itself. Because of this,
attempts to reduce the WCET have to be performed on this path. If there are two paths
through that graph, then an improvement can only be achieved by making decisions on that
particular path which is the WCEP, given the current allocation decisions. This idea is one
fundament of the optimizations that are presented in this thesis.

In the following, an ILP for the static allocation of a program to the scratchpad memory is
presented. The ideas which have been discussed only briefly above, will be presented in all
detail.

4.4 ILP Model

We will now discuss how an actual ILP can be constructed to solve the static allocation prob-
lem. The conclusion from the previous section is taken as a reference. The section is split
into two parts, a formal description of the problem in section 4.4.1 and the transformation
into the final ILP in section 4.4.2.

4.4.1 Preliminaries

In this section, the formal requirements to construct an ILP model to optimally solve the
static, WCET-centric code allocation problem is presented. As the name suggests, we try to
decide for whether certain parts of a program shall be statically allocated to the scratchpad
memory.

46

4.4. ILP MODEL

memory object 2

Address

memory object 1

memory object0
Time

[\

Figure 4.8: Memory layout of static allocation

Before we construct the ILP model, certain preconditions have to be recorded. The alloca-
tion decisions and the actual placement will be made at compile time. This means that blocks
assigned to a certain memory will occupy it throughout the program’s lifetime. This means
that during runtime, there is no change - neither in the main memory nor in the scratchpad
memory. No two memory objects will be assigned to memory so that they overlap. In turn,
this implies that these objects will require a linear layout in the two memories as outlined in
figure 4.8.

Although assigned to two different memories, the objects will keep a partial order. The
result is that the direction of control flow remains the same after optimization. This means
that assumptions made about the machine state’remain largely valid®.

Each control flow graph from which we will generate the ILP model represents a single
function. An example is given in figure 4.9. As was already mentioned earlier on, global
flow information needs only be available to model whether if and who calls another function.
The order in which this happens is irrelevant. Because of this, we can restrict ourselves to
just investigate local control flow graphs Gy = (V,E). However, we need to be able to
construct such a graph for all functions involved. Since the optimization takes place as an
integrated step in the WCC compiler, the complete program needs to be provided as its
input. Figure 4.9(1) shows the control flow graph that would result from the given source
code.

Such a graph needs to be reducible as defined in 4.2.4. Reducibility requires that the graph
can be partitioned into two sets. The set of forward edges Er and the set of backward edges
Ep. Discarding the backward edges from the graph therefore leaves us with a directed acylic
graph Gpag = (V,E \ Ep). This graph has a single entry node v; € V (source) and a single
exit node* v, € V (sink). Trivially, every path from v, to v, contains no cycles. Applied to
the concrete program, this means that all loops have been discarded in Gpag, leaving only
the loop bodies. This is outlined in 4.9(2). In the figure, when the back edge (e,c) of the
loop is discarded a DAG results. In addition a virtual sink node f has been introduced so
that this graph now has a unique source and a unique sink.

Loops themselves have properties comparable to local control flow graphs. An illustration
if its properties is given in figure 4.10. Given that V; C V is the set of nodes comprising

2In our case the state of the TriCorel pipeline and the outcome of its static branch prediction.

3The corrections on the program code to reconstruct the control flow between the different memories can
also impact the execution significantly.

4For a control graph with multiple sinks a virtual sink node is introduced prior to construction, to which all
the previous sinks are connected.

47

CHAPTER 4. STATIC SCRATCHPAD ALLOCATION

int x;
X =n + 1;
it (< m) (o) (o)

return m;

e 9 W © (@

X += m;

} while (x < m#m);
return x; e e

Figure 4.9: Local control flow graph properties

o G = (V,E)

Vitis v = () € Vi = D} ¥

o EB:E\EF:{<Vz{7v;1)v(vt’vh)}

Figure 4.10: Loop properties

an abritrary loop within G. Every loop possesses a single source node v, € V;, referred to
as the loop head, and a single sink node v; € V referred to as the loop tail. The source
node vy is the head of the back edge enclosing the set of loop nodes, the sink node v; is
the bottom. Therefore, (v;,v;) € Eg. All nodes v € V;, will be referred to as the loop body.
Clearly, for nested loops, the loop body of a nested loop is a subset of the nodes comprising
any enclosing loop.

We strive for the minimization of the overall execution time along the WCEP. With a WCET
analysis step we are able to obtain the worst-case execution cycles (WCEC) of each basic
block. To decide whether a block is to be placed in the main memory or in the scratchpad
memory, the difference of the execution times of the two memories need to be determined
before we start to construct the ILP model.

As was briefly outlined in figure 4.7, the WCET is composed of the set of nodes (that
represent the basic blocks of a function) which accumulate to the highest WCET value. This
set is the WCEP. As we need to avoid to explicitly look up the path this must be encoded

48

4.4. ILP MODEL

Wq > wp + c(a))

Wp > W —l—c(b)J

We > we+c(c)

we > wyr+c(e)

(a) Linear

Figure 4.11: Graph dependencies

in the ILP model implicitly. To keep things simple at this point, we assume a control flow
graph without loops and without branches as shown in figure 4.11a. Since node f is the sink
of the graph, the WCEP starting from f only consists of this node. The total WCET is just
the WCET of its corresponding basic block. The WCEP starting from node e consists of
nodes e and f. Trivially, the WCET is the sum of both per-block WCETs. Put differently,
the following general observation can be made:

Theorem 4.4.1. Given a WCEP P in a control flow graph G = (V,E) that is composed of
nodes P = (vy,...,v,) C V. Let w; be the cost of the WCEP from v; to v,. That is, the WCET.
Let ¢ : V. — N with c(v;) reflect the WCET of the single basic block corresponding to node
vi. Then for any (vi,...,v,) € P’ C P the following inequation holds true:

wi > wip1 +c(vi) 4.1)

This central observation is illustrated as a whole in figure 4.11a. As can be seen, a possible
path has already been marked which is assumed to be the WCEP. In such a linear depen-
dency, one node’s WCET variable w; depends solely on the succeeding node. Since nodes
can not have a negative WCET c(i), the WCET variable that denotes the cost of the path
from a particular node down to the sink increases monotonously. Since the aim is to find a
tight WCET, the solution of these inequalities should be minimized. This implies that the
source node’s WCET variable represents the highest accumulated costs, which is the overall
WCET bound. The WCET value of the bottommost node is simply its own WCET.

Of course, this presumes that the WCEP is actually known. There can be numerous paths
through a control flow graph from its sink to its source. Every branch results in an alterna-
tive. Among all paths, the worst-case path is the one whose overall costs are maximal. To
solve this problem, we take a step back from the details for a moment and reconsider the
overall aim. The aim is to minimize the overall worst-case time. This implies that we have
to optimize along the worst-case path. If we encounter a branch, this path can trivially only

49

CHAPTER 4. STATIC SCRATCHPAD ALLOCATION

wp > we+c(b wp > wy +c(b)]

) ()
: = N e W\
reEnere @ D razwrred) S0
we = c(e)

(b) Branches (c) Loops

Figure 4.11: Graph dependencies (continued)

lead along one of the branch edges and the path resulting in the maximum execution time
must pass along one of them.

Theorem 4.4.2. Let G = (E,V) be an acyclic control flow graph. Let outdeg :V — Ny
denote the number of outgoing edges from a node. Let v; €V be an arbitary node for which
outdeg(v;) = 2 holds true and which is known to be on the WCEP. That is, v; € P as defined
in theorem 4.4.1. Also let v; € V and vi €V be the corresponding adjacent nodes. Then
v;j € P holds true if and only if max(w;j,wi) = w;.

To make this more applicable to ILP, we express the observation as inequalities. The WCET
w; at node v; € V as just defined fulfills

wi >wj+c(vp)

4.2

w; > Wi+ C(v,‘) *2)

We are now only examining the single branch as shown in figure 4.11b. As can be seen, w,

and wy are costs of the partial paths from nodes ¢ and d to f, which is the sink of this graph.

The tightest worst-case execution time bound at node b can trivially only be the maximum
of any of the two worst-case time bounds increased by the cost caused by b itself.

This can be applied to all branches of a graph. Taking into account the equations for simple
linear dependencies and the rules for branching in an acyclic graph, the solutions for WCET
variables w; at all nodes represent some worst-case time bound for every possible path or
subpath. Solving the equations with the aim to minimize the bound, the entry node’s variable
represents the WCET.

Until here, we have only dealt with acyclic graphs. A cyclic graph is one which contains
loops. Loops are subgraphs whose entry and exit nodes are connected by a back edge.
Every entry node may have only single incoming back edge. As we will see later, this is a

50

4.4. ILP MODEL

precondition to deal with nested loops unambiguously. This restriction implies that every
loop can be identified by its entry node. In other words, no two loops share the same entry
node. As was already mentioned, the graphs we are dealing with need to be reducible as
defined in 4.2.4. In particular, multiple entries into a loop are not allowed.

Loops induce repetitive execution of the loop body. If we assume for the moment that
there exists a single loop in an anotherwise acyclic control flow graph, we can observe that
the contribution of such a loop to the overall (global) WCET is exactly the local WCET
determined by the WCEP through the loop body times the repetition count of the loop. This
local WCEP is restricted by the entry and exit nodes of the loop.

Some important facts about loops should be pointed out here. A cyclic region in a control
flow graph does not need to exit at its tail node. The tail node is the one node that is
dominated by all other nodes within the loop body and from which a back edge orginates.
However, as we have seen above, we know at least two kinds of loops, namely while and
natural. The former exits at its top node, the latter at its tail node. As has been shown there,
also cases where a loop is exited not at these nodes can occur. We will refer to this as an
irregular exit. Such an irregular exit interrupts the control flow prematurly. Both paths from
such an exit are guaranteed to join right after the loop in the direction of the control flow.

Theorem 4.4.3. Let G = (E,V) be a cyclic control flow graph with Vi, C V being the set of
nodes comprising the body of a single loop not including any nested loops with a maximum
repetition count of .. Let vy, v, € Vi be the head respectively the tail of the loop according
to the loop’s back edge as defined in 4.2.3. Moreover let P C'V denote the WCEP of G and
let Tg be its corresponding WCET. Then there exists some path P' = (vy,...,v;) C P whose
local WCET Ty, from vy, to v, contributes to Tg by exactly Ty, X Lygy.

Put differently, the global WCET w/, of the WCEP starting from the loop’s head node v;, and
whose succeeding node be vy with its accompanying costs wy, fulfills the inequation

W;L > Wi X bpax + Wy (4.3)

If we already knew the loop’s local WCET denoted by wy, any predecessing node could
depend on it to express its own WCET inequation just as described earlier on. If a loop
has been specified in terms of equations as in equation 4.3, it can be treated as if it would
not have existed in the graph, but instead would be represented by a single node with a
single WCET value, equal to that of the whole loop. This is because the loop is entered and
repeated at unique nodes. All depending equations can be set up accordingly.

An example of a natural loop in figure 4.11c. The variable w, represents the WCET from
node ¢ along the WCEP down to node e, which is the tail node of the loop body. As can be
seen, node e does not depend on any other node in the graph. This is because the loop body
can be treated as an isolated set of nodes, just as theorem 4.4.3 suggests. The loop itself has
no nested loops. In this case the loop body forms a trivial linear dependency between just
the two nodes. Setting up the equations for the loop body according to theorem 4.4.1, the
solution with the minimal value for w, reflects the total costs of the WCEP within that loop.
To take that loop into account globally, w, is multiplied by the maximal iteration count of

51

CHAPTER 4. STATIC SCRATCHPAD ALLOCATION

@)

Considered a single loop Unambiguously two loops

Figure 4.12: Ambiguity of loop heads

this loop. A new variable w. is introduced which corresponds exactly to the WCET orginat-
ing from the complete loop. Any predeccessing node needs to refer to this representative
variable instead of the WCET variable w, itself. A dependence to the succeeding nodes has
to be established as well. The global WCET of the path starting at node c including the loop
is therefore represented by the variable w/. which depends on both the loop it represents and
the loop’s succeeding node.

Naturally, structures like linear sequences of nodes, branches and loops can be arbitrarily
nested. Especially for nested loops, each loop must be identifiable separately to correctly
construct the inequations. This is an important justification for the restriction that no two
loops share a common entry node. Consider the situation in figure 4.12. The problem here
is that we can identify two different sets of nested structures. Figure 4.12a could be either
two loops sharing a single head or one loop containing a branching control flow as its loop
body. Due to the restriction that potential loop head nodes identify only a single loop, the
two loops are only identified if the graph has the structure shown in 4.12b.

With this knowledge about the construction of depedencies to obtain the WCET of a control
flow graph of a function, we can now fully describe what is necessary to solve the originally
stated problem. The problem was to decide for a set of basic blocks which to allocate into
the scratchpad memory. We exploit the knowledge about the structural dependencies we
just obtained. As was shown, the WCET itself can be obtained from the entry node of the
function. It is a solution to a system of inequalities. Specifically, it is the smallest valid
solution - therefore representing the tightest worst-case time bound.

4.4.2 Construction

On the following pages, the construction of an ILP is described in all detail. It is investigated
how we can use the fundamental dependency equations presented above to solve the static
allocation problem.

The set of equations to obtain the WCET along the implicitly discovered WCEP does not
yet lead to a solution we require. Yet, the equations model dependencies among connected

52

4.4. ILP MODEL

nodes. If we want to achieve any allocation decisions, additional effort is required.

An ILP has the general form of a single objective function and a set of equalities or in-
equalities referred to as constraints which are used to limit value ranges of variables that the
objective function depends on. As the name suggests, the variables in the system are integral
and all equations are linear. The objective is to either minimize or to maximize according to
a given function. Applied to what has been said in the previous section, we can already con-
struct an ILP to obtain the WCET given a control flow graph and the knowledge about the
WCET of all single basic blocks. The equations are created exactly in the way described in
the theorems 4.4.1, 4.4.2 and 4.4.3. The overall objective is to minimize the WCET variable
of the first basic block of a function.

The optimization we are trying to build should optimize along WCEP. To achieve any kind
of decision along this implicit path, we must allow the constraints to lower the bound they
represent. A WCET variable per node represents the WCET from that node down to the
exit node of the control flow graph. Such a constraint elevates the bound it represents by
the costs its corresponding basic block causes. Investigating a constraint that is part of the
WCEP, lowering that cost would potentially reduce the costs of all the WCET variables of
all nodes before (in direction of the control flow) the current node. Minimizing the value of
the WCET variable that represents the source node can therefore be achieved by lowering
the costs of any node along the WCEP. Lowering the costs of a node not being on the
WCEP has no effect on the overall costs at the source node. This observation is the key to
an optimization along an implicitly given WCEP.

Basic constraints

To make use of this knowledge, an additional variable is introduced to the discussed equa-
tions. This is referred to as a binary decision variable. We will refer to the main memory as
memyy,qin and to the scratchpad memory as mem,,,. For every basic block represented in the
control flow graph node v;, there exists such a variable a; defined as:

0 — 1 if basic block of v; is assigned to mem
"1 0 otherwise

Through a;, we can impose dynamic behavior within the ILP. The assignment of basic blocks
to different memories results in change of the per-block WCET. To know both the timings
for each memory, the whole program needs to be WCET-analyzed with all its basic blocks
assigned to mem,;,4i, on the one hand and memy),,, on the other hand. This way static infor-
mation is available that can be used as constants within the ILP. We define two functions
that will map nodes to the basic block’s respective WCET. Let V be the nodes of the control
flow graph. Then the two cost functions

Cmain 'V —-N

Cspm 'V — N

53

CHAPTER 4. STATIC SCRATCHPAD ALLOCATION

are defined as

Cmain(vi) = WCET of basic block of v; in memyygin (4.4)
cspm(vi) = WCET of basic block of v; in memyp,, 4.5)

They represent the costs imposed by assigning a basic block to the respective memory.

With this information available, we can express how the overall WCET is altered by assign-
ing basic blocks to different memories. By assigning a block to mem),,, we can achieve a
gain concerning its per-block WCET. This gain is the difference of the result of ¢4, and
cspm given that the basic block has been assigned to memy,,,. We define the gain as:

gain(v;) = Cmain(vi) — cspm(vi) X a; Vv, eV (4.6)

To minimize the overall WCET from the given equation model we have defined above, we
incorporate equation (4.6). To achieve this mimization, the static costs used in the latter
model are exchanged by the gain formular as just defined. The result is that picking a value
for a; will now dynamically have impact on the overvall WCET.

Let vy be the source node of the control flow graph and v, the sink node. Then in a linear
sequence of nodes P = (vy, ...,), the follwing equations model their costs:

Wi > Wit + Cmain(vi) — gain(v;) X a; V{i|vieP\{v}} 4.7
and
Wt = Cmain (Vt) - gain(vt) X ay (48)

In this context, a linear sequence is one where the number of incoming and outgoing edges
on each node is equal to 1.

For branches, the set of rules is extended for each of the succeeding nodes as defined in
theorem 4.4.2. The general form is equivalent to the one just presented.

Loops have been discussed briefly. Theorem 4.4.3 suggests that a loop consists of a loop
body and with a unique loop head. The equations defined so far can be applied inductively.
That way nested loops can be covered. Otherwise, a loop body only consists of linear
sequences of nodes or branches. To represent the costs a loop structure can cause in the
overall model, a representing WCET variable is introduced that reflects that costs of the
loop body times the maximal loop iterations possible. Every preceeding node needs to refer
to this newly introduced WCET variable and not to the variable of the loop body’s entry
node. An exception are self-loops where the loop body consists only of the loop head itself.
The costs are determined similarly to the other two loop constructs.

This model however is simplistic. In fact, loop structures in a control flow graph always
have an exiting edge. Depending on the type of the loop construct (refer to section 4.2.2),
this edge can be either at the top or the bottom of the loop body. In addition, loops can have
irregular exiting edges that can be arbitrarily distributed within the loop body. To make it
applicable to ILP, this has to be considered.

54

4.4. ILP MODEL

The constraint representing a whole loop also needs to depend on the node that immedi-
ately follows it, irrespective of the loop type. No constraint corresponding to a node of the
control flow graph may refer to a constraint outside the loop body. Only the constraint that
represents the overall loop costs may do so.

Without discussing the issue explicitly, the situation of a natural loop has already been
presented in 4.11c. As can be seen, the costs of the overall loop are solely determined by
a single constraint. The fact that node e has an out-degree of 2 is ignored. This property is
decisive for the ability to treat any structure as if it only consisted of a single node with the
accumulated costs of the structures it represents. Self-loops are treated similarly.

For a loop without an irregular exit, no changes have to be applied to any constraints apart
from what has just been described. Dependencies are only modeled by the constraint rep-
resenting the full loop. As just mentioned, no loop body constraint may reference other
constraint outside the loop. In the case of irregular exits, the execution of a single iteration
is interrupted prematurly. The aim of our optimization is to decrease the worst-case execu-
tion time along the WCEP. A premature exit edge can trivially never be part of the WCEP
because all paths through the loop body all join at a single common successor node of the
loop. Such an exit firstly can stop the loop body from executing on any iteration. Therefore,
at least one more iteration would still be performed regularly. Even if that exit happens to
be in the final iteration, there is still a non-empty path in the loop body at least down to its
bottom. Because of this observation, we can simply omit premature exits from a loop when
creating the ILP constraints. The worst case will never be affected by this.

Selection of groups

Up to this point, we have constructed a simple model to obtain the WCET of a function. This
is done by creating constraints that model the dependencies among nodes of the control flow
graph. The decisions have been constrained to the capacity of the scratchpad memory. This
exactly matches the KP. Apart from their dependence according to the control flow, the
model does not imply any other dependencies among those blocks. As we have discussed in
the introduction, moving small units can be costly. This is due to the fact that the instruction
pointer needs to switch back and forth between the two memories which are mapped into
the address space at different locations. Since the program formerly remained within the
same memory, jumps with only short distances are required.

Distributing basic blocks arbitarily would result in a large number of possible modifications
to the instructions code.

A technique is required to keep blocks from being abitrarily distributed solely based on their
own WCET. Since we do not know the WCEP upfront, a solution has to be integrated into
the ILP. This would lead to a solution where dynamic decisions on the allocation have an
immediate impact on the overall costs due to the overhead caused by suboptimal jumping.
The only way to keep this overhead low is to form groups of basic blocks and move them
into the other memory as is.

Modifying instructions usually means to replace jumps that are unsuited for bridging long

55

CHAPTER 4. STATIC SCRATCHPAD ALLOCATION

(a) Implicit (b) Unconditional (c) Conditional

Figure 4.13: Typical jump scenarios on RISC

distances in address space by more powerful ones. Especially on a RISC architecture this
is often the case. The specific issues related to the TriCorel architecture will be handled
below. To minimize the overhead, the number of jumps needs to be reduced. It must be
reduced as long as the advantage of moving a single block into the scratchpad memory does
not outweight the overhead. Otherwise a basic block should be kept in main memory.

On a typical RISC architecture three different cases can be distinguished.

e Implicit: Two consecutive basic blocks in control flow and adjacent in address space
and whose top block does not contain a jump instruction (figure 4.13a).

e Unconditional: Two consecutive basic blocks in control flow where the top block
contains an unconditional jump instruction to reach the other (figure 4.13b).

e Conditional: Three basic blocks of which one is reached from the top block by an
implicit jump and the other is reached by a conditional jump instruction (figure 4.13c).

Every jump scenario, as shown in the figure 4.13, is one which can be encountered on every
single block. The aim should be to keep any modifications at a minimium. Note that we do
not yet consider function calls. That is, control flow among different control flow graphs.

The problem until here has been described rather sketchy. We should now strive for tangible
definitions. The overall aim is to minimize the value of the WCET variable of the control
flow graph entry node. Any allocation decision does lead to an overhead. This cannot
be avoided as a whole because we need to distribute our program among the memories to
achieve our goal. However, the gain must always outweight the overhead. In addition, we
would like to make decisions for larger groups of nodes at a time. To model this overhead
we introduce a new function

Ciump -V — Ny 4.9

that will model the jump costs and simply add its mapped value to every per-node constraint.

The function must properly reflect what situation happened to exist prior to allocation and
what immediate costs some allocation decision would have on a particular basic block. We
refer to this overhead as the jump penalty. The function will be defined after we have made
clear how such a penalty should be modeled.

56

4.4. ILP MODEL

The penalty does not reflect the real overhead in execution cycles. Rather, it models a rank-
ing among different jump scenarios. The lower the rank, the more favorable the situation.
The point to restrain from keeping this cycle accurate is simply the overall complexity. For
example, machine state and branch prediction can only be considered with unreasonably
large efforts in general. A second point is that the overall model loses much of its genericity
if coined for a single specific architecture. Nevertheless the actual jump penalties expressed
as integral values are chosen to be worst-case values obtained by experiments on a TriCorel
architecture. An implicit consequence is that the WCET cannot be tightly obtained from the
top node’s WCET variable anymore. However, this value has no sigificance to the optimiza-
tion.

memoryg memory memory memory

:
:

hd
U

(a) Implicit (b) Uncritical (c) Critical

Figure 4.14: Jump-penalty classification

According to the jump scenarios illustrated in figure 4.13, we define three different ranks
for penalizing jump situations:

e Implict: Control flow between basic blocks without any explict jump (4.14a).
e Uncritical: Control flow between basic blocks but within the same memory (4.14b).

e Ciritical: Control flow between basic blocks in different memories (4.14c).

These ranks are assigned integral values so that the order
Implicit < Uncritical < Critical (4.10)

is kept. Note that these jump penalties do not correspond to jump scenarios. Three exam-
ples for a classification are given in figure 4.14. What is achieved by such a ranking is that
implicit jumping causes the smallest increase of the overall costs if applied in the ILP. This
encompasses situations where blocks are connected by an implicit jump. In turn, not favor-
ing an implicit jump means that an implicit jump in the original program will be replaced by
an explicit jump when the two connected blocks are distributed in different memories. The
difference of ranks implicit to critical is largest. The same applies to uncritical jumps. They
are already composed of explicit jump instructions. Therefore, they cause a greater over-
head than an implicit jump. The critical rank imposes the highest penalty. Therefore, the
lower ranks are favored if not the gain achievable by allocating a single basic block justifies

57

CHAPTER 4. STATIC SCRATCHPAD ALLOCATION

the penalty. The concrete architecture-dependend aspects of this will be discussed below.
For the implicit jump penalty, we chose the constant value to be 0. An uncritical jump is
penalized with 8 cyclesThis is a safe overestimation in any case given that the exact memory
timings are unknown. Critical jumps are penalized with 16 cycles. These values need not
be tight because it their sole purpose so to group basic blocks. In practice, deviating values
generally had no influence on the outcome because loops impose the largest costs in the
control flow and loop bodies are therefore considered in favor of all other control flows.

The classification of jumps in this way has the consequence that now larger groups of blocks
are being favored when it comes to allocation. First of all, blocks that are directly connected
in the control flow graph are now considered connected within the ILP. Imposing a penalty
already causes the solution to have an effect on consecutive blocks. However, jumps have
different properties and especially inexpensive jump scenarios shall be kept. The ranking
triggers this behavior. In contrast to traces, a group of basic blocks is not arbitrarily selected
by only considering out- and in-degree of different control flow graph nodes but depend
primarily on the kind of their context and their WCET at the same time.

An important point regarding correct jump-penalization is the order of basic blocks in the
address space. For this static optimization problem, it is guaranteed that a strict partial order
is kept even when blocks are allocated into the scratchpad memory.

Definition 4.4.4. A partial order is a relation “<” on a set S with the properties:

o reflexive: a<a VaeS
o transitive: a<bANb<c=a<c VYa,b,c € S

e antisymmetric.: a<bANb<a=a=b Ya,b e S

In our case, if a particular order was given in the original program then it remains to hold
true for both the two partitions of blocks that will be allocated to the memories. This can
easily be achieved, as the actual block placement is performed statically. The consequence
is that forward jumps remain jumps in that direction within the same memory and alloca-
tion decisions have a minimized impact on the requirements to alter the instruction code
afterwards. This is illustrated in figure 4.15.

The figure shows a possible outcome of an optimization. As can be seen, the assignment
of blocks to different memories does not change the actual order of exectution for basic
blocks per memory. It should be noted that the figure only illustrates the issue of ordering.
The blocks are placed adjacent to each other in fact. The jumps between the basic blocks
denoted by the arrows could be classified as critical and uncritical as defined above.

The uncritical jumps keep their jump direction. That is, jumps in direction of the control
flow will remain. The jump between blocks b; and b; in figure 4.15 prevails. In fact, a
possible jump at this point might become obsolete. Such situations demand for removal of
such an obsolete jump and a dynamic reclassification as implicit. This is also something that
requires consideration.

Up to this point, the fundamentals for the jump penalization have been thoroughly presented.
What remains is how these ideas can be included in the overall ILP model. Clearly, the

58

4.4. ILP MODEL

memory memory\ memory(memoryq

Figure 4.15: Allocation and order of blocks

classifcation of jumps in implicit and uncritical ones can already be done at compile time.
But these classifications must be allowed to dynamically change, depending on the decision
variables. Depending on this classification it should then be possible to let appropriate
penalty values influence the decisions of the ILP solver.

Jump penalization

What can be observed is that per jump only two binary decision variables determine the
classification of the jump?. If the two decision variables hold different values, this indicates
that the two corresponding basic blocks have been assigned to different memories. This
means that a jump between the two would be classified critical. This can be modeled by
treating the two variables as operands to the logical operation XOR (denoted as ®). We will
now investigate how to forumlate the specific jump classifications in logic operations.

An implicit jump can encompass at most four cases, as the two basic blocks may be assigned
to two different memories. Given they are placed in the same memory together, the jump
shall be classified as implicit. Otherwise as critical. Let Pc € N represent the penalty of
a critical jump according to the ranking defined in equation 4.10. Given two control flow
graph nodes v;,v; € V (representing the basic blocks b;,b; as in figure 4.14a) and their
corresponding decision varibles a;,a;, the jump penalty for an implicit jump case is defined
as:

‘llimplicit = (ai ®aj) X Pc 4.11)

For unconditional jumps the scenario is more complex. Two basic blocks b; and b; are
connected by an explicit jump as shown in figure 4.13b. Usually, but not necessarily, such
a jump bypasses a number of other basic blocks. These other blocks are not related to the
current scenario because they are not part of the path in the control flow graph between the
two basic blocks. However, they require consideration because they determine if a jump is
required at all. As can be observed in figure 4.15, when the allocation takes place, blocks
b and b; become adjacent blocks in the address space of memory;. Therefore, we assume a

5 A conditional jump is practically treated as two separate jumps. An implicit and an explicit jump.

59

CHAPTER 4. STATIC SCRATCHPAD ALLOCATION

critical jump if the two blocks have been placed in different memories. If they have not been
placed in different memories, they are at least connected by an uncritical jump. Such a jump
is penalized by the constant py; € N. In the special case of being adjacent in address space
because no other blocks have been placed between the two, the additional costs of py need
not be applied. Since the partial order of blocks is a guarantee, the set of possible blocks
that could be placed between b; and b; can be easily obtained. It is the set of blocks that
is already located between them in the unaltered program. Thus, even the uncritical jump
penalty only applies if any of the binary decision variables (a;;1,...,a;—1) corresponding to
those blocks have a different value than both the variables a; and a;. Formally, the function
determining the jump penalty in case of an unconditional jump for a control flow graph node
v; representing b; is defined as:

Ji/nconditional - (ai ®aj)PC
+(1 —ai®aj)PU 4.12)
—((@gi®ai1)...(ai®aj-1))Py

For conditional jumps, the two succeeding basic blocks b;, by need to be considered. This is
the situation in figure 4.13c. To properly penalize such a jump, all combinations of the three
binary variables corresponding to the basic blocks need consideration. On the one hand,
there exists the implicit jump from b; to b;. It corresponds to the simple scenario expressed
in equation (4.11). Either, both are placed in the same memory, which means the jump is
implicit. Otherwise both are located in two different memories, then the jump is penalized as
a critical jump. Similarly, the explicit jump penalty is uncritical as long as both basic blocks
b; and by remain in the same memory. It is critical otherwise. Just as in the conditional case,
when there are no basic blocks located in the address space between the two basic blocks,
the penalty need not be applied. This is because the explicit jump would be unnecessary.
Let a;,a; and a; correspond to the respective basic block assignments and v; to the leading
basic block b;, then the penalty for a conditional jump case is defined as:

Ieonditional = (@i ©aj)Pe
+ (a; @ ay)Pc
+(l—a;®ar)Py
—((ai®ajt1)...(ai®aj—1))Py

(4.13)

The penalties that are applied to the constraints in the ILP model is denoted by the function
Cjump defined as:

J}mplicit if the jump case is implicit
Cjump = § Jnconditionar 1 the jump case is unconditional 4.14)
e onditional if the jump case is conditional

The different jump scenarios and the necessary classification can be detected at compile
time. Placing different basic blocks into another, faster memory results in a gain as defined
earlier. This gain comes with a cost. The cost is determined by the instruction code that will

60

4.4. ILP MODEL

require modifications to construct a valid program again, after the placement of blocks. The
fact that direct connections of basic blocks have now also been modeled, these connections
will now also be taken into consideration when searching for a solution. This also leads
to a grouping of basic blocks, since separating a basic block from a sequence of blocks
will now imply an overhead. Given such a decision is made within a loop, this overhead is
even multiplied by the number of loop iterations. Therefore, the jump penalty becomes a
considerable factor in finding an overall solution.

What remains is the problem of encoding the logical operations in a form that is a valid
input to an ILP solver. The required format is that of a set of (in)equations. These must be
modeled so that we achieve correct results given the overall objective of minimization. The
logical function XOR can be expanded by defining it in terms of:

a®b=(aAb)V(anb) (4.15)

The logical AND function can be expressed as a set of inequations in the following way,
given that all variables are already restricted to the interval [0,1]:

x > a+b-—1
x=aNb — x < a (4.16)
x < b

Under the same restriction, the logical OR function can be expressed in terms of:

x < a+b
x=aVb — x > a “4.17)
x > b

Since all variables are binary the logical function NOT is trivially expressed as:

x=a — x = l—a (4.18)

With this basic knowledge at hand, we can compose the equations that make up a logical
XOR operation on binary operands:

x < xXptx
X > X
X 2 X
5 = (anb)V (@Ab) 2 i Z+(1 b)—l=a=b 4.19)
= Xx1VXx2 X < 1-b
x, > (I-a)+b—1=—-a+b
x < l-—a
X2 S b

Another problem we need to solve is the chaining of logical XOR functions as (in)equations
4.12 and 4.13. There, all the single results of the XOR subterms form a chain of conjunctions.

61

CHAPTER 4. STATIC SCRATCHPAD ALLOCATION

As a whole, the term evaluates to the value 1 if and only if all the single functions evaluate
to 1. The second observation is that the left-hand side operand a; is the same throughout
all subterms. From these facts we can obtain a single set of expressions that covers the
conjunction of logical XOR functions under the restriction that one and the same operand
appears in each subterm. We can transform the original term so that:

(ai®a,~+1) /\...(ai®aj_1)
= (@i Va1)N @Vaip))N...((aiVa—1) N(@Vaj-r)) (4.20)
= (ai/\m/\...aj,l)\/ (aﬁ/\aiﬂ /\...ajfl)

This form is already similar to the one in equation 4.15. The transformation into a set of
inequations is also very similar. Given that now |{a;1,...,a;—1}| = j—i—2 = n operands
are applied with a; instead of just one, equation 4.20 resolves to:

x < x1t+x
X > X
X > X
X1 > ai— Y- divk
x1 < g
_ _ x1 < 1—gq;
x = (aANGxiN...aG-) b= it
V(EAdi+1A...aj,1) — : 4.21)
= x1Vxp x;1 < l—aj_1
X2 > —ai+Yi_ aik—(n—1)
X < l—a
X < ai
X < oajo

Putting together the insights we obtained and the templates for equations for some funda-
mental logic operations, we can now extend the very basic control flow constraints discussed
in section 4.4.1. Specifically, the constraints defined in equations 4.1, 4.2 and 4.3. This is
simply done by extending the constraints by the jump pentalty function c j,,, defined above.
Therefore, the general form of a control flow dependency constraint - given the WCET vari-
ables {w; | WCET variable of node v;} and the cost function ¢ - is now:

Wi > Wit + Cmain (Vi) — gain(vi) X a; + ¢ jump (vi) (4.22)
Similarly, this is applied to branch and loop constraints.

Summing this up, we have now fully assembled the components to a complete ILP to model
the control flow graph of a function. We solved the problem of discovering the WCEP
by only implicitly modeling the path through control flow constraints. This allows for an
efficient processing on the one hand and on the other it allows to extend these constraints
to achieve specific optimizations goals along the WCEP. Also, the problem of grouping
basic blocks, if this is beneficial, has been solved. No static preselection is performed. By
imposing jump penalties we have a dynamic control over whether blocks become separated
depending on the balance of gain and penalty. Under this model, we can obtain optimal
results for the static, WCET-centric code allocation problem for single functions.

62

4.4. ILP MODEL

Global control flow

Next, this model needs to be extended so that complete programs can be covered. For this
purpose, we need to discuss some aspects of program-wide control flow prior to extending
the system of equations.

A program consists of a set of functions. Currently, the ILP only models the intraprocedural
control flow of a program. One of those functions is the dedicated entry point of the program.
This is illustrated in 4.16.

Calling function f] from fj in general implies that the control flow will return to the point in
fo from which the call has been performed. Or more specifically, to the instruction following
the call. Because of this, the global entry function is also the global exit function.

If we were to establish an interprocedural control flow graph that models the invocations
among the functions, a unique source node and a unique sink node could be identified.
Depending on the system and the programming language, this structure need not necessarily
exist. In the C programming language the control flow can be altered in irregular ways.
Namely, the function pair setjmp()/longjmp() allows to create a backup of the current context
on the call stack and to restore it. This means that the order of function invocations does
not necessarily match the reverse order of function returns. Another issue is the use of the
exit() function which allows immediate termination of the program. These two situations,
however, rarely arise. What is required to extend the ILP for interprocedural control flow,
is that every path in the program’s control flow graph spawns at the source and ends at the
sink of the dedicated entry function as shown in figure 4.16 (with fy as such a function).

This restriction reveals yet another problem. In the C programming language, not all func-
tions contributing to the global control flow need to be known at compile time. As long
as a function is declared, it need not be defined. Since the optimization we are performing
is integral part of the compilation process, all functions involved must be known in their
respective intermediate representation. Otherwise, it is not possible to reason about the
WCET. In fact, this is not a limitation of this optimization but a vital requirement for all
WCET-related processing.

A call is not treated as an explicit jump as we investigate a function’s control flow. Still, a
call terminates a basic block. This implies that such a basic block performs an implicit jump
to its successor. The local jump penalty is established accordingly. We will refer to such a
basic block as a caller. The control flow will continue within the function at the call block’s
successor when the invoked function returns. The situation is also illustrated in figure 4.16.
The pair of nodes in a function’s control flow graph that are involved in calling and returning
is called a call site.

Given these restrictions, the observation can be made that if function fy invokes another
function fi, the WCET of the former rises by exactly the WCET of the latter. The WCET
of f1 can be obtained through the WCET variable corresponding to the source node of fi’s
intraprocedural control flow.

A function can be called from multiple points. The solution to modeling this calling is to
introduce a function that maps the entry node of the callee to its WCET value. That is, the

63

CHAPTER 4. STATIC SCRATCHPAD ALLOCATION

Global start

Gobal exit

Figure 4.16: Handled program structure

per function WCET. This is simply possible as functions may only have a single entry point.
To represent that cost for all possible call sites, all the ILP constraints need to be extended.
This is done in the same way as it was done for the jump penalties. Therefore, let f,, denote
the current function and f,,, a possibly called function, then

ef " Vf " — Ny
represents the total WCET of the callee, identified by the calling node of the call site as

defined up to this point. It is understood that such call costs only apply on nodes that
actually perform a call. We define a separate jump penalty u for calls as:

p: Vi vin — Ny

with
u(vi,vj) = (ai®aj)pc+(1—a;®a;)py. (4.23)

Where a; and a; correspond to their control flow graph vertices in either function. This
function will either penalize a call as critical jump if both the operands have been allocated
to different memories. Otherwise the penalty is that of an uncritical jump.

Jn

The function ¢, itself is defined as

. fm fn fm 1 1
e _{ wy" + (v vim) if £ is called (4.24)

c =)
call 0 otherwise

Where wg’” is the WCET variable of the entry node in function f;,,.

The general form of the extended ILP dependency constraints is now defined as:
Wi > Wit + Cain(Vi) — 8ain(vi) X a; + ¢ jump (Vi) + Ceani (vi) (4.25)

The extension equally applies to branch and loop constraints. It is the finalized constraint
which is used in the ILP model.

64

4.4. ILP MODEL

At this point a program is fully described. The costs that each function contributes to the
overall WCET is simply added to the nodes that represent the calling blocks. This also
simply covers the fact that one and the same function can be invoked multiple times from
different locations. The total costs accumulate accordingly. Explicit information on the
control flow is not necessary. Representing that by an interprocedural control flow graph
would reveal the order in which functions are being invoked. But this is not necessary at this
point, thus keeps the construction for the ILP for the static allocation problem simple.

Dynamic growth

There still exists a major problem we have not addressed yet. Above, it was emphasized
that allocating basic blocks into a different memory usually requires a modification of the
instruction code. Due to the nature of RISC instruction sets, only limited possibilities exist
to bridge large intervals in address space when it comes to jumps or calls. The model so
far uses a static bound and assumes static sizes per basic block. That means that the space
available is consumed up to its maximum. The problem is that the ILP decisions - as a result
under this size constraint - will dictate an allocation that inevitably leads to a growth of size
due to code modifications. Unless the size bound was zero, of course. A way must be found
to address this problem dynamically within in the ILP. The goal should be to obey the size
bound strictly.

Fortunately, the fundamentals to get hold of this are already available. The jump penaliza-
tion already provides a way to deal with different jump scenarios. Code modifications are
only required for jumps and all possible jumps have already been identified. For jump penal-
ization an overhead was added to the overall WCET, depending on the jump scenario. We
can easily reuse this technique to modify the global size constraint to depend dynamically on
those cases. Because it is not possible to exactly model the required code modifications, the
worst case is constantly assumed. This means, the largest instructions that possibly could
be emitted are assumed. In turn, this means that the scratchpad memory is not necessarily
completely filled.

At this point, only the required extensions to the overall model will be presented. The actual
correction of jumps is a complex task due to the nature of the TriCorel instruction set and
will be discussed in detail separately below. Therefore, the following discussion is kept at
an abstract level to avoid repetition.

The following constants represent the worst-case size overhead a jump scenario can cause:
o FE;: Animplicit jump initially consists of no instructions altering the control flow. The

worst-case scenario is the placement of its successor into a different memory. An
explicit unconditional jump instruction is introduced.

e Ey: An existing explicit unconditional jump might not be capable of bridging the
large distance through the address space and need to be replaced accordingly.

o FE¢: In the case of a conditional jump, two successors can be jumped to. One jump is
implicit, the other is explicit and conditional. In the worst case, both the successors

65

CHAPTER 4. STATIC SCRATCHPAD ALLOCATION

are placed into different memories. The conditional jump in general cannot bridge
large address space intervals and needs to be replaced by an indirect jump towards
the target block. Moreover, the implicit jump needs to be replaced by an appropriate
explicit jump.

o Er: This constant covers the case of a basic block that terminates with a call. If the
target is located in another memory, the call might need to be replaced by an indirect
call which allows for arbitrary targets.

Assembling these worst-case estimations, a function similar to the one defined for jump
penalization can be defined. It will be applied to the global size restriction.

Let 54y, denote the function that performs a worst-case estimation on the dynamic growth
of a single basic block b;, respectively its corresponding control flow graph node v;. The
possible successors of v; are v; and vi. The function is defined as:

Sam V=N (4.26)
with
(ai NG;)E; if the jump is implicit
S0 = (a; \Naj)Ey if the jump is unconditional 4.27)
o (ai \@j)E;+ (a; Nax)Ey if the jump is conditional ’
(a; \Na;)EF if the jump is a call

Given this estimating function, the static global size restriction is defined as

Z (s(vi) +sayn(vi)) x a; < sizey (4.28)
v;eV

Objective function

The final issue to address is the ILP objective. As was already mentioned, the objective is
to minimize the WCET variable of the entry node of the program. Let vj/" € V™" denote
this node, then the objective of the overall ILP model is:

main

Vol — min (4.29)

The model for the static allocation problem is now complete. It was shown how an ILP
model can be constructed that performs static allocation decisions. The novelty is that the
allocation decisions are WCET-centric. While other existing approaches required explicit
path enumeration, a possible way was presented to make use of implicit path information.
The primary advantage is that a solution can be obtained by solving a single problem once.
In addition, technical problems concerning code modifications were addressed. Interest-
ingly, this point has often been neglected in related works - irrespective the optmization
goal (WCET, energy, etc.). It was shown how this problem can be handled by estimating the
dynamic growth within the ILP.

66

4.5. IMPLEMENTATION

4.5 Implementation

In this section, various aspects of the actual implementation are presented. Primarily, the
generation of the ILP model and the modification of the source program due to the ILP
decisions are discussed. The latter is highly architecture-dependend. Although some of the
problems that arise are specific to this architecture, for the most part the presented techniques
apply to many other RISC in general. The workflow of the complete optimization is shown
in figure 4.17.

Architecture-dependend optimization

e 7
ILP-model
[e Structural model)
e Extensions:
LLIR - Gain
—_ WCET Structural — Jump penalties
analysis analysis — Call dependencies
e Size restriction
e Objective
. l J
Jump - Relocate ILP
S— %
LLIR,, correction basic blocks solver

Figure 4.17: Workflow of static optimization

4.5.1 ILP construction

The construction of the ILP model fundamentally depends on the results of the structural
analyis presented in section 4.2.2. This analysis leads to the creation of a graph that repre-
sents the program structure in an hierarchical manner. This graph is referred to as a control
tree. An example of such a data structure was given in figure 4.5b. As can be seen, the tree
allows to identify nesting of high-level constructs of the programming language. In the light
of the discussion of the ILP model above, such a data structure proves useful in two respects.
On the one hand, an ILP model can be obtained from the control tree almost directly. The
type and the nesting of program structures is well described, therefore the creation can be
performed by simply traversing the tree. On the other hand, the extensive information the
control tree offers proves helpful when it comes to handling exceptional code structures.
An example of this are irregular exits from loops as discussed in section 4.2.2. If we were
only to examine the structure of the control flow graph on a per-node basis those exceptional
cases would need to be identified separately. As the name suggests, a control flow graph only
presents flow information. Structural information is limited insofar that only node-degrees
and adjacency can be easily obtained. The use of the control tree cleanly separates the steps

67

CHAPTER 4. STATIC SCRATCHPAD ALLOCATION

of identifying structure and the generation of the ILP.

As was just mentioned, an ILP can be generated from a given program by traversing the
control tree. The source program comes in the LLIR representation (see section 3.2.4). As
was said, the LLIR represents the physical layout of the program as well as the actual control
flow. For our purpose, it is convenient to extract the control flow information from the LLIR
and generate a set of control flow graphs explicitly. The reason for this is that these graphs
serve as input into the structural analysis. While generating the control tree, the control flow
graphs will be reduced by replacing identified structures by single nodes. This repeats until
the whole control flow graph has been reduced to a single node. This can more easily be
done with a custom, simplified graph than operating on the LLIR directly.

The control flow graphs are generated on a per-function basis. This is due to the fact that the
control trees and the generation of the ILP rely only on the information of a single function.
This implies that information on the full program is not available at any point during the
creation of these data structures.

However, while traversing the LLIR to create the control flow graphs a map of function
calls is created as well. This allows for a validity check afterwards. The input is valid if all
functions possibly called at runtime are available as input into the optimization.

After the structural analysis succeeds, the control tree can be traversed in post-order. For
each of its nodes, the necessary constraints can be created. At this point, it is advantageous
that loops have already been classified. Therefore, it is easier to create the loop constraints
as described in 4.4.2. Also, constructs that need no explicit representation in the ILP are
already known and can be omitted (like break statements).

The ILP requires that information on the size and the WCET of single basic blocks and
the iteration counts of loops are statically available. This information gets into the ILP as
constants. Therefore, they need to be obtained previously. The size of objects can be trivially
obtained from the LLIR. The per-block WCET is not available right away. Moreover, the
ILP depends on the WCET to be known for both the execution in the main memory as
well as in the scratchpad memory. Because of this, we perform two WCET analysis steps
on the whole program. As was described in section 3.4, the LLIR was extended to feature
capabilities of a linker. This allows to model the physical setup of a program before an object
file is actually created. We use this ability here to mark the program as being loaded into
one of the two memories. For each assignment, the integrated WCET analysis is invoked.
After each step, the blockwise WCET is extracted from the LLIR and stored for later use.
The iteration count for loop constructs is assumed to be annotated in the source code or
determined by an explicit loop bound analysis. The optimization expects this information
to be readily available and accessible through the LLIR. We are only interested in the upper
loop bounds.

The traversal of the control tree leads to an ILP we will refer to as the structural model. It
contains information on control flow dependencies only. The actual terms that model the
problem will be added later. The primary reason for this multi-step approach is that the
structural model should be kept reuseable for other, differently aimed optimizations as well.
Specifically, the dynamic allocation problem presented in chapter 5 relies on the structural
model to be available.

68

4.5. IMPLEMENTATION

In a second step, the structural model is extended so as to express the specific problem we
are trying to solve. For this purpose, the terms for expressing the WCET gain (eq. (4.6)) and
jump penalties (eq. (4.11), (4.12), (4.13)) are added to the existing constraints. For basic
blocks containing calls, additional jump costs are added which model the expense of a call
to another function. After that, the size restriction according to eq. (4.28) is set up.

The final step is to define the overall objective of the ILP. It is to minimize the overall WCET.
Therefore, the value of the WCET variable that represents the entry node of the program is
to be minimized.

When the ILP is solved, the binary decisions concerning the placement of basic blocks are
available. To actually perform the relocation, use is made of the extension to the LLIR that
allow the assignment of LLIR objects to different object sections in the output file. The
principles have been throughoutly discussed in section 3.4.

4.5.2 Program correction

The relocation of basic blocks into a different memory by means of object section assign-
ments does not automatically imply that the result is a working program. Although the
linker will handle symbolic references according to the defined program layout, the instruc-
tions themselves will no be altered. This is a major problem on many RISC architectures.
The code selection phase of the compiler seeks for optimal instruction generation. Optimal
instructions are the most efficient ones regarding their memory footprint.

On an architecture like the TriCorel, instruction widths of 16bit and 32bit exist. For 16bit
instructions, at most 8bits are devoted to the opcode which severly limits the size and the
number of explicit operands. This limitation becomes most apparent when it comes to im-
mediate values as operands. The solution is usually to indirectly access a value through a
previously loaded temporary register. This is clearly wasteful and therefore the code selec-
tor in general picks the smallest instructions with preference. In general, this is no problem.
Either data is dynamic, then it is inevitable that a register is used. The data could either
stem from a register of a memory location. Or the data is statically known, such as con-
stants from arithmetic expressions. In this case the appropriate instructions can already be
selected. When it comes to altering the control flow through jump or call instructions, mat-
ters are different however. Although the jump targets are known by their symbolic names,
during code selection it is not always possible to determine the distance to the target. This
has two reasons: On the one hand, the jump could be a local one. In this case the sequence
of instructions can still change since the code selection is not done yet. Therefore, offsets
to targets cannot be determined in a single pass. The second reason is that the availability
of jump targets is no requirement at all. The correction of unresolved symbols is up to the
linking phase. As our requirement is that the complete program is available, only the former
issue is of concern.

Because of the reasons given, the strategy of the WCC is to emit the smallest jump instruc-
tions possible on code selection and to later adjust all instructions with unsuitable displace-
ments. This is done by summing up the instruction sizes between two symbolic labels to

69

CHAPTER 4. STATIC SCRATCHPAD ALLOCATION

memory
memoryg memory|

movh.a %a, HI:bb
v lea %a, [%a] LO:bb
M) ji %a

(a) (b)

Figure 4.18: Implicit jump correction

determine the distances and to replace the existing instruction. Such a replacement can in-
flate the size of a given basic block. This can be the replacement of a 16bit by a 32bit jump
instruction so that a greater width for an immediate operand is provided. If no suitable single
instruction is available, the target needs to be loaded into a separate register and an indirect
jump is performed. Apart from a bigger memory footprint the allocation of a register is no
problem at this point of the compilation as the register allocation has not been performed
yet, therefore registers are still virtual.

On TriCorel, there exist 31 different jump instructions which themselves partly come in
16bit and 32bit variants. The width of the immediate operands ranges from 4bit on 16bit
conditional jump instructions to 24bit for the unconditional jump. This is sufficient to pro-
vide suitable instructions for all adjustments within a single function. There exist 16 memory
banks. Each of which has a width of 16MB. In our case, a jump correction also has to be
performed. However, now the jump distances are not limited to a single memory bank. It
must be possible to cover the full address space. The memory banks on Tricorel are placed
in intervals of 256MB each. If we are to move a basic block from one memory into another,
the existing displacement correction cannot be applied. The fact that the jump targets can
now be significantly more distant, increases the basic block inflation even more. For dis-
placments that far, it is inevitable to perform indirect jumps. This is not always a matter of
simple instruction replacement restricted to a single basic block.

We have briefly investigated the issue of dynamic growth of basic blocks in section 4.4.2.
There, we defined constants that reflect the worst-case inflation when it comes to jump
correction. In the following we will investigate the cases in detail.

Figure 4.18 outlines the correction of an implicit jump. Instead of executing the next instruc-
tion when exiting the leading basic block, an explicit jump is introduced. Unfortunately,
there exists no single jump instruction on TriCorel to bridge the given jump distance. Since
it is not even possible to load a jump target directly due to the described limitations of
operands, a pair of instructions loads the target address. After that, an indirect jump can be
performed. This is outlined in 4.18b

In the case of an unconditional jump (figure 4.19), the exiting jump instruction need to be
replaced by the same sequence of instructions as in the implicit case.

70

4.5. IMPLEMENTATION

memory
memoryg memory|

movh.a %a, HI:bb
lea %a, [%a] LO:bb

| ji %a

(a) (b)

Figure 4.19: Unconditional jump correction

For conditional jumps as outlined in figure (figure 4.20), different cases require considera-
tion. There exist two target blocks. Each of which could be placed into another memory.
If the implicit target is placed into another memory than the leading block, as shown in
figure 4.20b, then an aritificial basic block needs to be created, since a jump by definition
terminates a basic block. This trampoline block then indirectly jumps to the effective target
similarly to the cases already described. A similar correction is required when the explicit
target of the conditional jump is relocated (figure 4.20c). The target in the local memory is
replaced by a trampoline block which in turn jumps to the real target. If both target blocks
are relocated two trampolines need to be generated as shown in figure 4.20d.

The changes to the instruction code just outlined are applied to every single basic block.
These changes are symmetric regarding the placement of basic blocks in main memory
and scratchpad memory. All of them lead to increasing sizes of basic blocks. The figures
only demonstrate the most basic replacement strategies. In fact, some optimizations are
possible. Given the case in figure 4.20c, by reversing the jump condition, the explicit target
block would become the implicit one and an explicit jump could possibly be saved. Also,
it is often possible to use 16bit instructions instead of their 32bit variants as jumps within
the same memory for the presented scenarios are often small. In the estimations for basic
block inflation, only the worst cases are considered. This is because modeling the block
distances in the ILP would greatly increase its complexity. Because of this overestimation,
small amounts of space in the scratchpad memory can possibly be wasted. The instruction
adjustment implemented for this thesis strives for optimal replacments, making constantly
use of the most appropriate modifications taking the full scale of jump instructions into
consideration and optimizes by altering jump conditions or the removal of obsolete jumps.

71

CHAPTER 4. STATIC SCRATCHPAD ALLOCATION

Figure 4.20: Conditional jump correction

72

memoryg memoryg memoryy
s N s N
1t %di, %dj, %dk It %dm, %dn, %do
jnz.t %di, 0, bb0 jnz.t %dm, 0, bb3
\ \
v v
e N e
movh.a %a, HI:bbl
lea %a, [%a] LO:bbl
ji %a
\\ \\
s) s)
\\ \
(@) (b)
memoryg memoryy
s N
It %dm, %dn, %do
jnz.t %dm, 0, bb3
\
v
s N
\\
s
movh.a %a, HI:bbl
Ly lea %a, [%a] LO:bbl
ji %a
\
©
memoryg memory|
s N
It %dm, %dn, %do
jnz.t %dm, 0, bbl
\\
v
s N (B
movh.a %a, HI:bb
lea %a, [%a] LO:bb2 —)
ji %a
\ \\
s N s)
movh.a %a, HI:bb
L) lea %a, [%a] LO:bb3 s
ji %a
\ \
(@)

CHAPTER 5

DYNAMIC SCRATCHPAD
ALLOCATION

In this chapter, a strategy for dynamic allocation of instruction code is presented. As op-
posed to the static allocation presented in chapter 4, the contents of the scratchpad memory
are not fixed in this case. During execution, only parts of the program are copied into the
faster memory to achieve an improvement. This is an advantage over the previous approach
in the respect that programs too large to fit entirely into the scratchpad memory are now
allowed to be partially allocated only. Moreover, no memory is wasted by keeping unused
code.

The dynamic allocation is fully determined at compile time. This is similar to the static
allocation where code fragments are preselected and placed. In this case, the allocation
decisions must not only take into account the bare WCET counts of the objects but also
the execution history. In particular, the decisions must be based on the knowledge of when
certain fragments are executed and when they are never executed again during a program’s
lifetime.

In section 5.1, a survey is conducted on the related works in the field of dynamic allocation
strategies. This will reveal the problems that are related to such techniques and motivate the
strategy we are to follow within the rest of the chapter.

The allocation decisions largely depend on information about the dynamic behavior of a
program. This topic is handled in section 5.2. A basic method for the determination of ob-
ject lifetimes is presented. However, this is applied to isolated functions only, which makes
it unsuitable for our particular problem since the aim is to optimize complete programs.
Therefore, a variant is developed which is specifically aimed at determining lifetimes glob-
ally.

The allocation problem is solved by utilizing an ILP model, just as in the static allocation
approach. In section 5.4, this ILP model is formally constructed. The presented approach
derives ideas from related works, but as a whole forms a unique approach towards solving
the WCET-directed dynamic allocation problem for code.

Section 5.5 deals with the postprocessing of the ILP results. As we will motivate in section
5.3, solving the problem is performed in two successive stages to reduce the complexity of
the ILP.

73

CHAPTER 5. DYNAMIC SCRATCHPAD ALLOCATION

A key problem in the dynamic allocation is the ability for self-modifications by transferring
objects between memories during execution time. This is achieved by supplementing the
original program with additional code, which is discussed in section 5.6.

Following this, the technical realization is discussed in section 5.7. After the allocation
decisions have been determined, the program requires modification to enable the dynamic
copying of its own instructions into a different memory. Also, problems concerning the
WCET analysis and the dynamic program behavior are handled.

5.1 Related work

Some of the relevant work for this chaper related to the allocation to a scratchpad memory
has already been presented in chapter 4. Similar to the static allocation schemes, the first
approaches towards dynamic allocation were related to using caches. A cache has the ad-
vantage that its control is transparent to the running process. Thus, optimizations that make
use of them are not necessarily required to make any explicit changes to the program code
to achieve a distribution among memories. As was presented, caches were utilized by stati-
cally loading and locking their contents. As opposed to that, dynamic techniques have been
proposed that allow the contents of caches to be changed during execution [Pua06].

Data and instruction codes have different properties. Data accesses can potentially be per-
formed from everywhere within the executing code. If small amounts of data are being
accessed, a data cache would potentially store much unneeded information. Opposed to
that, instructions have a high degree of locality. Therefore, filling cache lines sequentially
potentially yields good results. Because of this, some embedded architecture like TriCorel
only include an instruction cache but no data cache.

In [RND*05], a dynamic instruction placement strategy is presented. Its aim is to reduce the
power consumption by making use of cache memories. The problem is solved by construct-
ing a problem which can be solved by dynamic programming techniques. They optimize for
energy consumption or average execution times.

It was already mentioned that the use of caches is generally problematic because of their
unpredicability. Despite their advantage concerning the technical realization, the dominant
approach to dynamic allocation is to make use of the scratchpad memory. [EKJT06] pro-
pose an optimization that attempts to determine an optimal mapping strategy for pages of
instructions. A page is considered equivalent to a cache line. For uniformely sized objects,
the memory management is significantly less complex.

Instead of deciding the allocation for fixed units, [VWMO04b, SGW102] investigated ways
to achieve optimizations by preselecting objects. For data, this is restricted to single vari-
ables. For instructions however, the locality of execution is accounted to select sequences
of instructions as the basic unit of allocation. The disadvantage over fixed sized units is that
fragementation on the scratchpad potentially occurs.

For caches, a request for loading a cache line has to be made, whereas for scratchpad memo-
ries, an explicit copy routine has to be executed that moves the objects accordingly. The lat-

74

5.2. INTERPROCEDURAL LIFETIME ANALY SIS

ter is similar to spill decisions in the domain of register allocation. [DP07] and [VWMO04b]
consider the allocation problem similar to the register allocation to a single large register,
which is the scratchpad memory. Both papers propose the construction of an ILP.

The dominant approach in the papers above is that a fixed set of reload points (or spill point
is determined on which the dynamic allocation is performed. These are typically the execu-
tion points before loops and at the entry to functions. Opposed to that, [VWMO04b] proposes
a strategy which allows their selection dynamically, depending on their actual benefit. These
techniques aimed at either reducing the average execution time or the energy consumption
of energy. However, the algorithm is limited to the allocation of data objects. In [PP07], a
comparison of dynamic allocation techniques utilizing caches as well as scratchpad memo-
ries is made. However, their own proposed optimization technique uses a greedy approach
for contents selection. All of the presented techniques precalculate the spill decisions at
compile time. Therefore, although a dynamic behavior is imposed, the problem is still to be
considered static. At runtime no calculation is ever performed.

From these papers, it is apparent that the problem of allocating instructions into a scratch-
pad memory with the aim of WCET reduction has not been addressed yet sufficiently. Al-
though approaches exist, they are either not at all directed towards reducing the WCET or
are limited by the fact that every allocation decision potentially requires a reevaluation of
the WCET timings. Thus, only a greedy approach has been presented. This is the same
problem that already motivated the WCET directed static allocation on the previous chapter.
No comprehensive technique has been proposed yet which is capable of solving the problem
of dynamic WCET-centric code allocation.

5.2 Interprocedural lifetime analysis

In this section, a technique for the determination of object live ranges in a program is pre-
sented. In 5.2.1, the necessity of such an analysis in the context of the dynamic allocation
problem is motivated. In 5.2.2, a special class of control flow graphs is introduced that assist
in analyzing execution behavior at a program wide scope. Afterwards, in section 5.2.3, an
algorithm is presented to obtain information live ranges from the program wide control flow
graph.

5.2.1 Motivation

For solving the static allocation problem, we construct control flow graphs from functions
represented by the LLIR. Although the LLIR itself provides access to control flow infor-
mation, the newly generated graphs are specialized to allow for an easier construction of
the final ILP. In particular, the ILP was generated by considering the structure of isolated
functions. Calls among the functions could easily be modeled as extensions to the basic
constraints. It was sufficient to collect information on function calls by simply iterating the
instructions of the LLIR and to recall which functions were invoked. The order in which
these calls are performed is irrelevant in the static allocation problem. All allocation deci-

75

CHAPTER 5. DYNAMIC SCRATCHPAD ALLOCATION

sions are fixed. Objects that have been selected for execution from within the scratchpad
memory remain in their places throughout the lifetime of the program. Therefore, it is un-
necessary to obtain and to manage information on the execution history.

Opposed to that, the strategy of the dynamic allocation presented in this chapter is to move
objects into the scratchpad memory during execution. This implies that some information
on when objects are executed must be available. In particular, the scratchpad can only be
used optimally if relevant objects are moved into the scratchpad before they are executed. In
addition, it must be possible to overwrite them with others if we can guarantee that they are
never executed again. In general, the order of execution is central to solving the dynamic
allocation problem.

As was mentioned, intraprocedural control flow graphs were sufficient for solving the static
allocation problem. Now, instead of only knowing if a function is called, we need precise
information on when this happens, so that a reasoning about the execution history becomes
possible. For this reason an interprocedural control flow graph is constructed which serves
this requirement.

5.2.2 Interprocedural control flow graphs

The interprocedural control flow graph (IPCFG) we are going to construct will reflect the
execution history of the complete program throughout its lifetime. Equally to an intraproc-
dural graph, all paths through it start at a unique source node and end at a unique sink node.
Every such path through the IPCFG reflects the execution order of a program’s basic blocks.
More formally:

Definition 5.2.1. An interprocedural control flow graph (IPCFG) is a control flow graph
G= (V,E) (according definition 2.2.2) whose nodes represent all basic blocks of all func-
tions f;, so that V = (J;V;. In addition to the edges that determine the order of execution
within single functions, edges E 4 and E,.,,, model the call to a and the returning from a
function. £ C J; Ei U Ecai; U Ererun.

The set of edges is not fully equivalent to the conjunction of edges of separate function. This
is due to the way calls and returns are modeled, as is discussed shortly.

In an IPCFG, function calls have an explicit representation. For a CFG that is limited to a
function, no objects outside the function are considered. Because of this, it is not possible to
directly lookup the complete path of execution throughout the program. Control flow graphs
limited to single functions are therefore inappropriate.

However, we can extend existing intraprocedural graphs. In chapter 4, it was discussed that
all such graphs also have a unique source and sink nodes. Multiple entries were explicitly
forbidden and we found that in code generated from the C programming language, functions
with multiple entries aren’t even possible at all. Such code may realize multiple exits from a
function. This was solved by extending the corresponding control flow graph with a virtual
sink node and by connecting the existing sinks with it (see figure 4.9(2)).

76

5.2. INTERPROCEDURAL LIFETIME ANALY SIS

This structural guarantee allows for the modeling of calls between functions by means
of edges between the calling basic block (caller) and the entry block of invoked function
(callee). When returning from functions, the execution continues with the basic block fol-
lowing the caller. Figure 4.16 illustrated the situation. We will refer to this block as the
returnee. Equally, the basic block containing a return instruction will be referred to as the
returner.

To generate an IPCFG from a set of CFGs, nodes representing callers and returnees and their
connecting edges are replaced by call sites.

Definition 5.2.2. A call site is a pair of nodes {v.,v,} € Vy. in a control flow graph Gy, =
(Vy,,Ep,) where v, represents the caller and v, represents the returnee. The nodes are not
directly connected but form the head and the tail of all paths P = (v¢, vy, ... vy, v,) With
{vo,...,vn} € Vy, from Gy, = (Vy,, Ey;), which represents the called function.

7) 7)

,"-Tf.l_/Ca]lee

A3

Jo

Caller ~__}

Jo

A O
& ©-0O

Returnee |

Returner 0
Senad @ |~ L

—

[©.
©

(a) Original CFGs (b) Interprocedural CFG

Figure 5.1: Control flow for calls

To make this more clear, figure 5.1 illustrates the construction. Although the caller and
the returnee are connected in the original CFG to denote the implicit jump, they are now
indirectly connected by following any path through the called function. The transformation
just described is applied to all callers of all CFGs. An implication of this is that multiple calls
to a function result in multiple edges leading from the call sites to the respective function.
The result is an IPCFG with a unique source node and a unique sink node. These nodes
represent the entry point of the program and its exit. For all nodes of the IPCFG, we can
now directly reason about the order of execution by traversing its edges.

5.2.3 Interprocedural liveness analysis

In this section, the problem of determining the interprocedural object lifetimes is addressed.
The problem is first introduced in all generality. The necessary fundament of theory is
discussed. It will become apparent that the common approach towards the analysis is limited
to intraprocedural control flow graphs in general. Since we would like to perform an analysis
at a program wide scale, the standard algorithms require an overhaul. Namely, a modified

77

CHAPTER 5. DYNAMIC SCRATCHPAD ALLOCATION

version of the depth first search algorithm is presented to support this. Afterwards, the
specific requirements for the determination of the liveness of code objects is addressed.

Introduction to liveness analysis

To be able to reason about the execution history of basic blocks, an analysis technique
referred to as liveness analysis is adopted. Originally, its purpose is to determine the uses
of virtual registers in the domain of register allocation [Muc97]. This is adopted to reason
about the liveness of additional objects like functions or basic blocks. For now, we will refer
to such instruction code related objects as just objects O.

Definition 5.2.3. An object o € O is live on an edge e € E of an IPCFG G = (V,E), if there
exists a backpath from this edge to the point where the object was originally defined, without
being redefined along this path.

The liveness attribute determines for a given edge if an object is yet to be used at a later
time. This means that functions, basic blocks or instructions are executed or that variables
are read. We will refer to the set of edges on which an object is live as the live range
live(o) € E. Clearly, objects can only be defined or used on nodes. We refer to DEF (v) as
the set of objects defined at node v and to USE (v) as the set of objects used at node v.

Definition 5.2.4. LiveIn(v) € O is the set of objects which are live on any of the incoming
edgesof anodeveV.

Definition 5.2.5. LiveOut(v) € O is the set of objects which are live on any of the outgoing
edgesof anodeveV.

Commonly, an object is said to be live-in or live-out for a certain node if it is contained in
either of the two sets just defined. With the help of the information about incoming and
outgoing liveness on nodes, the live range of objects can be determined by performing a
data flow analysis [Muc97]. We can observe the following:

e If an object is in USE(v), then it must be live-in at node v.

e If an object is live-in at node v, then it must have been live-out at any of its preceeding
nodes.

e If an object is live-out at node v but is not in DEF (v), then it must have been live-in
atv.

From these facts we can construct so called data flow equations. They are iteratively evalu-
ated until a solution stabilizes.

Liveln(v) = USE(v) U (LiveOut (v) \ DEF (v)) (5.1)
LiveOut (v) = U Liveln(w) (5.2)
wesucc(v)

78

5.2. INTERPROCEDURAL LIFETIME ANALY SIS

The equations are most efficiently solved by backward iterating, since the set LiveOut de-
pends on Liveln of its succeeding nodes. As a result, the solution sets Liveln and LiveOut
stabilize significantly faster. The iterations starts with empty sets Liveln and LiveOut. Ex-
amples to this well known algorithm can be found in [App97].

The solution to the data flow equations is conservative. Only if an object is live-out on any
of the predecessors of a node, it is considered live-in at that node.

Theorem 5.2.6. An object is considered live on an edge e = (u,v) in the control flow graph,
if and only if it is live-out on node u and live-in on node v.

The precise determination of liveness is undecidable in general. That is, the liveness analysis
only gives a conservative approximation about whether an object is possibly used is the
future.

Interprocedural depth first search for liveness analysis

As discussed above, the liveness information on objects is obtained by continuously iterating
over the control flow graph until a solution stabilizes. The classic algorithm for iterating over
the nodes of a directed graph is the well-known depth first search (DFS) [CLRSO1].

The DFS is used to traverse G. Because of the special construction of call sites (definition
5.2.2), the algorithm will always enter the subgraph G f C G of the called function f;. Con-
versely, if the returning node of f; is reached, the algorithm continues with the returnee of
a call site. The result is a continous traversal through all sinks and sources of all subgraphs
from which G has been constructed.

(void fo {)
Vol
2 1. £ © f0 f1
2 ()
4 f10);
[...]
6 |}
void f1() {
3 Loaol
f10); \
10 [...] Q
} -
12 | void f2() {
[...]
14 |}
- J fo f1
(a) Calls to fp from two (b) Call relationships of CFG (c) Subgraph of f> in IPCFG

different places

Figure 5.2: Ambiguous traversal of an IPCFG

However, this observation poses a fundamental problem that cannot be solved with a stan-
dard DFS. Figure 5.2a outlines a fragment of a source code in which a function f; in invoked
from two different places. In 5.2b, the corresponding CFGs are illustrated. We can see that

79

CHAPTER 5. DYNAMIC SCRATCHPAD ALLOCATION

in the corresponding IPCFG, we would be able to traverse the graph from source to sink
by passing through the functions. In particular, f> would be traversed twice. This leads
to an ambiguity as figure 5.2c shows. This subgraph is entered at its entry node but it is
not possible to tell which edge to take upon exit without providing extra information on the
actual traversal history. This in turn has an impact on the data flow analysis. Changes in
the solution of the data flow equations are not propagated optimally. More importantly, the
DFS only visits a node once. If a single function is invoked from different places, its nodes
will necessarily only be traversed a single time. The traversal is stopped prematurely and
the global liveness information is not propagated entirely at all.

In fact, the DFS would have to treat one and the same function subgraph as an independent
instance when called from different call sites. Because a duplication of subgraphs would
result in an exponential growth of the IPCFG, the DFS must be modified to take into account
the different call sites when traversing. This is referred to as the traversal context.

A particular problem is the encoding of contexts within the DFS. The context is not only
defined by the immediate call site but by the history of all call sites that have been entered
before. Every call site whose one node has been visited but the other hasn’t yet during DFS
traversal is referred to as an unfinished call site.

Definition 5.2.7. Let G = (V,E) be an IPCFG and let Q = {(u,v)|{u,v} C V x V} be the
set of call sites. A call string is a sequence of unfinished call sites (@, ..., ®,,) with ®; € Q
along an arbitrary path starting form the source of G.

The call string uniquely identifies a context for which a node is traversed. Every node v; € G
will be represented in the context-sensitive DFS by a pair (v, (®,,...,®,)), referred to as
a context-dependent node. A node is marked as finished if and only if all of its succeeding
context-dependent nodes have been marked finished and the current context matches.

Listing 4 outlines the code for such a context-sensitive DFS. As opposed to the common
DEFS, call sites need to be distinguished. Every call site that is entered through the calling
node causes a new context to be generated. Each traversal of a returnee node must reestablish
a previous context.

The input to the context-sensitive DFS is an IPCFG and its source. In lines 2 to 6, the
required data structures are set up. The set of call sites within G must be known. Moreover,
the current context is denoted by a call string. This is a sequence of call sites. As in the
original DFS, a set stores the nodes that have been completely processed. In this case, a
node can only be finished if all of its successors are finished and the current context denoted
by a call string matches its own context. Without a matching context, a node is treated as
unvisited. A stack stores the nodes with their respective context that are yet to be processed.
Lastly, a stack stores the previously used contexts. In lines 8 and 9, an initially empty call
string is prepared which will denote the current context, and the starting node is placed onto
the stack for unfinished nodes ¢. The algorithm will only terminate if the stack of unfinished
nodes is empty (line 10). In line 11, the top of the node stack is taken. The solutions to the
liveness equations (5.2.4) and (5.2.5) are updated in line 12. Lines 13 to 16 check if a call
site call is reached. If so, a caller causes a backup of the current context and the creation
of a new one. That is, every node that is looked up in the future will now depend on this

80

5.2. INTERPROCEDURAL LIFETIME ANALY SIS

Algorithm 4: Outline of context-sensitive DFS
{Input: G = (V,E) and start node v, € V}

Q: set of call sites

c: call string P(Q)

f: set of finished context-sensitive nodes (v, c)
s: stack of context-sensitive nodes (v, c)

t: stack of contexts

push(t, ())

push(s, (vs,top(t)))

while s =~ 0 do

11: {(v,c) := pop(s)

12: update_liveness({v,c))

13: if v is call site m; caller then

R e A A R e

,_
e

14: push(t, c)

15: cC:=cPhw;

16: end if

17: if v is returner then

18: f U= (vc)

19: ¢ := pop(t)

20: v := call site (; = suf fix(c)) returnee
21: push(s, suces(v) X ¢))
22: else

23: if (v,c) ¢ f then

24: fu=(vc)

25: push(s, suces(v) x c))
26: end if

27: end if

28: end while

new context. All nodes that have already been visited in a different context are considered
unvisited. Conversely, traversing a returnee (lines 17 to 21) causes the previous context to
be restored. Here, the returner node is marked as finished, the previous context is restored
and the correct out-edge is sought. There exists only one edge whose target node is member
of the call site that is denoted by the suffix of the call string. The lines 22 to 26 are similar
to the standard DFS. If the node hasn’t been visited under the current context, mark it as
visited and push its successors with the current context onto the stack.

An implication of the call site approach is that recursions cannot be encoded easily because
they potentially result in infinitly long call strings. [KKO8] discuss the problem thoroughly
and propose a technique to deal with this problem. However, for the goal of this thesis,
more complex solutions to the problem bear little benefit as the benchmarks applied are
moderately sized and almost non of them is recursive.

An important aspect shall be touched at this point. It was mentioned above that it is favorable

81

CHAPTER 5. DYNAMIC SCRATCHPAD ALLOCATION

to visit the nodes starting from the sink instead of the source because of the dependencies
expressed in equations (5.1) and (5.2). Instead of modifying the algorithm, all edges within
the graph can be reversed before traversal.

A A

Definition 5.2.8. A reversed IPCFG G = (V,E) is constructed from an IPCFG G = (V,
by setting V = V and by reversing its edges, so that £ = {(v,u)|(u,v) € E}.

)

The changes to the solution sets however, need to be applied as if the graph were in its
original state. That is, LiveIn and LiveOut are filled according to G. This is easily done
as the set of nodes remains equivalent. The context-sensitive DFS requires no substantial
modifications in this regard.

Summing this up, each time a yet unvisited context-dependent node is visited, the data flow
equations are evaluated anew. In practice, the solutions quickly stabilize due to the backward
traversal.

Interprocedural liveness for code objects

The solution we have discussed so far helps in determining the live ranges of program ob-
jects in general. For the purpose of dynamic code allocation, objects like variables need no
consideration. Also, whole functions are not explicitly considered, since the data flow equa-
tions are solved on an IPCFG. The basic unit that is considered in the dynamic allocation is
therefore just the basic block.

Similar to the static allocation problem, the dynamic allocation is performed by placing
basic blocks into the scratchpad memory. In this case, the loading is performed during
execution instead of statically choosing a set of objects that is loaded before execution. The
live range gives an indication of when the dynamic loading should take place. An object
that is guaranteed to be never executed again needs no further consideration. Should it have
been placed into the scratchpad memory, the space it reserved can be reused. On the other
hand, a decision has to be made if and at what point an object should be loaded along the
execution path.

To make the data flow equations applicable to code objects in general, we make the following
observation. To a code object, its point of use is its point of execution explicitly. As a
consequence, its point of execution denotes the end of its live range for an acyclic path. In
addition, code objects have no point of definition within the CFG. In fact, they are defined
prior to execution. Therefore, the explicit live range of a code object always starts at the
source node. Figure 5.3 illustrates this.

As a consequence, the IPCFG should be extended to make use of the fact that object defi-
nitions have no explicit correspondence in the graph. Also, it should be possible to load a
static set of objects prior to execution into the scratchpad memory. This way an initial set
of objects is already present and for small programs the duty of loading objects at execution
time is entirely avoided. The actual benefit of this will become clear when the construction
of the ILP is discussed in section 5.4. Here, we shall only set up the theoretic foundation.
We refer to components of a graph with no corresponding objects in the program as being
virtual.

82

5.2. INTERPROCEDURAL LIFETIME ANALY SIS

Definition 5.2.9. An extended IPCFG is a directed graph G = (V,E™) that is created
from an IPCFG G = (V, E) by extending the set of nodes with a virtual node v so that:

Vt=vu{pt}
Also, the set of edges is extended by an virtual edge e™ = (v*,vy) so that:
ET=Eu{e™}

Figure 5.3 shows such an extended graph with its accompanying live ranges. Without loss
of generality, this is valid for a reversed IPCFG as well.

3

e+
© ? DEF USE

el vst | {vssvisviewt | 0 Live range
a Vs 0 {Vs} Vg {ea'}

e Vi 0 {Vi} Vi {e(—;—,el}

V| 0 {vj} v; | {eg,e1,e2}

e Vk 0 {ve} vi | {eg,e1,e2,e3}
@

Figure 5.3: Extended IPCFG and live ranges of basic blocks

At this point, context-dependent liveness information on code objects can be determined
fully. For each traversal of a subgraph G ' C G of a function f;, independent live ranges are
available after performing the data flow analysis. However, this context dependence of the
results poses yet another problem. For every allocation decision that results in the dynamic
loading of basic blocks during execution, explicit copy routines need to either be invoked as
functions or injected into the original code. Every call site implies an independent instance
of a function from the perspective of the data flow equations. In fact, there only exists a
single instance represented as the subgraph G r, within G . The consequence is that allocation
decisions for one and the same subgraph are potentially different because the solution of the
data flow analysis suggests so. Figure 5.4 demonstrates the result of a possible liveness
analysis. In an IPCFG that encompasses the nodes vg to vs, a subgraph that represents a
function is encoded which is exemplary starting with v; and ending with v,. This function
is invoked from two call sites, namely ®; and ®,. Due to the distinction of contexts, the live
range of the nodes representing basic blocks is determined as shown in the table. Since a
call site induces another context, the live ranges for the same nodes v; and v, are different
because they are determined with different contexts and are therefore potentially distinct
nodes from the perspective of the data flow analysis.

The context-sensitive data flow analysis was motivated by the fact that an explicit instantia-
tion of multiple subgraphs per function should be avoided. However, after having performed
the analysis, the results must be transformed, so that they become context-free. That is, the
results must be applicable to an IPCFG - which has no notion of traversal contexts.

83

CHAPTER 5. DYNAMIC SCRATCHPAD ALLOCATION

Live range
vo) | {eo}
vi{or) | {eo,e1}
V2<(D1> {60761,...}
v3() {eo,e1,...,e2}
V4<> {60761,...762,63}
V]<(1)2> {60761,.‘.762,63764}
vi(m) | {eo,e1,...,e2,e3,e4,...}
V5<> {60761,...762763,64,...765}

Figure 5.4: Example: Context-dependent live ranges

The liveness in general is calculated by making use of a conservative strategy (theorem
5.2.6). If a path exists between an object’s definition and its use, it is considered live. A
similar approximation is applied to the context-dependent liveness information to make it
context-free.

Theorem 5.2.10. For a given IPCFG G = (V,E), context-depent live ranges are trans-
formed into context-free live ranges by conjoining the sets Liveln and LiveOut as defined in
5.2.4 and 5.2.5 for all contexts of a specific node in G:

Liveln free(v) U= Liveln((v,®)) VoeQ,YweV (5.3)
LiveOut iy free(v) U= LiveOut ((v,®)) VoeQ,WveV (5.4)

In the following, we will refer to the context-free sets simply as Liveln and LiveOut. The
liveness per edge is still determined independently of this according to theorem 5.2.6.

The conjunction of context-dependent information has the consequence that if a node ex-
ternal to a function has been considered live at one point in the execution history, it will be
considered live in every execution of this function although for some cases this assumption
might be overly conservative. The conjunction expresses that a possibility of execution for
a code object exists.

As we will see in section 5.4, the transformation is safe because the ILP we will construct
would not allow for redundant allocation decisions unless an advantage in terms of WCET
reduction would arise from it. In fact, this never happens because only basic blocks external
to a given function can be falsely considered live within its body but there is no advantage
by loading an external block within the function as opposed to loading it before or after
the function has been executed. The conservative estimation of liveness does not lead to
inefficient decisions.

84

5.3. TOWARDS A DYNAMIC ALLOCATION

Live range
vo | {eo}
Vi {60781,63}
V2 {60,61,...,63764}
vy | {eg,e1,...,e2,ea}
V4 {60761,...,62763}
vs | {eo,e1,...,e2,e4,e5}

Figure 5.5: Example: Context-free live ranges

The example in figure 5.5 illustrates the result from not distinguishing contexts and thus
from transforming the live ranges that have been originally considered in figure 5.4. The
graph now reflects the actual layout which is used to construct the ILP model in section
5.4. As can be noted, the live ranges for the node v; and v, now reflect the combined
information of both contexts that have originally been distinguished. Therefore, the nodes
are also considered live on edges e3 and e4.

Global, context-sensitive liveness analysis

- Context-dep.
IPCFG N Call site N IPCFG —| data flow | —s Context

generation lookup reversal . conjunction
analysis

| |
IPCFG Liveness
data

Figure 5.6: Workflow of global liveness analysis

In this section, we have discussed the problems that arise for solving the liveness problem
at an interprocedural scale. After having constructed an IPCFG and after determining the
liveness as just discussed, the prerequisites for solving the dynamic allocation problem have
been fulfilled. Globally, an approximation of the live ranges of basic blocks can now be
determined. It was shown how existing algorithms could be extended to conveniently solve
this problem. Figure 5.6 illustrates the workflow.

5.3 Towards a dynamic allocation

Now that a foundation of information on the execution behavior of basic blocks has been
determined, a motivation for the solution to the dynamic allocation problem shall be given.

85

CHAPTER 5. DYNAMIC SCRATCHPAD ALLOCATION

To solve the static allocation problem a single ILP model has been generated. In section 5.1,
it has discussed that ILP is also a popular way to encode the dynamic allocation problem.

Many solutions deal with allocations that are aimed at energy reduction. As was already
presented in chapter 4, for code objects, the selection of sets of consecutively executed ob-
jects is an important factor to achieve viable results. [Ste02] introduces multi basic blocks
which are essentially elements of a power set of the basic blocks of a function. Equally to
traces presented in [Ver06] they aim for minmizing the impact of moving objects between
the memories. Both techniques are aimed at energy reduction. The problem of the existing
solutions in the context of this thesis is that the WCEP is only implicitly modeled. Depend-
ing on the decisions in the ILP model, it can dynamically change (refer to figure 4.6).

The ILP model in [Ver06] is derived from the original work of [GW96], which propose
an ILP model for solving the register allocation problem. Indeed, the problem of dynamic
allocation of objects to different memories is closely related the problem of register alloca-
tion. In the particular case of this thesis, a problem similar to the global register allocation
problem for non-uniform registers [KW98] is to be solved. The global register allocation
problem is NP-complete [HP02]. For all energy- and WCET-related works, a (locked) cache
or a scratchpad memory serve as a pool of non-uniform registers.

In [AGO1], [DPO7] and [Ver06] the problem is identified to consist of two subproblems.
The selection of objects for the allocation and the actual placement in the target register or
memory. In the latter work, a unified ILP model is presented that solves both the problems
but it is pointed out that for large problems the solving time can be significant'. Therefore,
a two-step approach is proposed. The ILP is concerned with the selection of objects, and
an algorithmic solution to the address assignment problem is obtained in a second step. It
is pointed out that a simple first fit [JW99] strategy works well in practice. Due to these
experiences, a similar approach will be taken. In section 5.4, an ILP is presented that solves
the dynamic allocation problem as far as the memory selection is concerned. In section 5.5,
a postprocessing step is presented that is concerned with the actual placement within the
memories.

It should be noted that although [DP07] present a solution to the WCET-directed dynamic
allocation problem for data, the solution in this thesis is aimed at the allocation of code
objects. As we will see, this poses a new set of problems that have not been addressed
thoroughly in other works. Moreover, the named work relies on a repetitive evaluation of
the WCEP explicitly. In chapter 4, it was motivated why this approach is insufficient. The
concept of implicit WCEP consideration is applied to the dynamic allocation problem here,
which is an attempt to provide an enhanced strategy as opposed to existing works.

5.4 1ILP model

Referring to what has been discussed in the previous section, the problem of dynamically
allocating code objects is similar to the global register allocation problem. There, a set of

'Without referring to a specific benchmark, a duration longer than three weeks was observed on a 1.3GHz
SPARC machine.

86

5.4. ILP MODEL

symbolic registers is to be mapped into a smaller set of physical registers. If no free physical
register is available at a certain point of execution, the contents of the symbolic registers are
kept in the main memory. In a load/store architecture, this means that accessing data that
has been spilled into main memory needs to be spilled back into a register before usage.
Obviously, it is important to the overall performance of a program at which point in time
this spilling takes place, should the mapping fail. Spilling into a register close to its use runs
the risk to place the spill code into a loop body. Repetitive loading could result. Spilling
distant to the point of use reserves a register over a longer period of execution time. It could
have been used for other purposes meanwhile.

A similar problem arises for the dynamic scratchpad allocation. The objects should be
spilled into the scratchpad memory prior to execution. Loading too early reserves the scarce
space. Loading too late could result in redundant spill actions.

The allocation of code objects requires more attention than for data objects. Code objects
are interdependent. Arbitrarily distributing the code objects without taking into account
their execution order is a problem which further restricts the solution space for the dynamic
allocation. This is because jumps between basic blocks can severely influence the execution
performance. The same issues as discussed in chapter 4 arise from this.

The ILP model presented in this chapter is an extension to the one presented in chapter 4.
During the following discussion, it will be referred to as a structural model. The required
modifications to this model are defined in section 5.4.2. The same problems concerning the
weighting of basic block execution costs and the grouping of basic blocks are to be solved
in the dynamic case as well. The extension we will present in section 5.4.1 provides a spill
model which allows to solve the problem of spill point determination with regard to the
global program structure. Both models are combined into a single ILP.

5.4.1 Definition of the spill model

The spill model encodes the problem of finding an appropriate position in the program at
which a code object should be loaded into the scratchpad memory. It will be presented
later how to judge if an object should be loaded at all. An important observation at this
point is that code objects are never spilled from the scratchpad memory back into the main
memory because instructions are considered to be a static resource that cannot change their
“contents” as opposed to general data.

To load an object, the original program requires modification. Instructions need to be emit-
ted that either transfer the object directly from one memory into another or a function is to
be called that performs this task. All spill code is always located within the main memory.
This is referred to as spill code.

From the interprocedural data flow analysis presented above, we can obtain predicates which
denote the liveness state of a basic block.

CONT if basic block of v is live on edge e = (u,w)
Priow(e,v) = USE if basic block of v is live on edge e = (u,v) (5.5)
NOFLOW if basic block of v is not live on edge e

87

CHAPTER 5. DYNAMIC SCRATCHPAD ALLOCATION

The decision for when a spilling should take place is obviously bound to edges and nodes
whose predicate Py, is CONT or USE. The decisions themselves will be bound to edges
rather than nodes in the IPCFG.

For every edge e; € E in the IPCFG G = (V,E), we can make the observation that a node
vi € V has already been loaded into the scratchpad memory upon traversal or we could
decide to load it at the current edge. Let men,,;, represent the main memory and mem
represent the scratchpad memory. We can define the location attribute xi. as:

(5.6)

X =

{ 1 if the block of node v; is present in memy,, on edge e;
j

0 otherwise

In addition, the load attribute y; denotes whether a loading action should be performed and
is defined as:

; { 1 if the block of node v; is to be loaded on edge ¢; (5.7)

YiT 0 otherwise

Both xi- and y; are used as binary decision variables within the ILP model. If the decision to
perform a load has been made on an edge e;, the consequence is that the information of the
allocation to memy,, has to be propagated througout the succeeding edges.

. i
] X]

<N %

Figure 5.7: Propagation of location attributes

For the edges e; and ¢, as shown in figure 5.7, we can define the location and the load
attributes to be related as:

X = x; + ¥4 Y eV (5.8)

If a node is located in the scratchpad memory on an arbitrary edge, then it must have been
located in that memory on the preceeding edge or it must have been loaded on the current
edge.

These equations reflect the ILP constraints for simple edge dependencies within an IPCFG.
To make them viable to arbitrary graphs, certain refinements have to be made. In addition,
the loading decision can only be made on living objects. If a basic block is guaranteed to be
never executed again, it would be useless to load it into the scratchpad memory.

[GW96] made a general observation for the placement of loading decisions. Although it
is aimed at the problem of register allocation, the statement is still valid for the specific

88

5.4. ILP MODEL

problem presented in this chapter. We refer to a merge node if its number of in-edges is
greater than one.

Theorem 5.4.1. For an optimal spill code placement it is sufficient to allow the load at-
tribute y'; to be equal to one for each node v; on edge e; that satisfies the following con-
straints:

o The flow predicate Pi,,,(vi,e;j) is USE or CONT.

o The edge e; leads to a merge node.

The proofs to this theorem can be found in [Ver06] and [GW96]. The implicit consequence
from this is that loading should not take place at nodes with a number of out-edges greater
one.

A self-loop is a node with an outgoing edge whose target is the node itself (figure 4.2¢).
Such edges are to be ignored. For all other loop constructs, we may even allow loading
on back edges. For large intervals that are bridged by such an edge, loading should not
explicitly be denied.

Figure 5.8: Attribute propagation on merge nodes

Another issue are branches and joins within the graph. In theorem 5.4.1, the possible spill
code placements have been restricted in general. The following equation enforces the re-
quirement for edges to merge nodes. In addition, it assures consistency of the location
attributes:

yljgle Veje{ejn,...,ejm},Vv,-EV (5.9)

X, ==, (5.10)
This is illustrated in figure 5.8. Equation (5.9) ensures that for all in-edges to a merge node a
decision to load also forces the location attribute to be set. In other words, if a loading takes
place on a certain in-edge, then mark the object as loaded on that edge as well. Equation
(5.10) enforces that all location attributes for the same object on all in-edges is equivalent.
This means, if an object is located in the scratchpad memory at one of the incoming edges
of a merge node, then it must be assigned to the scratchpad memory or loaded on each of the
remaining edges. This ensures consistency, as an object will always be in the same location
no matter which path has been taken to reach the merge node.

Up to this point, the spill model allows for a loading decision at an arbitrary point along
an object’s live range and the propagation of this information throughout the graph. An

&9

CHAPTER 5. DYNAMIC SCRATCHPAD ALLOCATION

important restriction is yet to be defined. An object can only be spilled into the scratchpad
memory if there is enough space left. It was mentioned earlier that we will not define the
position of the object within the memory. Instead, only the decision for the location of the
spilling is considered. For each loading decision, the accumulated size of objects within the
scratchpad memory may not exceed its overall size. Again, the dynamic growth of objects
requires consideration. Specifically, should a basic block be placed in a different memory
than its predecessors or its successors, its instructions may require modification so as to
restore the correct executability. This problem has been thoroughly discussed in section
442,

Let the dynamic size 54y, be the growth of basic blocks as defined in equation (4.27) and
let s(v) be their original size. Also let Viive be the set of nodes whose flow predicate is
either USE or CONT. Then the ability to load a basic block into the scratchpad memory is
restricted by the overall size of the target memory mem, denoted by size(mems,y,) so that:

Z x’/ X (8(vi) + Sayn(vi)) < size(memgp,) Ve; € E (5.1D)

Vi€Viive

For all live objects, the size restriction applies. Implicitly, this means that objects that were
loaded into memy),, but whose live range ends at a certain point, will not be considered
anymore in this constraint. Its reserved space is therefore implicitly freed and can be reused.
As opposed to writeable objects like those representing variables, they need not be stored
back into the main memory. An important difference to the static allocation at this point
is that basic blocks in the same memory also require code modifications because they can
be arbitrarily distributed within the scratchpad memory. It is assumed that every blocks
ends with an explicit jump instruction. This becomes clear when the memory assignment
problem is addressed below.

The spill model is now complete. Loading of objects and the restriction of memory sizes
have been modeled. Still, it remains to decide if a loading should take place at all. In the next
section, the combination of this spill model with a structural model similar to that defined in
the previous chapter will be presented.

5.4.2 Definition of the structural model

In chapter 4, a binary decision variable a; denoted if an object is to be statically placed into
the scratchpad memory. Similarly, the location attribute xz» denotes this for every edge e;.
The connection between the two models is the dynamic location attribute x§~ which replaces
the static placement variable a;.

Trivially, it can be observed that a basic block only contributes to the WCET if it is executed.
The contribution depends on where it is located at the time of its execution. The costs in the
structural model for a given node v; depends on the location attribute x; with e; = (u,v;). In
other words, it depends on the location of the object at the point its flow is classified USE
according to equation (5.5).

The structural model shall not be discussed in this chapter in all detail again. Only the fun-
damental differences to the original model from section 4 will be discussed. All conclusions

90

5.4. ILP MODEL

that have been drawn in the previous chapter concerning the structure and the modeling of
control flow graphs equally apply here.

In equation (4.7), the fundamental flow constraint has been defined. It models the contribu-
tion of a given basic block to the overall WCET by considering the costs of the path from
the node to the sink of the control flow graph and its own costs. A basic block’s own costs
representes its isolated WCET, depending on the fact into which memory it has been placed
statically.

Spill costs

From the spill model defined in section 5.4.1, we can obtain the dynamic location of a block.
As we have discussed, only the location right before its execution is relevant for these costs.
As was discussed earlier, the decision to move an object from one memory into another
requires the introduction of spill code. This copying also contributes to the overall WCET.
However, the costs are added to the block which follows the edge the decision for spilling
was made on. Put differently, if the transfer of objects v,...,v, is decided on an edge
ej = (u,v), then the costs caused by the introduced spill code are added to the node v. This
is reflected by the function c;p;;(v;) which is defined as:

Cspitt (Vi) = chpy(vk) X ylj‘- ej € in-edge(v;) (5.12)

Vi

For a given node v;, the total spill costs is the sum of the costs that is caused by copying
objects. An object vy is loaded on edge ¢; if and only if its corresponding load attribute on
this edge y’; is set. These costs do not change for nodes v; of in-degree greater two. The
costs for the very same node is only applied once.

The copy costs per node c¢,py (Vi) are determined by estimating the amount of program code
to be transferred and also depend on at which point during execution it is performed. This
requires a more detailed discussion. In section 5.6, the spilling and the cost estimation are
investigated in detail. Implementation specifics shall not be discussed at this point.

Jump costs

Another important change is applied to the equations that model the jumps between basic
blocks. In section 4.4.2, a model was presented in which jump instructions are classified
according to whether they are conditional, unconditional or if an explicit instruction existed
at all. The three classifications are shown in figure 4.14.

The motivation behind this was to penalize changes in the instruction code. Given that
two basic blocks are located in two different memories, the original jump instructions are
insufficient to encode the jump over large address space intervals. Moreover, basic blocks
that were connected by an implicit jump but were selected to reside in different memories
have an even greater impact on the execution performance.

91

CHAPTER 5. DYNAMIC SCRATCHPAD ALLOCATION

By binding penalty values to the allocation decisions in the static allocation model, arbitrary
distributions of basic block can be prevented. The jump penalties were presented in equation
(4.14).

It was defined that the partial order of basic blocks is an invariant property to the static
allocation. This is important because the assumptions regarding code layout (branch predic-
tion in particular) should not be changed. The arbitary placement of basic blocks within a
memory can severly impact the execution performance (see section 3.3).

In the case of the dynamic allocation problem, the order of basic blocks cannot be strictly
guaranteed. This is because the placement of the objects within the scratchpad memory
changes over time and ideally, all unallocated space should be reused in general. Therefore,
the order of basic blocks cannot be fully guaranteed. But similarly to the jump penalization
for the static allocation, an approximate model can be constructed which should result in a
profitable optimization. In fact, the original penalization can be extended. The limitation
which draws it unsuitable to the dynamic allocation problem is that it is only distinguished
into which memories two or more objects have been placed. This is sufficient since the order
is guaranteed.

Without being able to know the resulting order upfront, the placement within a single mem-
ory requires consideration, too. The order and the actual placements are not known. How-
ever, we can indirectly achieve an allocation behavior in which not keeping the order is
penalized. Given two basic blocks are connected by an implicit jump within the same mem-
ory. Placing them into arbitrary places requires a modification of the instructions according
to section 4.5.2. This necessarily causes an overhead as discussed. If both blocks were
connected by an explicit jump prior to replacement, we can expect that no additional over-
head is caused because only the target operands would require a modification in general.
On the TriCorel architecture, a jump between memories always requires an indirect jump
which demands for multiple additional instructions. In comparison, an explicit jump at most
requires an exchange of a single instruction. For the purpose of this model, the overhead
between single 16bit wide and 32bit wide jump instructions is neglected.

The result from the ILP model only determines whether objects are placed into the scratch-
pad memory. The exact location is determined in a postprocessing step. In this step, every
object ever loaded is assigned a fixed address to which it is always spilled. The original
jump penalties cause a selection of objects favoring a consecutive control flow. But this is
insufficient in the dynamic case. Although the location attribute according to (5.6) suggests
that consecutive blocks have been placed into the same memory, it does not mean they are
loaded together. As a consequence of being loaded at different points in time, the placement
in the postprocessing step might separate the objects.

Figure 5.9 illustrates the problem. The example shows a fragment of a control flow graph on
the left. On the right, a possible memory allocation for the scratchpad memory is illustrated.
At time Tp, only three objects fit into the scratchpad memory. The basic block of node v,
cannot yet be placed. The allocation algorithm we will discuss in section 5.5 in detail takes
care of keeping the original order execution of objects if possible. However, at time 77 the
missing block can be loaded into the scratchpad memory. But the placement of its successor
does not allow to restore the original order. The block of node v, is placed on top of the

92

5.4. ILP MODEL

Address

Time
Figure 5.9: Improper object placement

other in this example. In fact, it could be placed anywhere in the memory. The consequence
is that the displacements for the instruction pointer due to jumps are now reversed in their
direction. In section 3.3, the branch prediction of the TriCorel processor was presented. As
can be seen, the result of the allocation in this example is a worst-case scenario, because the
conditional jump of the loop is statically considered not taken.

To prevent this from happening, a loading of consecutive basic blocks at the same points in
time must be favored. Put differently, the loading at different points should be penalized.
The worst-case expectation from loads at different times is that implicit jumps need to be
converted into explicit jumps. Above, we have already discussed why only distinguishing
between implicit and explicit jumps is sufficient as an approximation.

The load penalty is applied in conjunction to the jump penalties. Both cause the favoring of
larger groups of objects. The objective of the jump penalties is to favor structural grouping.
The objective of the load penalties is to favor temporal grouping.

Vv, €V Ve, € E (5.13)

; (Vi ® yi) x Py for implicit jumps
Load —

0 otherwise

The variable Jioa 4 Tepresents the penalty applied, when consectuive objects are loaded at
different points in time. The node v; is the implicit successor of v;. This involves conditional
jumps as well. The loading of objects is denoted by the variable y};. It is set if the object of
v; is loaded on edge ;. If both are not loaded simultaneously, we have to apply the penalty
of an uncritical jump Py as we must assume that an explicit jump will be required which is
limited to the current memory. This is modeled by applying the XOR operation (®) with the
load attributes as its operands.

The jump penalty function c j,m, is now defined as

J ,imp,ici, if the jump case is implicit

if the jump case is unconditional (5.14)

g i
Cjump = J Load T 4 J, Unconditional

;
JEonditional if the jump case is conditional

The other constants are equivalent to the ones presented in section 4.4.2.

93

CHAPTER 5. DYNAMIC SCRATCHPAD ALLOCATION

Base constraint

The basic flow constraint for the dynamic allocation problem is therefore defined as:

Wi 2> Wit +Cmain(vi) —gain(vi) X)C;- (5.15)
+ Cjump (vi) + cean(vi) + Cspill (vi)

The fundamental idea of how a total WCET is estimated remains equivalent to what has been
discussed for equation (4.25). The gain function is the same as defined in equation (4.6).
Instead of depending on a static decision, a gain can only occur when the corresponding
basic block is actually located in the scratchpad memory upon execution. This is denoted
by x; as defined in (5.6). In the previous chapter, the problem of jump penalties has been
throughly discussed . Again, we can make the same assumptions about the penalization and
reuse the estimation function j ., (equation 4.9).

All the presented equations can be directly incorportated into an ILP model. The overall
optimization objective is identical to the one defined in chapter 4. That is, the objective
is to lower the estimated global WCET. The structural and the spill model in combinaton
describe the dynamic allocation problem as far as the assignment to different memories is
concerned. The ILP can now be solved. However, the ILP result requires further processing.

5.5 Postprocessing

The ILP model we have constructed up to now is capable of solving the memory assignment
problem for the dynamic allocation. As was motivated in the introduction, the solution
process is divided into two steps. Now that the load and location attribute variables have
values assigned, it is required to determine memory addresses the basic blocks are to be
placed at.

5.5.1 Memory allocation principles

Basic aspects of memory allocation shall be briefly presented in this section. For this pur-
pose, we abstract from the actual result of the dynamic memory assignment problem and
refer just to objects that need to be placed into a memory.

Finding a place in an address space for an object of a given size is generally referred to as
memory allocation. This process assigns a specific start address to the object, which is why
it is also referred to as a memory assignment problem.

The solution provided by the previously presented ILP model selects distinct places within
the code where a loading of objects from the main memory into the scratchpad memory
should take place. Therefore, for a given point in time, a well defined set of objects is
expected to reside in the scratchpad memory. Figure 5.10 illustrates this exemplary. The
difference to the static allocation becomes apparent when compared to figure 4.8. In the
figure here, a static set of spill points Sy, ...,S3 has been selected by the ILP. Only at these

94

5.5. POSTPROCESSING

F

Obji

Addresses
)
&
>

Obj4

[\

So S1 $> S3 Time

Figure 5.10: Memory layout of dynamic allocation

points, the loading of objects into the scratchpad memory is possible. Over the course of
time, different objects can be spilled. When the live range of an object ends, the space it
occupied can be reclaimed. Objects are never transferred back into the main memory once
they have been placed into the scratchpad memory. But they can be overwritten.

The ILP model enforces an upper limit on the total memory size. The decision for loading
an object depends on whether the sum of object sizes? is smaller or equal to the memory
size (equation 5.11). The task of the postprocessing step presented in this section is to find
appropriate spaces within the address space over the course of execution time.

In [JW99], the problem of allocating memory space is addressed thoroughly. If all memory
objects were of the same size, then an efficient algorithm can be constructed for allocation.
However, the problem of allocation for non-uniformly sized objects is NP-complete. The
primary problem is fragmentation. Figure 5.11 shows the problem.

sizeol| Obj
o sizegX Objy

. size
Slzemem{ —_— mem gapo

sizeq { Obj [§ap1

sizeq $ Obj 1

sizez{ 0[9]2 \—17—/
8aps3
—_— 0

0

Z{O,l} size; < SiZemem
(sizex < Y gap;)

(a) (b)

Y size; < sizemem

Figure 5.11: Fragmentation upon allocation

Although the sum of object sizes suggests that all objects fit into the target memory (figure
5.11a), the fact that allocations and deallocations happen frequently can lead to situations

2Dynamic growth is neglected in this discussion.

95

CHAPTER 5. DYNAMIC SCRATCHPAD ALLOCATION

where no suitable space in the address space can be found (figure 5.11b).

5.5.2 Address assignment for dynamic solutions

A major problem we encounter is the fact that the assignment solution is based on basic
blocks as its basic unit of allocation. It is necessary to form larger units that are handeled
atomically. The selection must be performed so that the number of cross jumps between
basic blocks is minimized. The basic blocks to be placed into the scratchpad memory are
only known after solving the ILP. At best, larger units can be selected while the ILP is solved
by encoding this problem as part of the model. But due to the implicit representation of the
WCERP, this is a complex task. In the structural part of our ILP model, jump penalties are
applied to basic blocks to minimize the separation of connected ones. In the solution to the
static allocation problem, this proved to be an effective way to group basic blocks. We make
use of this fact for the address assignment.

So, instead of preselecting groups of basic blocks, an attempt is made to post-select them.
This fact makes the solving of the overall problem in two successive steps mandatory after
all. It is not easily possible to encode this into the ILP. It should be noted that [Ver06] also
suggested an integrated address assignment directly within a single ILP model. This resulted
in remarkably long solving times in some cases, as was alluded earlier.

To perform a viable address assigment, groups of basic blocks need to be maximized.

Definition 5.5.1. A basic block group is a maximal set of basic blocks represented by
connected nodes within a control flow graph.

A group is therefore not a strongly connected component. It is sufficient to find a maximal
set of sequentially executed basic blocks.

Due to the application of jump penalties, the basic blocks tend to be allocated as groups
already. These groups can be found by applying a depth first search to identify connected
components.

Now that the basic block groups have been identified, it is important to keep them ordered.
The order should be equivalent to that in the original program.

In figure 5.12a, a grouping is demonstrated. From a given control flow graph, the ILP de-
termines a set of objects to be moved into the scratchpad memory. From the basic blocks
represented by the marked nodes in the graph, groups are determined. The placement in
the scratchpad memory then only takes into consideration groups. As is illustrated in fig-
ure 5.12b, the corresponding basic blocks will only be spilled into the scratchpad as these
groups. The task of a address assignment is to determine locations for the groups to which
they can be transferred to at execution time.

The placement of basic blocks out of a single memory into another one requires an in-
struction adjustment as was already thoroughly discussed in section 4.5.2. Such correction
inevitably leads to a growth of the basic block size. During memory assignment, the growth
was estimated. Now that the address assignment takes places, this estimation also requires
consideration.

96

5.5. POSTPROCESSING

Main memory

£ ;
)
<)
)
(s)
(a) (b)

Figure 5.12: Grouping of basic blocks

The strategy to assign addresses to the basic block groups is to make use of a simple linked
list allocator [Knu73a] with a first fit strategy. In [JW99], different allocation techniques
have been investigated and it was concluded that such a simple approach already leads to
good results. This has been affirmed by [Ver06].

Repetitive changes in the memory layout due to spill decisions at different points can lead
to fragmentation of the memory. This leads to the problem of not being able to allocate a
suitable space. The basic block groups are therefore allowed to drop single elements instead
of reassigning the complete group back to main memory if the allocation fails.

Although the allocation is dynamic at execution time, the decisions for when an allocation
should take place is statically determined at compile time. Moreover, the ILP model enforces
that when a basic block is executed, it will always be present in the same memory. From this
observation, an algorithm can be developed that statically assigns addresses to basic block
groups. The blocks will always be executed from the same location.

Listing 5 presents the algorithm for solving the address assignment problem. The algorithm
takes as input the IPCFG and the set of decision variables from the ILP. The former includes
the information on the global liveness, the latter contains information on the spilling deci-
sions. In lines 3 and 4, the relevant nodes on the current edge are extracted. They must be
living and the spilling for the particular node must happen on the current edge. From this
set of nodes, the groups are determined (line 5). A node is assigned to a group just once.
That means that once a group has been established. it remains throughout the allocation.
This is important to note because on different edges different group members are possible.
The memory map is refreshed on line 6. For each edge, a different memory usage of the
scratchpad memory is encountered depending on what allocations have already been per-
formed. For all groups that have just been determined (line 7), slots in the address space
of the scratchpad memory must be assigned. Groups that already have an address assigned

97

CHAPTER 5. DYNAMIC SCRATCHPAD ALLOCATION

Algorithm 5: Outline of address assignment algorithm

I: {Input: IPCFG G, ILP decisions}
2: for all egdes e € £ do
3: L :=living nodes(e)

4: L' :=loaded nodes(e, L)
5: BG :=determine groups(L)
6: M :=update memory map
7. forall bg € BG do
8: if bg £ empty A bg has no slot in M then
9: bg' = estimate dynamic growth(bg)
10: s := find slot first fit(M, bg")
11: if no slot found then
12: remove element from bg
13: retry
14: else
15: update memory map(M)
16: end if
17: end if
18: end for
19: end for

are omitted (line 8). From the discussion in section 4.5.2, it is clear that basic blocks might
require a modification of instructions. In line 9, for each group a safe growth estimation is
performed. For this estimated size, a slot in the memory map is seeked (line 10).

If, due to fragmentation, a slot could not be found (line 11), an element is taken from the
current group and is not considered for allocation into the scratchpad memory. The current
heursitic selects the element with the lowest costs. After removing this element from the
group, the allocation is attempted again.

Otherwise (line 15), the internal memory map is updated to reflect the changes. Once a slot
has been assigned to a group, its address is fixed throughout all edges of the graph.

Since the addresses are fixed, this also allows to adjust the jump instructions of all basic
blocks according to the technique discussed in section 4.5.2. Every time a basic block is
executed, its context as far as succeeding basic blocks are concerned is always the same.
Therefore, a single jump adjustment would suffice to restore the executability of the pro-
gram if these execution contexts would be taken into account separately. In practice, the
problem of restoring the executability is more complex. The problems related to this issue
are discussed in section 5.8. In the following, the generation of spill code is addressed.

98

5.6. SPILL CODE

5.6 Spill code

Loading the basic block groups into the scratchpad memory requires a modification of the
original program code. Two approaches can be taken. Either a call to a function can be
emitted, or the required instructions can be provided as inlined instructions. Invoking an
external function for the transfer has the advantage that the overall overhead is low and the
influence in the original program code is minimal. However, the WCET analysis requires
that for each function call the worst case is assumed. A large overestimation would result.
Emitting instructions into the existing code causes a greater overhead in terms of program
size, but a more precise analysis is possible. In this thesis, the latter approach is the default.
The actual implementation also allows for generating a separate copy function, however.

The objects for the transfer, the points at which they need to be transferred and the target
addresses are already known. Since the basic blocks have been grouped like shown in the
previous section, the transfers are performed on program code that usually encompasses
multiple basic blocks.

For each edge e = (u,v) on which a loading decision has been made, spill code is emitted
between the two basic blocks in the control flow. If an edge leads from a call site to a
function, then the code can safely be emitted as the first instructions of the called function.
If the edge represents a return from a function, the same applies.

An issue with the spill code placement is that all modifications to the program code have
to consider that the register allocation has already been performed. But for the new spilling
instructions, a set of registers needs to be available. Because of this, every spill code starts
with a prologue sequence that saves the necessary registers onto the program stack and
ends with an epilogue that restores the original registers from the stack. A special case
are function call edges. Since the register allocation is limited to functions, the spill code
executed first in a function can safely use some registers except the ones that were used
for passing arguments. Equally, this holds true for function returns. For each edge which
demands for spill code generation, only a single pair of prologue and epilogue code needs
to be generated.

Figure 5.13 outlines the workflow that is performed per edge. If there are no spill deci-
sions on the edge, nothing has to be done. Otherwise, we have to distinguish if the edge
is connected to a call site as either a calling, a returning or a virtual edge. If this is not
the case, explicit register saving needs to be performed. The default behavior for the spill
code generating routines is to emit inlined code. However, the possibility for generating
an external copy function has also been provided in the generating component of the op-
timization. Instead of inlined code, the respective function calls would be emitted. If the
code is to be inlined, it is specifically generated for the task on this edge. If the amount
to be transferred is not a multiple of the machine word?, copying is started with smaller
units until the amount is properly aligned. Then, we can transfer the remaining data with
a small instruction footprint because the TriCorel provides instructions that make this par-
ticularly efficient. For large amounts of data, a tight loop is generated. This makes use of
the Tricorel-specific loop pipeline (refer to section 3.3). After one iteration, the loop can

30n TriCorel, this is a 32bit wide value. Refer to section 3.3.

99

CHAPTER 5.

DYNAMIC SCRATCHPAD ALLOCATION

Generate
prologue/epilogue

Call, return,
virtual

Generate
external function

Copy to
alignment

Explicit loop
code

no Low loop yes
count

Unroll loop
code

> <
> <

\ 4

Cleanup

be considered to cause no overhead anymore apart from the memory accesses. Therefore, if
the estimated loop iteration counts are lower than three, the loop is unrolled. After having
emitted the copy code, some basic blocks that have been generated by the different stages
above can be merged. This is done in the cleanup step. If the target node of the edge is a
merge node, all spill decisions on all in edges are marked as handled as an appropriate spill
code has already been emitted. It should be noted that the prologue and epilogue code only
backs up registers that are actually used. Therefore, the overall overhead is minimized.

Of course, the spill code has implications for the ILP. On the one hand, the spill code in-
creases the program code size. On the other hand, the spill code must be considered in the
structural model to properly obtain the basic block WCET. Spill code is never emitted into

Y

no Is merge yes
node

Mark all
in-edges as done

> <
> <

Figure 5.13: Workflow of spill code generation

100

5.7. IMPLEMENTATION

the scratchpad memory, therefore the former is not a problem to the allocation. In the second
case, an estimation of execution times must be provided to ensure the correctness of the ILP
model. In equation 5.12, the spill cost function ¢,y was introduced. The precise cost of the
copying cannot be known within the ILP model because groups are not available. However,
an overestimation is still possible. According to the workflow presented in figure 5.13, the
accumulated costs can be roughly determined. For reading memory accesses from the pro-
gram flash 5 cycles are assumed, while writing to the scratchpad memory is estimated with 1
cycle. Only the copying of single basic blocks can be considered within the ILP which leads
to a safe overestimation. For each single basic block it must be assumed that it ends with an
explicit jump instruction since the order of basic blocks in the target memory is unknown
upfront.

The workflow chart already suggests how the spill costs are determined. Since the exact
code shall not be discussed at this point, the following constants are defined to represent the
costs of the separate steps during spill code generation:

o Csa.: The costs of saving and restoring the registers required in the spill code

® Cjoop: The costs of the inlined spill code including alignment and considering loop
unrolling.

The spill costs as used in equation (5.15) can now be defined as:

0 if spilling on the virtual entry edge of the IPCFG
Ceopy = Cioop if spilling on a call or return edge (5.16)

Csave + Cloop otherwise

If a spill decision was made for the virtual entry edge of the program which was introduced
in definition 5.2.9, then no costs are applied at all. This results in a set of objects preloaded
into the scratchpad memory prior to execution. This is similar to the static allocation. If
spilling is required on an edge leading from or to a call site, then no explicit register saving
and restoring is needed because no registers that could potentially carry arguments or return
values will be used in the spill code. All other registers are potentially unused at these points.
For all other edges, an explicit epilogue and prologue is required.

5.7 Implementation

The implementation of the dynamic allocation is a specialization of the static allocation.
Much of the routines utilized there could be reused as far as the structural model and the
jump correction is concerned. They are discussed in sections 4.5.1 and 4.5.2.

The workflow for solving the dynamic allocation problem is summarized in figure 5.14.
Almost all steps have already been discussed. The input to the optimization is again the
low-level representation LLIR. From this LLIR, intraprocedural control flow graphs are

101

CHAPTER 5. DYNAMIC SCRATCHPAD ALLOCATION

Architecture-dependent optimization

(N
ILP model
Structural o Basic spill model
LLIR He IPCFG Tnterproc. WCET o Size restrictions
| analysis |[—> ; — ! — ! N A
generation liveness analysis e Basic structural model
(local) Sic 8
e Objective
LLIR, Program Sollood ~ad l
= transfor- [¢— JumP | opticode 1, A ress ILP
. correction injection assignment solver
mation
\ |)

1 aiT

Figure 5.14: Workflow of dynamic optimization

constructed which will later serve as the source of structural and WCET-related informa-
tion. The structural analysis (section 4.2) determines the nesting of constructs within the
code so that this information is available during ILP generation. From the separate control
flow graphs an interprocedural graph is constructed. With its help, the liveness of objects
across function boundaries can be determined (see section 5.2). Afterwards, the WCET is
determined for the unaltered program. This is again performed in two passes. The program
is fully assigned to a memory on each pass. From the assembled information, the ILP model
is constructed as was discussed in section 5.4. The spill model is reponsible for propagating
allocation decisions. The size restrictions prevent the overuse of the scratchpad memory.
With the basic structural model, ILP constraints similar to the ones in the static allocation
problem are generated. The decisions from the spill model influence the estimated costs in
the structural model. After the ILP has been solved, an address assignment (section 5.5.2)
for the selected objects needs to be found. Afterwards, the program is altered so that the
spilling of objects is performed in terms of the regular execution flow of the program (sec-
tion 5.6). The placement of basic blocks into different locations also requires a correction
of jump instructions (section 4.5.2).

The final step, referred to as program transformation, has not yet been addressed yet. The
dynamic allocation hits a technical barrier when it comes to evaluation of the optimized pro-
gram and the output of executable code. This is a fundamental restriction which is discussed
in the next section.

5.8 Program transformation

The outcome of the dynamic allocation steps as described, are grouped basic blocks and
memory addresses for their placement. Using this information an executable program has
to be generated.

A key problem in this regard is the fact that objects occupy overlapping address intervals
over the course of the execution time. This was illustrated in figure 5.10. The jump correc-

102

5.8. PROGRAM TRANSFORMATION

tion process and moreover the spilling routines need to be crafted for this scenario.

The jump correction performs its task by calculating the distance between the objects and by
replacing instructions on demand. This is required if the distance between the objects is so
large that the existing instructions are not sufficient to express a jump of that distance. This
is mostly related to the limited widths of the immediate operands in the TriCorel instruction
set.

Similarly, the spill code requires information on the source and the target addresses as well.
The problem of determining the target addresses has been solved by the algorithm presented
in section 5.5.2.

The LLIR symbol table, as presented in section 3.4.2, is capable of managing object ad-
dresses. In particular, it enables the utilization of symbols instead of immediate addresses
within the instruction code. The tables have been contributed to the LLIR to relieve the user
from the explicit address management. However, in this situation, overlapping objects need
to be managed. This poses two problems to the generation of valid programs.

The composition of the program object files requires a relocation by the linker. However,
neither the model provided through the LLIR symbol tables nor the standard configuration
of the linker are capable of handling overlapping objects. A special OVERLAY directive
[Pro07] for linker scripts can enable this. The LLIR symbol tables however currently do not
support overlay.

The only way to overlay objects for linking is to provide a separate object section (refer to
section 3.4.2) per basic block group. The OVERLAY directive allows to specify the over-
lapping of sections within a memory. Since the basic block groups are determined over the
course of the allocation, a manually prepared linker script cannot be used. The only way to
encode the overlay is to dynamically generate a linker script from the results of the alloca-
tion with the help of the LLIR extensions implemented for this thesis. As a consequence,
the symbol tables would need to be capable of calculating much more difficult scenarios to
determine the final object addresses. The alternative would be to fully refrain from using
symbolic addresses and to actually perform the relocation step within the compiler as well.
This would be the equivalent of provide a fully featured linker as an integrated compilation
step. In the context of this thesis, this is an unrealistic undertaking under the given time
constraints. A fully instruction-corrected assembly output can be generated. But the de-
scription of overlaying objects is not available and as a result, the final linker invocation is
not possible without providing the additional information as just discussed. This is denoted
as the outgoing edge labelled LLIR,,; in figure 5.14.

This restriction to the final program output does not apply to the aiT WCET analysis. A
whole different issue becomes apparent at this point. As was presented in section 3.1, the aiT
WCET analyzer operates on an intermediate representation (CRL). The LLIRAIT component
of the WCC transforms its internal LLIR representation into the CRL. Numerous aspects of
the source program need to be described in this representation. In particular, all objects
are given a memory address, including single instructions. The input to aiT must be a
complete and static model of the program. Moreover, no two instructions may be assigned
overlapping addresses. It is therefore technically not possible to model a self-modifying
program for WCET analysis.

103

CHAPTER 5. DYNAMIC SCRATCHPAD ALLOCATION

As a consequence, the input provided to aiT must be a flattened model of the program. Ob-
jects that are assumed to be overlapping, according to the memory and address assignment,
must be placed adjacent to each other, so that an appropriate model can be delivered to the
analyzer. It means that a structure similar to that of the static allocation has to be provided.
All objects must be statically placed and may not overlap. In turn, this resolves the problem
that was addressed before. The fact that overlapping cannot be analyzed means that it also
is not required to be supported by the LLIR extensions. A specially transformed input is
provided to aiT as denoted by the the outgoing edge labelled aiT in figure 5.14.

However, the result of the flattening inevitably has an impact on the precision of the WCET
analysis. The jump instruction correction now needs to address jump scenarios which sug-
gest much larger address intervals than it would have been the case in reality. This affects
the estimation of the WCET. In the follwowing chapter, the results will be investigated.

104

CHAPTER 6

RESULTS

6.1 Benchmarks

The allocations presented in the previous chapters need to be tested in a comparable fashion.
The WCC comes with a large benchmark-suite specifically aimed at measuring results of
WCET-directed optimizations. Most of them implement algorithms for DSP-related tasks.
This is an important domain to embedded systems and standardized benchmarks assist in
obtaining comparable results for optimizations. The algorithms in use are dedicated to im-
age, video, audio encocoding and decoding. Other benchmarks are aimed at providing test
cases for typical algorithmic problems like sorting or matrix transformations. The remain-
ing benchmarks are related to simulating certain scenarios like the simulated execution of a
petrinet or typical arithmetic operations like calculating the square root.

The benchmarks are generally self-contained. This means that no explicit dependencies to
external library functions exist. This also implies that no benchmark imposes side-effects or
asynchronous behavior. The input to the algorithms is usually provided as static data in the
source code or by generator functions. Most benchmarks consist of single files. Moreover,
it is attempted in general to avoid program structures that make the structural analysis of the
code particularly difficult. These are statements like break and goto, and the use of multiple
return statements per function. Pointers are not used in general. The dynamic behavior is
minimized. Summing this up, the benchmarks in general completely fulfill the requirements
for being good candidates for static code analysis as discussed in section 2.2.2.

These benchmarks are originally not prepared for their direct use in WCC. To make them
applicable to the analysis by aiT WCET analyzer, explicit code annotations are provided.
All loop constructs are annotated with the respective loop bounds.

The properties of the available benchmarks are listed in appendix B. As can be seen, they
greatly vary in properties like total size, number of basic blocks, number of loops, etc. In
general, they are small. The total size listed in the table only denotes the size of the resulting
instruction codes at optimization level 2 of the WCC. General data is not considered. For
the purpose of this thesis, some benchmarks which significantly differ in their properties are
presented exemplary. The aim is to compare benchmarks with few large functions to ones
with many small ones, to ones which incorporate comparably many loop constructs, etc. All
benchmarks were conducted with an uncached main memory.

105

CHAPTER 6. RESULTS

6.2 Methodology

As can be seen from the table of properties, the memory footprint of the instruction codes is
comparably small. The scratchpad memory for instructions has a size of 48KB whereas the
benchmarks have an average size of just 2.8KB.

The software emulation of the optional floating point unit on the TriCorel architecture is
disabled. This prevents library calls. Instead, floating point instructions are emitted which
is fully supported by the aiT WCET analyzer.

For the purpose of benchmarking, the scratchpad memory size has been artificially de-
creased. Its size is determined relative to the program size. In the following discussion
a memory size of 100% denotes a scratchpad just as large as the respective program. For
the benchmarks, the sizes are varied in steps of 10% downwards. To make the allocation
behavior comparable, the performance is denoted as the gain in percent compared to the
execution from the main memory.

The results are obtained by running WCC with the respective compilation options. The
WCET analyses are performed as an integral part of the compilation process. To test against
different memory sizes, their size can either be specified in the external file which describes
the memory layout as presented in section 3.4.2, or a command line option can be set. The
latter has been temporarily added for benchmarking purposes.

In the following, benchmark results are presented that demonstrate the particular behavior
of the static and the dynamic allocation optimizations, respectively.

In appendix A, the absolute cycle counts of the benchmarks are listed. In addition, a table
of properties of the benchmarks like size, number of loops, number of basic blocks etc. is
given in appendix B.

6.3 Results of static allocation

In the following, results of the static allocation optimization for code objects are presented.

The results shown in figure 6.1 stem from the benchmark ndes. It performs the DES en-
cryption algorithm on static input data. The source code is composed of 12 loops and 5
functions. The loops are not nested. Primarily, it performs bit operations on the input data.
If the scratchpad size matches the program size (100%), a gain of 39.2% can be achieved.
The static allocation tends to select complete loop bodies. In this benchmark, the compa-
rably large number of loops not being nested results in a gradual decrease of the gain. At
80% in size, a comparably expensive loop is dropped from the scratchpad memory which
results in a gain of 24.1%. The increase to a gain of 26.5% at a size of 70% appears due
to the imprecision of the model in comparison to the complexity of the architecture. For
example, although the expected overheads due to different jump scenarios are taken into
consideration, neither the state of the pipeline, nor the state of memory controller are taken
into account. In this particular example, the result is an increase of gain of 2.4%, although

106

6.3. RESULTS OF STATIC ALLOCATION

ndes
45
40
35
30
N
" 25
£
£ 2
©
o 15
10
5
0
100 90 80 70 60 50 40 30 20 10
Size in %

Figure 6.1: Static allocation results for benchmark ndes.

the size of the scratchpad memory was reduced. Otherwise, the gain decreases monotoni-
cally as expected. At 20%, a gain of 17.8% can still be achieved. At 10%, the allocation is
not performed because no loop fits into the scratchpad in its entirety.

cover
50
45
40
35
Y
£
£
@© 20
O
15
10
: I I I
0 | | |
100 0 80 70 60 50 40 30 20 10
Size in %

Figure 6.2: Static allocation results for benchmark cover.

Figure 6.2 illustrates the result for the cover benchmark. The source code is structually
comparably extreme in that it encompasses 3 loops containing large switch statements. Its
overall size is 3KB. Due to the very high count (399) of small basic blocks (10B max. size),
the overhead imposed by partially allocating the loops to the scratchpad memory quickly
exceeds the possibly achievable gain. The measuring points at 90%, 60% and 30% of the
size suggest that one loop after another is kept in main memory. The result is that at 100%

107

CHAPTER 6. RESULTS

a gain of 44.3%, at 90% a gain of 34.9%, at 60% a gain of 10.1% and at 30% a gain of
1.0% can be achieved. The gain at very low scratchpad sizes stems from the placement of
the entry function which invokes 3 functions containing the loops, respectively.

g721_encode

60

50

40

30

20

10

0
100 EY 80 70 60 50 40 30 20 10

Size in %

Gain in %

Figure 6.3: Static allocation results for benchmark g721_encode.

The results of a benchmark which implements the G.721 ADPCM audio encoder are shown
in figure 6.3. The source code consists of 11 loops and 26 functions. Its total size is 3.1KB.
Most functions consist of non-iterating sequences of basic blocks. As a result, the selection
of objects for allocation into the scratchpad memory is gradual for scratchpad sizes of 100%
to 10% of the program size. With a scratchpad size of 100% of the program size, a gain
of 47.8% results. At 10% of the size, a gain of 29% can still be achieved. A small central
loop with a maximal loop iteration count of 256 exists, which can be kept in the scratchpad
memory even for very small sizes. This explains the comparably high gain at only 10% of
the original program size.

Figure 6.4 shows the average gains that can be achieved with the static scratchpad allocation.
The maximal achievable improvement for a scratchpad size of 100% of the program sizes is
39%. The largest benchmark is md5 (6.3KB), the smallest fibcall (52B). The average code
size among all benchmarks is 2.8KB. It can be seen that for scratchpad memory sizes as
small as 10% of the original program sizes, an improvement of 7% can be achieved. The
actual improvements per benchmark can differ largely, as was presented above.

The TriCorel processor features an instruction cache of 16KB. For all the benchmarks, up
to this point, the results are provided in reference to the gain in performance in comparison
to an uncached main memory. Since none of the benchmarks has a code footprint greater
than the actual cache size, the comparison of a cached memory with the results of a static
allocation requires an artificial reduction of the cache memory size. In the following, the
cache size is equal to that of the scratchpad memory.

The advantages of a cache are that it operates transparently to the processor. Therefore, no
instruction modifications need to be applied to make use of the faster memory. Its disad-

108

6.3. RESULTS OF STATIC ALLOCATION

Result average

10 9% 8 70 60 5 40 30 20 10

Average size in %

Average gain in %
3 3 B B 8 8 &8 &

el

Figure 6.4: Static allocation average results

ludcmp

35

30

16384 8192 4096 2048 1024 512 256

Size in byte

IN)
a

IN)
=]

M |-Cache
H Static

Gain in %
&

=)

3

15

Figure 6.5: Static allocation compared to the I-Cache

vantage is the lack of control from the perspective of a user. The aiT WCET analyzer for
TriCorel provides a precise model of the instruction cache. A direct comparison shall be
provided at this point. In figure 6.5, the results of the ludcmp benchmark are illustrated.
It implements an algorithm for solving linear equations through LU decomposition. It has
an instruction code memory footprint of 1.5KB and is consists of 11 loop structures which
are mostly responsible for iterating the rows and columns of a matrix. As can be seen, for
memory sizes larger than the program size, both results are almost identical with a gain of

109

CHAPTER 6. RESULTS

29.2% for the cache and 28.7% for the scratchpad memory. From a size of 1024B to 256B,
a significant drop in the gain for the static allocation optimization can be observed. The gain
decreases to a gain of 14.5% for a size of 1024B , 11.9% for a size of 512B and 10.3% for
a size of 2565B, respectively. For sizes smaller than 128B, the gain achievable by utilizing
the scratchpad memory is minimal with a gain of 0.9%. Opposed to that, the use of the
instruction cache results in sigificantly higher gains even for small memory sizes. For sizes
of 1024B to 256B the results indicate a gain roughly twice as high as with the scratchpad
optimization. Even for a size of 64B (this corresponds to 2 cache lines), a gain of 12.9%
can be achieved. The results seem to suggest an advantage of the instruction cache. Clearly,
an overhead results from the modifications necessary to execute the program utilizing both
memories, when the scratchpad allocation is performed. However, the locality of execution
is comparably low. Most of the 11 loops in the benchmark are executed in succession. The
cache seems to be filled even prior to execution, or at least is considered filled immediately
by the analysis. This problem regarding the cache simulation of the aiT WCET analyzer has
also been observed in other contexts. For the current benchmark, even with the full program
assigned to the scratchpad memory (scratchpad memory size is 100% of the program size),
the use of the cached memory results in a higher gain of 0.5%. But for the cache to take ef-
fect, at least a single access to the relevant code objects in the main memory must have been
performed whereas the program assigned to the scratchpad memory can already execute at
its full speed. The maximal iteration count per loop is only 5. This indicates a problem with
the analysis of the ait WCET analyzer. Therefore, the given results must be taken with a
grain of salt and further, thorough comparisons of the scratchpad allocation techniques with
the instruction cache seem unreasonable at this point in time.

In general, it should be noted that the sizes of the benchmarks are comparably small. The
static optimization takes into account the dynamic growth that stems from the allocations.
For the worst case, an overhead due to instruction corrections up to 12B needs to be taken
into account per jump instruction. By enforcing such a pessimistic estimation a guarantee
exists to not exceed the scratchpad memory size. On the other hand, a more precise estima-
tion could possibly lead to even better results - specifically for small benchmarks where the
necessary instruction modifications already make up a noticeable part of the overall memory
footprint.

6.4 Results of dynamic allocation

In this section, the results of the dynamic allocation optimization for code objects are pre-
sented. Similar to the results of the static allocation, an assorted set of benchmarks with
interesting properties is investigated.

The results for the fdct benchmark are shown in figure 6.6. The benchmark performs a Fast
Descrete Cosine Transformation on static input data. The total size of the instructions is
1.8KB, with few but large basic blocks (260B average). The control flow consist of just 2
loops with a maximum iteration count of 8. According to this, the allocation results reflect
the placement of the loop bodies into the scratchpad memory. For a full assignment (size of
100%), a gain of 14.5% can be achieved. At sizes of 90% and 40%, the loops are dropped

110

6.4. RESULTS OF DYNAMIC ALLOCATION

fdct
16
14
12
10
=X
£,
£
©
) I I I I I
4
2
0
100 0 80 70 60 50 40 30 20 10
Size in %

Figure 6.6: Dynamic allocation results for benchmark fdct.

from the scratchpad memory, respectively. This results in a gain of 7.0% for a size of
90% the program size to a gain of 6.5% for a size of 50% the program size. For smaller
scratchpad memory sizes no allocations are performed. For the whole benchmark, no spill
code is emitted at all. The overhead in terms of size and execution time do not justify this.
As aresult the results of the static and the dynamic allocation are equivalent.

g723_encode

10 %0 80 70 60 5 40 30 20 10

Size in %

Gain in %
3 & 8B B 8 8

o

Figure 6.7: Dynamic allocation results for benchmark g723_encode.

The next benchmark, shown in figure 6.7, implements the G.723 ADPCM audio encoding
algorithm. Its instruction code size is 3.1KB. It consists of 209 basic blocks with an average
of 15B each. In total, 11 loop constructs make up the algorithm. A central loop in the entry
function invokes the encoding functions. The maximum gain with a scratchpad size of 100%

111

CHAPTER 6. RESULTS

the program size is 47.4%. Decreasing the scratchpad memory size to 90% results in a gain
of 31.5%. This result does not change for sizes of 80% and 70%. This is due to many basic
blocks not being part of loop bodies. Not allocating them to the scratchpad memory has
no noticable effect on the result. From a size of 70% downwards, a gradual decline occurs
where the small separate loops are not allocated. Due to the small sizes of the loops, at only
10% of the program size a gain of 18.7% can still be achieved.

cjpeg_jpegbb_wrbmp

50 | | | | | | |
0 I I I
100 % 80 70 60 50 40 30 20 10

Size in %

Gain in %
8 5

3

3

Figure 6.8: Dynamic allocation results for benchmark cjpeg_jpeg6b_wrbmp.

In figure 6.8, the result of the cjpeg_jpegbb_wrbmp benchmark are shown. It generates an
image file in the BMP format. It encompasses 55 basic blocks and has a total instruction
code size of 638B. The control flow consists of 6 loop constructs with maximum loop bounds
of 30 to 512 iterations. The majority of code is not nested within these loops. Because of
this, the allocations result in a constant gain of 51% from 100% to 40% of the original code
size. The loops are kept in the scratchpad memory as long as possible. From 30% to 10%, a
significant decrease of gain can be observed. At 30% a gain of 45.1% and at 20% a gain of
40.8% can be observed, respectively. At 10% of the size, a gain of 30.8% is achieved.

The average improvements over the applied benchmarks are shown in figure 6.9. As can be
seen, with a full allocation to the scratchpad memory (100% of program size), an average
gain of 37.1% can be achieved as opposed to the execution from the main memory. At 90%,
60% and 30% of the size, the average gain decreases to 32%, 26.6% and 18.6%, respectively.

At 10% of the original program size, an average gain of 9% can still be achieved. The decline
is gradual as expected.

Not all of the benchmarks performed for the static allocation optimization could be success-
fully applied for the dynamic case. This has various reasons discussed in section 6.7.

112

6.5. COMPARING STATIC AND DYNAMIC ALLOCATION

Result average

0 % 8 70 6 5 4 3P 20 10

Average size in %

Average gain in %
3 = 8 X 8] 8

o

Figure 6.9: Dynamic allocation average results

6.5 Comparing static and dynamic allocation

In the following, a direct comparison of the static and the dynamic allocations is presented.
In the dynamic allocation, the exchange of the contents of the scratchpad memory can lead
to greater gains. For the benchmarks, this is especially true for control flows which are
clearly separatable into stages of processing. Two such benchmarks are presented.

expint

45

40

35

30
X

25 .
c M static
.% 20 B dynamic
o 15

10 J

5

: 1

100 20 80 70 60 50 40 30 20 10
Size in %

Figure 6.10: Comparison of result of benchmark expint.

113

CHAPTER 6. RESULTS

Figure 6.10 illustrates the comparison of the expint benchmark. The algorithm calculates
the exponential integral for fixed input arguments on a finite interval. The memory footprint
is 800B large and is composed of 21 basic blocks with an average size of 38B. The imple-
mentation consists of 3 loops with a maximal loop bound 100 iterations. With a scratchpad
size of 100% of the program size, the gain of the static allocation is 37%, whereas the gain
for the dynamic allocation However, as can be seen, the static allocation results in slightly
better results. This is due to the strictly more conservative estimation of growth for the dy-
namic allocation which also has to take into account a different order of basic blocks within
the scratchpad memory. Therefore, no equivalent set of objects is chosen for allocation. At
90% and 80%, the different placement even seems to lead to increasingly higher WCET
gain estimations in the case of the dynamic allocation. This issue is discussed in more detail
in section 6.7. For scratchpad sizes smaller than 70% of the original instruction code size,
the dynamic allocation in general performs better than the static allocation. As can be seen
at from 50% to 40% size, a large drop in gain can be observed from 35.2% to 9.9% for the
static allocation and from 33% to 16.1% for the dynamic allocation. This is due to an ex-
pensive loop construct being dropped from allocation. Down to a size of 20%, the dynamic
allocation results in a gain of 16.2% whereas with the static allocation a gain of only 5.2%
can be achieved. At 10% of the original size (80B), the static allocation can still achieve a
gain of 5.2% whereas the dynamic allocation leads to no allocations anymore. The latter ob-
servation already points out a weakness of the dynamic allocation optimization. In section
6.7, these problems are addressed.

countnegative
60
50
40
X
£ 5 H static
£ [| i
s dynamic
(D 20
10 I
0
100 90 80 70 60 50 40 30 20 10
Size in %

Figure 6.11: Comparison of result of benchmark countnegative.

The benchmark whose results are shown in figure 6.11 implements an algorithm which
works in two successive stages. A square matrix of 400 elements is filled with pseudo-
random values. Afterwards, the number of non-negative values is counted. The benchmark

114

6.5. COMPARING STATIC AND DYNAMIC ALLOCATION

consists of 18 basic blocks which accumulate to a total instruction size of 260B. With a
scratchpad memory size of 100% to 80%, both allocation techniques result in almost identi-
cal gains. The slight differences stem from different requirements regarding the estimation
of the dynamic code size inflation. The maximum gain for a size of 100% is 54.7% for the
static allocation and 53.7% for the dynamic allocation. At sizes of 70%, 60%, 40% and
30%, the spilling leads to significant improvements in comparison to the static allocation.
At 70% and 60%, a gain of 40.6% for the static allocation and a gain of 53.6% and 54% for
dynamic allocation can be achieved. At 40%, gain of 39.5% as opposed to 50.4% can be
achieved. At 30%, a gain of 17.9% as opposed to 32.3% results. However, at small sizes
(20%), no placement is performed at all for the dynamic allocation anymore. The gain of
the static allocation is 20.6% for this size. At 40% size, it can be observed that the gain
according to the WCET estimation for the dynamic allocation is greater than at 50% of size.
This issue is also addressed in section 6.7 below.

crc

60

50

40
X
£ 5 B static
£ B dynamic
©
o 20

10

0

100 90 80 70 60 50 40 30 20 10
Size in %

Figure 6.12: Comparison of result of benchmark crc.

Figure 6.12 illustrates the comparison of the crc benchmark. It is an example of a closed
algorithm which performs its primary processing within a single tight loop. Its total instruc-
tion size is 608B. As can be seen, the gains resulting from different memory sizes are almost
equivalent. For a scratchpad memory size of 100% a gain of 55.7% can be achieved. At a
scratchpad memory size of 80%, the more conservative size estimation leads to a difference
in allocation, so that the gain for the static allocation is 54.3% and for the dynamic alloca-
tion 46.6%. From 70% of the program size (gain of 46.6% for both allocations), the gains
remain equivalent. At 10%, a gain of 35.7% is still possible. The benchmark demonstrates
the equivalence of results due to the equivalence of the structural model. No decisions to
spill are made for this benchmark.

For many benchmarks, the results of the static allocation do not differ significantly from

115

CHAPTER 6. RESULTS

those of the dynamic allocation. The reason for this is the comparably high overhead of the
spill code. As was discussed in section 5.6, the spill code can quickly grow in size. Even
for the transfer of just a single object, instructions for saving the context and restoring need
to be provided, so that registers can be freely used in the actual spill code. Besides context
saving, which can have a size of up to 40B alone, another 40B are required for setting up
the spill code itself. The average size of a basic block in the benchmarks is only 32B. In the
regard of execution overhead and size overhead, this is significant. In many cases, a static
set is chosen to be loaded prior to execution which remains in the scratchpad memory. Since
the spilling is bound to object live ranges and many benchmarks perform a single closed
algorithm, exchanging the contents of the scratchpad memory rarely occurs.

A direct comparison of the average results of both allocation techniques reveals that at 100%
of the program size, the static allocation results in an average gain of 39.6% as opposed
to 37.1% for the dynamic allocation. At 50% of the size, both allocations result in an
average gain of 22.1% for the static allocation and 22.3% fir the dynamic allocation. For a
scratchpad memory size of only 10% of the original program size the static allocation results
in an average gain of 7% whereas the dynamic allocation results in a gain of 9%. Both
allocations lead to a gradual decrease of gains. These observations validate the expectations
for both allocation optimizations. For comparably large sizes of the scratchpad memory, the
static allocation performs better. This is due to the lower overhead caused by instruction
corrections. On the other hand, for small scratchpad memory sizes, the dynamic allocation
can achieve better results because the scratchpad memory contents can be exchanged at
execution time.

6.6 General limitations

In this section, the problems encountered during implementation of both the optimization
techniques are discussed. Despite the correctness of the ILP models, several technical limi-
tations became apparent.

Both optimizations do not support recursion in general. This is due to two reasons. For both
models, the iteration counts of loops or the depth of recursions must be statically known to
reason about the costs induced by the elements of a program. Direct recursions can in fact
be handled easily as far as these iteration counts are concerned. If a function calls itself,
the costs of the recursively executed paths can be obtained directly. For indirect recursions,
matters are more difficult. Multiple invocations can lead back to one originating function.
As was discussed in section 3.1, possible manual code annotations can be loop bounds that
serves as the source of information for language statements directly following the annota-
tion, or they can consist of markers and loop bound equations which describe the relation
of execution times of the markers. Markers can be arbitrarily distributed within the source
code. Although they are a means to describe complex iteration scenarios like recursions, an
additional effort would be required to properly take into account the equations within the
respective ILP. Also, recursions lead to infinitly long call strings during the interprocedural
liveness analysis. Since only very few of the benchmarks are recursive, the author decided
to drop the explicit support. An experimental implementation is provided for the static allo-

116

6.7. SPECIFIC LIMITATIONS OF THE DYNAMIC ALLOCATION

cation optimization as a proof of concept. It revealed an unreasonable additional effort for
fully supporting recursion in this thesis.

A weakness of both optimizations is the dependence on the structural analysis presented in
section 4.2.2. It makes the generation of the ILP significantly more convenient, because
the generated control tree directly reflects the program structure in the way it is required
for the ILP generation. The drawback that became apparent for some realworld test cases
is its fragility. Due to the compiler optimizations performed or not performed prior to the
allocation optimizations, the program structure can cause problems. It was observed that
the analysis of the very same program with only slight modifications due to some other
optimization can lead to different results. This is because the analysis can possibly detect
structures differently depending on the order of traversal. It was observed that especially
nested structures with natural loop statements can cause problems, because they have no
dedicated basic block denoting the entry into the loop. Structures therefore become indis-
tinguishable. It should be noted that the optimization level -02 for the WCC leads to viable
results in general. Problems with single benchmarks could be resolved by hand-tuning the
optimization settings or by minimal changes to the source code. No generally working strat-
egy for the structural analysis could be found. This is not a deficiency of the implementation
per se. WCET analyzers require some form of a structural analysis as well. For example
some are tuned to typical patterns produced by GCC [WEE'07]. The advantages of a de-
tailed structural analysis are nevertheless indisputible.

In this regard, it should be pointed out that irreducible (refer to section 4.2.2) structures
can in general be handled by the structural analysis. In the literature, multiple different tech-
niques are proposed to deal with such situations. Only a single benchmark has been observed
to be irreducible. Therefore, none of the techniques justified the effort of implementation.
Optionally, the handling can still be implemented.

The static allocation optimization is in fully working condition and can be applied to ar-
bitrary benchmarks in general. Opposed to that, several limitations apply to the dynamic
allocation optimization. The specific problems are addressed in the next section.

6.7 Specific limitations of the dynamic allocation

As was already pointed out in the previous section, the spill code can significantly inflate
the total program size and can also significantly contribute to an increase of execution time.

An important issue regarding the modeling of the allocation problems is the inflation of the
program size in general. Not only does the spill code contribute to this, also the instruction
corrections can have a large impact (up to 12B inflation per basic block). Because of this,
a central aspect of both the allocations has been to dynamically model the inflation. The
model proved viable for the static allocation to strictly prevent the generation of programs
that do not fit into the scratchpad memory anymore. But it is critical to the dynamic alloca-
tion. Since the final block sizes are neither known while solving the ILP nor at the address
assignment step, a suboptimal placement of code objects in the scratchpad memory occurs.
The result is an inherent fragmentation which leads to more instruction corrections which

117

CHAPTER 6. RESULTS

have a negative impact on the performance. Even for equivalent allocation decisions of both
optimizations, small differences of 0.5% to 2% in the gain can be observed because of this.
To the best of the author’s knowledge, approaches to model dynamic size inflation have not
been proposed in other works although this is a critical aspect to the utility of the scratchpad
memory.

The problem just discussed can potentially be addressed. But the modeling of the impact of
certain instructions and their placement on the overall performance requires a more detailed
machine model. The TriCorel has a comparably complex architecture. For the pipeline,
the alignment of jump targets and the schedule of instructions are important. Moreover,
the memory architecture would require a more precise model to better reflect the effects
of memory transfers. Especially for small benchmarks, the estimations seem too imprecise.
These effects occur mostly for very small (smaller than 100B) scratchpad sizes. On the other
hand, for large benchmarks this is hardly observable. In part, this is related to the fact that
scratchpad memory sizes are scaled according to the benchmark sizes for these evaluations.
Concluding, experiments to the solution of these issues could not be conducted due to the
limited time constraints of this thesis.

A very important aspect to the evaluation of the results is that technically, no realistic pro-
gram could be generated. The aiT analyzer neither allows for overlapping code objects nor
a writing access to the program scratchpad. It is not aimed at analyzing dynamic program
behavior like this is the case for the self-modifying code in the dynamic allocations. The
former problem was solved by generating a program representation where each object is
placed in a non-overlapping fashion. In turn, this requires a lot more instruction corrections
than was modeled in the ILP. Secondly, the actual transfer of code objects could not be per-
formed because the code memory may not be accessed. Instead, a buffer in the data SRAM
is allocated so as to at least perform a transfer. The costs of these transfers are much higher
(up to 16 cycles as opposed to up to 6 cycles) as modeled in the ILP. In general, the dynamic
allocation optimization performs as expected. The evaluated results, however, suggest a
higher WCET than it would be the case with realistic input into aiT.

In conclusion, the primary problems stem from the complexity of the target architecture
which makes it hard to provide adequate machine models. Moreover, the complex instruc-
tion set architecture makes the construction of a technical infrastructure inherently time
consuming. The dynamic allocation, as far as the ILP model is concerned, shows an observ-
ably good behavior but lacks precision. In addition, the results from the WCET analysis can
only be taken as a hint of the true results of the allocations due to the technical limitations
just described.

118

CHAPTER 7

SUMMARY AND FUTURE WORK

In the following two sections, conclusions to the techniques presented in this thesis are
drawn. In 7.1, the key issues addressed are summarized. In 7.2, propositions for possible
extensions in the future are made.

7.1 Summary

The goal of this thesis was to propose WCET-directed allocation techniques for code objects.
Two allocation schemes have been presented. On the one hand, a static allocation has been
discussed where a set of objects is determined to be loaded into the scratchpad memory
prior to execution of a program and which occupies this memory for the whole duration of
execution. On the other hand, a dynamic allocation technique has been presented which
determines the dynamic exchange of contents in the scratchpad memory during execution.
Both techniques have been implemented as integrated optimizations of the WCC compiler.

The advantage of the allocation to a scratchpad memory as opposed to cache memories is
the ability to fully control its contents. In the domain of embedded systems under hard
real-time constraints, the usage of scratchpad memories is therefore a popular approach.
The experiences gained from other works regarding energy reduction and WCET-directed
optimizations have been utilized. However, for WCET-directed code allocations, only a
single proposition exists which is based on the explicit enumeration of WCEDP. In this thesis,
techniques for efficient and integrated solving of this problem have been addressed for the
first time.

For both allocations presented, a basic ILP model has been presented which solves the al-
location problems by taking the WCEP into account only implicitly. Also, it addresses
different technical constraints in addition to this. Besides the dynamic switching of WCEP,
the dynamic size inflation resulting from allocation decisions has been taken into account.
To the best of the author’s knowledge, this problem has not been addressed in any other
work related to scratchpad memory usage. Another particular problem during the allocation
of program code is the optimal selection of groups of basic blocks. While for energy-related
optimizations, different techniques for such a selection have been proposed, these proved

119

CHAPTER 7. SUMMARY AND FUTURE WORK

unsuitable for WCET-directed allocations. Therefore, a new technique for the dynamic se-
lection of basic block groups has been proposed.

While the static allocation problem can be solved entirely within one ILP model, the dy-
namic allocation is conducted in two steps. During the optimization, an ILP delivers the
mere allocation decisions and a post-processing step determines the actual placement into
the scratchpad memory.

For both optimizations, significant work has been dedicated to the construction of a suitable
framework. The WCC compiler was extended so that models of the memory hierarchy of the
target machine can be used in the integrated optimizations. The framework which has been
constructed is not limited to the allocation optimizations presented in this thesis. In partic-
ular, it allows a convenient access to information regarding the final physical layout of the
program. This is a requirement for all optimizations taking multiple memories into account.
In addition, this finished the integration of the aiT WCET analyzer into the WCC, as now
arbitrary memory models can be provided. Also, an instruction-correcting compilation stage
has been developed. Any assignment of code objects among existing memories potentially
draws the program invalid as no suitable instructions have been generated in the first place
by the general purpose code-selector. A correcting step restores the legality by performing
optimal instruction replacements invisible to the user. These extensions are already actively
used in other optimizations. In addition to this, an interprocedural data-flow algorithm has
been proposed which serves the dynamic allocation by providing liveness information on
code objects. Also, a structural analysis algorithm has been implemented which allows the
reconstruction of a high-level program representation from a low-level, instruction-based
input.

Both optimizations show good results during benchmarking. The static allocation model
in particular could be shown to be good. A maximum average gain of over 39% could be
achieved. In the case of the dynamic allocation, some technical limitations remain to exist.
On the one hand, the dynamic placement of code objects could be improved by taking into
account the state of the target machine for the allocations. The maximum average gain
of 37% is lower than in the case of the static allocation but at small scratchpad sizes the
allocation can achieve better results. At average sizes of 10% of the original program size,
an average gain of 9% results as opposed to 7% for the average static allocation. The current
results indicate that better estimations for the dynamic allocation can lead to better results.
In particular, this is true for the generation of spill code. Due to the time constraints for
this thesis, the implementation of the dynamic allocation could not be improved any further.
On the other hand, the self-modification of the program during execution poses a limitation
to the WCET analysis. Due to the technical restrictions of the aiT WCET analyzer, only
approximate results of the dynamic optimization could be presented.

In conclusion, the thesis proposes novel ways for solving WCET-directed static and dy-
namic allocation problems for program code using scratchpad memories. Issues that have
been largely ignored in the propositions to other, similar optimization techniques have been
discussed and solved as far as technical limitations allowed this.

Referring to section 1.2, the goals of the thesis have been achieved. Moreover, many aspects
that have not been considered beforehand needed to be taken into account. One of the

120

7.2. FUTURE WORK

outcomes is a framework for optimizations related to memory hierarchies which completely
replaced existing mechanisms and which is already used independently of this thesis in the
WCC.

7.2 Future work

The optimizations presented in this thesis can still be improved in various aspects.

A possible future work is the support for recursive programs. The support for recursions
in the optimizations discussed in this thesis has been dropped due to time constraints and
because it is expected that recursions in general do not appear. Numerous other problems
arise which need to be addressed. The correct modeling of iteration counts from flow facts
is a challenging task. Also, the current approach of the interprocedural liveness analysis is
not suitable for recursions as infinitely long call strings result. This issue has been addressed
in other works and can be incorporated.

The structural analysis should be extended so as to support the full range of patterns of
the WCC code selector. In particular, the problem of ambiguous loop headers needs to be
addressed. Also, the handling of irreducible regions could be added. This is also an issue
which has been addressed by other authors.

The static allocation model leaves little room for improvements. Opposed to that, the dy-
namic allocation could be improved in different technical and theoretical aspects. An impor-
tant point is the lose coupling of the optimization stages. Especially the address assignment
can be improved. In the current approach, a first fit allocation is performed. However, it
showed that the simple placement, without taking effects on the execution behavior into
account, leads to imprecisions. The integration of the address assignment problem into
the ILP model is possible with the restriction that the determination of WCEP-bound basic
block groups needs to be done in a different fashion than it was presented here. Also, this
greatly increases the complexity of the ILP model. It remains the trade-off between preci-
sion and performance. The precise modeling of the target machine, especially regarding the
instruction placement and the effects of code modifications, also remains a future work. In
the current implementation of the dynamic allocation, the spill code is strictly placed into
the main memory. It is possible to model its dynamic costs and its effect on the dynamic
growth of the program with a more integrated model.

On the technical side, the infrastructure for modeling memory hierarchies could be extended
to provide support for overlapping objects. Such an extension is still limited by the fact that
the aiT WCET analyzer does not support self-modifying code. In the future, safer estimates
from the dynamic allocation optimization should be possible if the technical prerequisites
are fulfilled.

121

CHAPTER 7. SUMMARY AND FUTURE WORK

122

APPENDIX A

BENCHMARK RESULTS

Table A.1: Results of static allocation

Name 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%
adpcm_decoder 304974 305975 306205 306471 306648 306712 306865 288628 289032 289666 643709
adpcm_encoder 294922 295665 295961 296440 297351 290387 297282 297282 290896 291586 640787
adpem_g721_board_test 177658 193898 188557 191579 196820] 203817 209727 230052 253748 250515 302777
adpcm_g721_verify 183570 200311 195300 197845 204649 214345 217260 244112 262223 259547 312737
binarysearch 127 158 253 253 253 253 253 253 253 253 290
bsort100 111112 116092 111146 116014 107700 197620 197620 197637 202508 199238 199238
cjpeg_jpegbb_wrbmp 148474 145704 147730 145714 145714 147856 146325 146325 174760] 234692 298737
complex_multiply/float 122 145 145 181 181 181 181 181 181 181 181
complex_multiply/fixed 81 106 106 142 142 142 142 142 142 142 142
complex_update/float 320 354 354 354 402 402 402 402 402 402 402
complex_update/fixed 123 144 144 183 183 183 183 183 183 183 183
compressdata 1433 1456 1456 1431 1431 1525 1563 1563 1661 2435 2435
convolution/float 438 460 460 460 460 461 624 624 657 918 1022
convolution/fixed 539 540 540 540 569 569 569 569 844 844 840
countnegative 19254 19682 20531 25262 25262 27692 25703 34877 33712 42509 42509
cover 17566 20529 20529 20529 28346 28346 28346 31229 31229 31229 31552
crc 70358 70381 72621 84989 84935 85824 85853 84697 84734 100763 159120
dot_product/fixed 70 96 96 96 96 112 112 112 133 133 133
dot_product/float 141 169 169 173 179 198 215 215 215 215 215
edn 105391 105390 106239 106239 117166 119109 107563 107563 110248 112235 165970
expint 9015 9089 9046 9046 9046 9276 12909 13576 13576 13576 14333
fac 499 513 600 600 600 600 864 1027 1027 1027 1027
fdct 5009 5460 5460 5460 5460 5491 5874 5874 5874 5874 5874
fft_1024_13 154046013]152460504(154071711]155691154{157290126 | 154280366 |152755134|168523300{168588929 168630807 [169109948
fft_1024_7 152210482[152202416{152236176[155426902 [152275138{152424463|152457137|168353325[168328720(168368593 168465967
fft_16_7 7050 18734 18984 7913 20421 8569 20951 8732 9036 22923 11117
fftl 37819 59623 83560 61145 61145 61145 62155 39759 87755 89007 54328
fibcall 278 290 290 336 336 336 723 723 723 723 723
fir/fixed 840 857 874 874 1030 1030 1032 1032 1062 1520 1650
fir/mrtc 661 679 668 668 867 867 870 870 870 1499 1499
fir/float 7749 7781 7784 11726 11726 11726 11726 11726 11726 11113 11113
fir2dim/fixed 6550 6657 7560 9079 9079 9079 9079 9079 10306 10164 10044
fir2dim/float 7301 7357 8072 9339 9339 9339 10248 9885 11042 10054 10640
g721_encode 797900 802164 864442 870170 906496 914847 948218 1022122 1053098| 1085090| 1528480
2723_encode 797100 804405 867471 885130] 910784] 925393 949163| 1023293] 1050206 1081154] 1516268
h263 7190645| 7233837\ 7377817| 7377817| 7368008| 7708526| 7708526 7725708| 8381939| 8381939 8310663
h264dec_ldecode_macroblock 114582 114768 141297 141297 141297 141297 141297 141297 141297 141297 142215
hamming_window 30186 30525 30525 29791 39800 39800 39800 39800 39800 39800 39800
iir_biquad_N_sections/fixed 720 739 775 775 775 775 775 781 1530 1520 1516
iir_biquad_N_sections/float 840 861 866 923 923 923 923 923 921 908 1116
iir_biquad_one_section/fixed 64 103 103 103 103 103 103 109 144 144 144
iir_biquad_one_section/float 87 113 113 113 113 113 113 116 133 133 170
insertsort 1193 1258 1258 1258 2164 2164 2164 2164 2164 2164 2164
anne_complex 284 295 303 736 736 736 736 736 736 736 736
fdctint 5072 5170 5414 5414 5414 6380 6723 5814 5814 5814 7183
cdnum 306 713 713 713 954 814 954 521 521 752 752
Ims/fixed 1143 1155 1155 1155 1334 1334 1547 1548 1548 1571 1985
Ims/mrtc 816227 820074 826121 848629 854751 871224 925268 968077 1143896| 1206262| 1344142
Ims/float 1223 1251 1251 1274 1560 1543 1693 1701 1701 1866 2050
ludemp 7268 8713 8713 8713 8713 8713 8749 8977 9181 10000 10190
matmult 801797 792642 793067 807042 808737 817542 913022 905321 891027 905857 900227
matrix 1/float 23844 22167 21911 22008 35898 35898 35898 33162 35745 35305 41283
matrix 1/fixed 25101 26214 25030 28636 40303 40303 40303 40303 43745 39359 39359
matrix 1x3/float 386 410 412 502 502 502 502 674 660 756 756
matrix1x3/fixed 195 211 211 211 293 293 293 293 293 293 293

123

APPENDIX A. BENCHMARK RESULTS

Table A.1: (continued)

Name 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%
matrix2/fixed 30844 30179 30392 43193 43193 43193 43193 43193 45408 43158 47253
matrix2/float 32957 33592 37727 42822 42822 42822 42822 42822 43036 48780 48780
md5 91894068| 93345172| 95047988| 95047988| 95047988| 95047988 | 95047988| 95047988| 95047988| 96462139|163159233
minver 4826 4866 5006 5626 5626 5626 5915 6185 6226 6626 7150
n_complex_updates/float 3644 3678 3678 3944 3944 3944 3947 4255 4255 4375 4375
n_complex_updates/fixed 3033 3062 3062 3308 3308 3308 3312 3312 3538 4221 4226
n_real_updates/fixed 1230 1263 1263 1263 1417 1428 1428 1428 1572 1912 1912
n_real_updates/float 1303 1336 1336 1336 1492 1504 1504 1504 1641 1949 1949
ndes 95307 100956 119079 115195 119183 119245 122303 125500 128887 156892 156892
petrinet 3474 5695 5695 5695 5695 5695 5695 5695 5695 5695 5695
prime 12155 12193 12193 12202 12218 20930 21691 25989 19995 29482 29482
qurt 4517 4545 4621 4621 4697 4697 4720 4727 4727 7751 7669
real_update/float 101 126 126 154 154 154 154 154 154 154 154
real_update/fixed 42 88 88 88 88 88 88 88 88 88 88
recursion 574 586 1611 1611 1611 1645 1645 1375 1375 1375 1375
searchmultiarray 16974 32880 32880 32880 32880 32880 32880 32880 32880 32880 32903
selection_sort 2064017| 2153436 2331954| 5022053| 5022053 5022053| 5022053 5022053 5022053| 5022053| 5022053
sqrt 8317 8334 8564 8564 8466 8466 10348 13602 13752 13752 13730
st 287719| 287786 287769| 297883 289772 323859 354814 323939 374844 463868 504767
test3 132871677|149934757|149398854 [149398854 | 14364460{149547098|150034808 | 150811788 (152468096 |159659287|219872558
Table A.2: Results of dynamic allocation
Name 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%
adpcm_decoder 305193 309190 308730 311305 310908 310908 310005 309721 310697 292012 643709
adpcm_encoder 301116] 301545 301867] 303406] 307157 307157 302291 302291 301253 301664] 640787
binarysearch 151 158 290 290 290 290 290 290 290 290 290
bsort100 202851 210583 210583 217524 319337 319337 319337 319337 319337 319337 319337
cjpeg_jpegbb_wrbmp 146432| 228365 146719 146715 156320 158618 193816 175112 169038| 203460 298737
complex_multiply/float 133 181 181 181 181 181 181 181 181 181 181
complex_multiply/fixed 92 142 142 142 142 142 142 142 142 142 142
complex_update/fixed 133 183 183 183 183 183 183 183 183 183 183
complex_update/float 358 358 358 358 358 402 402 402 402 402 402
compressdata 1542 2343 2460 1513 1475 2379 1563 1563 1661 2435 2435
convolution/fixed 584 759 460 460 533 528 819 815 918 918 1022
convolution/float 603 569 569 569 569 569 569 924 844 844 840
countnegative 19682 19300 20565 19707 19411 28439 21077 28772 42509 42509 42509
crc 70381 72621 84935 84935 85853 85853 85853 84734 84734 102310 159120
dot_product/fixed 94 94 94 94 112 112 112 106 133 133 133
dot_product/float 166 166 166 179 179 215 215 215 215 215 215
edn 76463 76463 76579 76579 76579 107627 107258 79267 109402 108959 135459
expint 9315 8869 8869 9089 9206 9601 12022 12370 12022 14333 14333
fdct 5021 5460 5460 5460 5460 5491 5874 5874 5874 5874 5874
fibcall 290 290 336 336 723 723 723 723 723 723 723
fir/mrtc 7785 7785 7784 11113 11113 11113 11113 11113 11113 11113 11113
fir/fixed 782 782 867 867 867 870 870 870 851 1499 1499
fir/float 857 857 1030 1030 1030 1032 1032 1062 1062 1520 1650
g721_encode 1061452 1086098| 1086098 1086098 1132646| 1159807| 1188160 1236413| 1236972| 1287137 1528480
g723_encode 918976 1043975 1043975 1043975 1065241| 1085646| 1117705 1200543 1207715 1232306 1516268
h264dec. .. _block 112690 324807 434988 324916 324916 325431 153058 168852 328507 168009 151662
h264dec. .._macroblock 123069 123216 149645 149645 149645 149645 149645 149645 149645 149645 142215
hamming_window 30525 30525 29791 29960 39800 39800 39800 39800 39800 39800 39800
iir_biquad_N_sections/float 739 775 775 775 775 775 770 850 1516 1516 1516
iir_biquad_N_sections/fixed 861 923 923 923 923 923 923 923 921 903 1116
iir_biquad_one_section/float 101 103 113 113 113 113 113 116 133 133 170
iir_biquad_one_section/fixed 77 79 103 103 103 103 103 109 144 144 144
insertsort 1308 1258 1258 1258 1480 2164 2164 2164 2164 2164 2164
anne_complex 295 303 736 736 736 736 736 736 736 736 736
fdctint 5091 6054 6380 6380 6380 6380 6723 7183 7183 7183 7183
ms/mrtc 833143 898310 870414 848278 955015 1051788| 1096267| 1172952 1202893| 1324223| 1344142
Ims/float 1348 1999 1999 1543 1543 1543 1693 1701 1701 2086 2050
Ims/fixed 1219 1817 1817 1334 1334 1334 1547 1548 1548 1823 1985
ludemp 7430 40864 8684 8684 8667 8828 9152 9152 9152 10001 10191
matrix 1/fixed 26854 26109 25527 40303 40303 40303 40303 38833 38783 39359 39359
matrix 1float 22257 22500 22500 35898 35898 35898 35898 33162 35745 36683 41283
matrix 1x3/float 410 439 433 593 597 749 522 747 718 756 756
matrix 1x3/fixed 211 211 211 295 293 293 293 293 293 293 293
matrix2/float 34361 34940 34957 42822 42822 42822 42822 42822 46264 48780 48780
matrix2/fixed 31811 31837 31153 43193 43193 43193 43193 43193 42373 45740 47253
md5 145086087 149647725(149647725[149647725| 149647725 [149647725[149647725(149647725|149647725 (148719103 163159233
minver 6643 6763 7576 7576 7590 7730 8419 8483 12400 8818 7150
n_complex_updates/fixed 3299 3299 3299 3308 3308 3308 3312 3312 4094 4761 4226
n_complex_updates/float 3935 3935 3944 3944 3944 3947 3947 4811 4811 4375 4375
n_real_updates/float 1355 1355 1355 1355 1417 1428 1428 1428 1632 1912 1912
n_real_updates/float 1433 1433 1433 1492 1492 1504 1504 1504 1701 1949 1949
petrinet 5761 5761 5761 5761 5761 5761 5761 5761 5761 5761 5695
prime 20196 12218 12218 12218 20930 20250 40220 34549 19995 29482 29482

124

Table A.2: (continued)

Name 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%
qurt 4545 4545 4692 4692 4692 4722 4727 4727 4779 7751 7669
searchmultiarray 15940 17025 17025 16660 16633 32903 32903 32903 32903 32903 32903
select 5981 5900 11169 11169 11169 11169 11169 11169 11169 11169 11169
selection_sort 2510357] 2778554| 5468653| 5468653| 5468653| 5468653 5468653| 5468653| 5468653 5468653 5022053
sqrt 8564 8564 8564 8564 8542 8542 13752 13752 13752 13752 13730
st 356885 287769 351976 355174 420996 432397 436521 395864 508023 463868 504767

125

APPENDIX A. BENCHMARK RESULTS

126

APPENDIX B

BENCHMARK PROPERTIES

Shortcut Description
LOC Lines of code
NumCond Number of conditionals
NumLoop Number of loops
NumFun Number of functions
NumBB Number of basic blocks
Numlns Number of instructions
STot Total instruction size (byte)
SFmin Size of smallest function (byte)
SFmax Size of largest function (byte)
SFavg Average function size (byte)
SBmin Size of smallest basic block (byte)
SBmax Size of largest basic block (byte)
SBavg Average size of basic blocks (byte)

Table B.1: Basic benchmark properties
Name LOC NumCond NumLoop NumFun NumBB Numlns STot SFmin SFmax SFavg SBmin SBmax SBavg
adpcm_decoder.c 774 17 13 15 99 817 2522 16 1098 180 2 302 27
adpcm_encoder.c 824 21 15 16 121 872 2694 16 1140 168 2 302 24
adpcm_g721_board_test.c 906 91 11 25 417 1478 5002 24 4750 1000 2 80 12
adpem_g721_verify.c 918 92 11 25 420 1486 5032 24 4780 1006 2 80 12
binarysearch.c 117 2 1 2 12 39 130 10 120 65 2 26 13
bsort100.c 119 3 3 3 17 57 168 24 102 56 2 30 9
cjpeg_jpeg6b_transupp.c 1216 16 52 1 166 2513 8276 8276 8276 8276 2 380 49
cjpeg_jpegbb_wrbmp.c 522 41 11 4 55 204 638 38 370 159 2 84 11
complex_multiply.c/float 56 0 0 2 14 86 250 50 200 125 4 54 17
complex_multiply.c/fixed 55 0 0 2 4 59 184 24 160 92 4 112 46
complex_update.c/float 76 0 2 2 21 213 588 140 448 294 2 182 28
complex_update.c/fixed 74 0 0 2 4 93 244 16 228 122 4 154 61
compressdata.c 381 11 4 12 20 121 418 86 226 139 2 88 24
convolution.c/fixed 67 0 2 2 7 48 128 32 96 64 2 62 18
convolution.c/float 69 0 4 2 17 76 208 84 124 104 2 62 12
countnegative.c 135 2 4 6 18 87 260 12 112 43 2 60 14
Ccover.c 274 0 3 4 399 778 2670 28 1674 667 4 10 6
cre.c 158 6 3 5 27 188 608 68 466 202 4 82 23
dot_product.c/fixed 78 0 1 2 6 40 100 8 92 50 2 42 16
dot_product.c/float 81 0 2 2 13 73 198 70 128 99 2 42 15
duff.c 95 0 2 3 24 99 270 32 196 90 2 44 11
edn.c 326 1 12 9 45 1045 2788 26 1112 309 2 834 61
epic.c 1334 23 47 18 177 2411 7788 90 5142 1298 2 450 44
expint.c 117 3 3 3 21 246 800 14 718 266 2 190 38
fac.c 53 1 1 2 8 25 60 28 32 30 4 14 7
fdct.c 238 0 2 2 8 573 1826 26 1800 913 2 866 260
fft_1024_13.c 449 5 11 7 64 365 1060 28 618 151 2 432 17
fft_1024_7.c 390 5 10 7 62 354 1030 28 588 147 2 430 17
fft_16_13.c 291 5 11 7 64 360 1038 26 606 148 2 428 16
fft_16_7.c 253 5 10 7 62 350 1012 26 580 144 2 426 16
fftl.c 246 7 11 6 119 626 1888 124 1764 944 2 194 16
fibcall.c 90 0 1 2 7 19 52 14 38 26 2 16 7
fir.c/float 79 0 3 2 18 95 252 76 176 126 2 36 14
fir.c/fixed 76 0 2 2 8 66 172 34 138 86 2 42 21
fir.c/MRTC 329 6 2 2 14 111 330 50 280 165 2 74 27
fir2dim.c/fixed 158 0 13 2 28 253 724 190 534 362 2 110 25
fir2dim.c/float 159 0 13 2 72 384 1084 476 608 542 2 106 15
2721 _encode.c 1521 58 9 26 209 1043 3204 18 1580 213 2 82 15
2723_encode.c 1535 58 9 26 209 1044 3198 18 1580 213 2 82 15
gsm_decode.c 1940 47 24 62 334 1921 6120 6 1992 612 2 1962 18

127

APPENDIX B. BENCHMARK PROPERTIES

Table B.1: (continued)

Name LOC NumCond NumLoop NumFun NumBB Numlns STot SFmin SFmax SFavg SBmin SBmax SBavg
gsm_encode.c 3178 93 68 70 678 5343 16374 6 3810 1169 2 2200 24
h263.c 179 0 7 5 69 688 2184 686 1498 1092 2 516 31
h264dec_ldecode_block.c 1509 63 107 4 166 3087 10566 196 5112 2641 2 760 65
h264dec_ldecode_macroblock.c 609 43 13 5 41 986 3360 186 3174 1680 2 662 81
hamming_window.c 100 0 3 1 9 64 186 186 186 186 2 76 26
iir_biquad_N_sections.c/float 116 0 5 2 22 115 286 68 218 143 2 34 13
iir_biquad_N_sections.c/fixed 114 0 5 2 10 116 312 48 264 156 4 170 31
iir_biquad_one_section.c/float 84 0 0 2 15 79 210 10 200 105 2 32 14
iir_biquad_one_section.c/fixed 83 0 0 2 5 50 132 4 128 66 4 86 26
insertsort.c 143 4 2 1 5 67 212 212 212 212 4 84 42

anne_complex.c 131 6 2 2 15 31 94 14 80 47 2 16 6

fdctint.c 441 8 4 6 10 510 1604 76 1528 802 2 612 160

cdnum.c 118 3 1 2 41 98 328 60 268 164 2 16 8
Ims.c/foat 155 0 3 2 24 185 528 88 440 264 2 132 22
Ims.c/fixed 155 0 3 2 10 146 422 56 366 211 2 132 42
Ims.c/mrtc 290 8 10 8 145 632 1750 304 1446 875 2 48 12
ludemp.c 204 5 11 3 42 498 1586 276 1310 793 2 160 37
matmult.c 152 0 5 6 20 134 396 12 216 66 2 144 19
matrix 1.c/float 132 0 6 2 22 107 302 90 212 151 2 46 13
matrix1.c/fixed 131 0 6 2 16 92 260 70 190 130 2 46 16
matrix1x3.c/float 96 0 4 2 17 77 200 78 122 100 2 34 11
matrix 1x3.c/fixed 70 0 2 1 5 38 94 94 94 94 4 30 18
matrix2.c/float 131 0 6 2 17 123 348 70 278 174 2 54 20
matrix2.c/fixed 132 0 6 2 25 145 408 90 318 204 2 56 16
md5.c 600 5 13 26 68 2099 6354 10 5716 706 2 5286 93
minver.c 223 9 17 4 75 400 1242 38 808 310 2 92 16
mpeg2.c 69204 101 5 14 262 3267 100448 10190 90258 50224 2 90116 384
n_complex_updates.c/float 90 0 2 2 25 250 662 178 484 331 2 100 26
n_complex_updates.c/fixed 89 0 2 2 9 194 518 126 392 259 2 166 57
n_real_updates.c/float 72 0 2 2 9 121 346 70 276 173 2 118 38
n_real_updates.c/fixed 73 0 2 2 15 139 398 106 292 199 2 118 26
ndes.c 497 28 12 5 73 694 2170 72 884 434 2 120 30
petrinet.c 901 55 1 1 182 1492 5358 5358 5358 5358 4 98 29
prime.c 69 2 1 5 19 77 222 14 80 44 6 36 11
qsort-exam.c 155 5 6 3 32 227 690 12 678 345 4 58 22
qurt.c 186 8 1 4 56 263 772 38 456 193 2 42 13
real_update.c/fixed 61 0 0 2 4 31 76 8 68 38 4 38 19
real_update.c/float 66 0 0 2 10 66 172 52 120 86 4 48 17
recursion.c 120 6 0 2 9 24 58 10 48 29 4 12 6
rijndael_decoder.c 159 7 4 2 43 217 712 354 358 356 2 106 16
rijndael_encoder.c 223 10 6 4 54 285 946 256 350 315 2 124 17
searchmultiarray.c 605 17 4 2 15 59 194 10 184 97 2 86 14
select.c 136 11 4 3 41 299 938 938 938 938 2 164 22
selection_sort.c 100 2 2 3 17 53 150 12 138 75 2 46 9
sqrt.c 117 5 2 3 29 112 312 38 178 104 2 42 10
st.c 184 6 5 10 81 354 960 12 246 96 2 60 11
startup.c 199 2 6 2 28 107 290 2 288 145 2 22 10
statemate.c 1223 82 1 12 423 2495 8500 16 2958 1062 2 728 20
test3.c 4126 0 121 122 585 6159 18068 24 152 148 2 114 30

128

LIST OF FIGURES

2.1
2.2

3.1
32
33
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.1
4.2
43
4.4
4.5

The WCET bound 7
Example-constraint for flow-preservation 9
WorkflowofaiT 14
Example of aiT annotation-file 14
WCC compilation stageso 16
Example: ICD-C representation of source-programs 17
ICDLLIRoutline 18
Integration of aiT into the WCC 19
Flow factsinCsources 20
Static branch predicition L oL 22
TriCorel architecture 23
Object file layout from assemblycode 25
Example of Id linking process oL 26
Example of address translation 26
ICD LLIR extensions to model object file sections. 27
Extension to LLIRAIT 28
Acyclicpatterns e 37
Cyclicpatterns ot 37
Special patterns 38
Example of structural analysis 39
Nesting structure and control-tree of example 4.4. 39

129

LIST OF FIGURES

4.6

4.7

4.8

4.9

4.10
4.11
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

5.1
5.2
53
54
55
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14

Dynamically changing WCEP during optimization 44
WCEP property: Accumulating WCET 46
Memory layout of static allocation 47
Local control flow graph properties 48
Loop properties 48
Graph dependencies 49
Graph dependencies (continued) 50
Ambiguity of loopheads L. 52
Typical jump scenarioson RISC 56
Jump-penalty classification, 57
Allocation and order of blocks L. 59
Handled program structure oL 64
Workflow of static optimization 67
Implicit jump correction 70
Unconditional jump correction 71
Conditional jump correctiono 72
Control flow forcalls L 77
Ambiguous traversal of an IPCFG 79
Extended IPCFG and live ranges of basicblocks 83
Example: Context-dependent liveranges 84
Example: Context-free liveranges 85
Workflow of global liveness analysis 85
Propagation of location attributes, 88
Attribute propagation on mergenodes 89
Improper object placement 93
Memory layout of dynamic allocation 95
Fragmentation upon allocation 95
Grouping of basicblocks 97
Workflow of spill code generation 100
Workflow of dynamic optimization 102

130

LIST OF FIGURES

6.1 Static allocation results for benchmark ndes. 107
6.2 Static allocation results for benchmark cover. 107
6.3 Static allocation results for benchmark g721_encode. 108
6.4 Static allocation averageresults 109
6.5 Static allocation compared tothe [-Cache 109
6.6 Dynamic allocation results for benchmark fdcr. 111
6.7 Dynamic allocation results for benchmark g723_encode. 111
6.8 Dynamic allocation results for benchmark cjpeg_jpegbb_wrbmp. 112
6.9 Dynamic allocation averageresults 113
6.10 Comparison of result of benchmark expint. 113
6.11 Comparison of result of benchmark countnegative. 114
6.12 Comparison of result of benchmark cre. 115

131

LIST OF FIGURES

132

LIST OF TABLES

3.1

Al
A2

B.1

Static branch prediction and timing L. 22
Results of static allocation 123
Results of dynamic allocation, . 124
Basic benchmark properties 127

133

LIST OF TABLES

134

LIST OF ALGORITHMS

5 B VS N)

Algorithm of structural analysis 40
Function to detect acyclicregions 41
Function to detect cyclicregions 42
Outline of context-sensitive DFS 81
Outline of address assignment algorithm 98

135

LIST OF ALGORITHMS

136

BIBLIOGRAPHY

[Abs06]

[ACT6]

[AGO1]

[AMF104]

[APO3]

[App97]

[BROG]

[CLRSO1]

[Cor08]

AbsInt Angewandte Informatik, Saarbriicken, Germany. Worst-Case Execution
Time Analyzer aiT for TriCore, December 2006.

F. E. Allen and J. Cocke. A program data flow analysis procedure. Commun.
ACM, 19(3):137, 1976.

Andrew W. Appel and Lal George. Optimal spilling for CISC machines with
few registers. In PLDI ’01: Proceedings of the ACM SIGPLAN 2001 confer-
ence on Programming language design and implementation, pages 243-253,
New York, NY, USA, 2001. ACM.

Federico Angiolini, Francesco Menichelli, Alberto Ferrero, Luca Benini, and
Mauro Olivieri. A post-compiler approach to scratchpad mapping of code. In
CASES '04: Proceedings of the 2004 international conference on Compilers,
architecture, and synthesis for embedded systems, pages 259-267, New York,
NY, USA, 2004. ACM.

Alexis Arnaud and Isabelle Puaut. Towards a Predictable and High Perfor-
mance Use of Instruction Caches in Hard Real-Time Systems, 2003.

Andrew W. Appel. Modern Compiler Implementation in C: Basic Techniques.
Cambridge University Press, 1997.

Claire Burguiere and Christine Rochange. History-based Schemes and Im-
plicit Path Enumeration. In Frank Mueller, editor, 6th Intl. Workshop on
Worst-Case Execution Time (WCET) Analysis. Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany,
2006.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Second Edition. McGraw-Hill Science/Engineer-
ing/Math, July 2001.

Daniel Cordes. Schleifenanalyse fiir einen WCET-optimierenden Compiler
basierend auf Abstrakter Interpretation und Polylib. Master’s thesis, Dortmund
University of Technology, Department of Computer Science 12, 2008.

137

BIBLIOGRAPHY

[CPO1]

[CPIMO5]

[DPO7]

[Duf83]

[EEST99]

[EES00]

[EES02]

[EKJ106]

[Eng97]
[Fer04]

[FHP92]

[FLO6]

[FouO8]
[FPTO7]

Antoine Colin and Isabelle Puaut. A Modular and Retargetable Framework for
Tree-Based WCET Analysis. In In Proc. of the 13th Euromicro Conference on
Real-Time Systems, pages 37—44, 2001.

Antonio Marti Campoy, Isabelle Puaut, Angel Perles Ivars, and Jose Vi-
cente Busquets Mataix. Cache Contents Selection for Statically-Locked In-
struction Caches: An Algorithm Comparison. In ECRTS ’05: Proceedings
of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05), pages
49-56, Washington, DC, USA, 2005. IEEE Computer Society.

Jean-Francois Deverge and Isabelle Puaut. WCET-Directed Dynamic Scratch-
pad Memory Allocation of Data. In ECRTS '07: Proceedings of the 19th Eu-
romicro Conference on Real-Time Systems, pages 179-190, Washington, DC,
USA, 2007. IEEE Computer Society.

Tom Duff. Duff’s device, 1983. http://www.lysator.liu.se/c/
duffs-device.html.

J. Engblom, A. Ermedahl, M. Sj6din, J. Gustafsson, and H. Hansson. Towards
industry-strength worst case execution time analysis, 1999.

Jakob Engblom, Andreas Ermedahl, and Friedhelm Stappert. Comparing Dif-
ferent Worst-Case Execution Time Analysis Methods, 2000.

Andreas Ermedahl, Jakob Engblom, and Friedhelm Stappert. A Unified Flow
Information Language for WCET Analysis, 2002.

Bernhard Egger, Chihun Kim, Choonki Jang, Yoonsung Nam, Jaejin Lee, and
Sang Lyul Min. A dynamic code placement technique for scratchpad memory
using postpass optimization. In CASES ’06: Proceedings of the 2006 inter-
national conference on Compilers, architecture and synthesis for embedded
systems, pages 223-233, New York, NY, USA, 2006. ACM.

J. Engblom. Worst-case execution time analysis for optimized code, 1997.

Christian Ferdinand. Worst Case Execution Time Prediction by Static Program
Analysis. In IPDPS, 2004.

Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting. BURG - fast
optimal instruction selection and tree parsing. SIGPLAN Notices, 27:68-76,
1992.

Heiko Falk and P. Lokuciejewski. Design of a WCET-Aware C Compiler, 2006.
Free Software Foundation. The GNU Project, 2008. http://www.gnu.org/.

Heiko Falk, Sascha Plazar, and Henrik Theiling. Compile-time decided instruc-
tion cache locking using worst-case execution paths. In CODES+ISSS ’07:
Proceedings of the 5th IEEE/ACM international conference on Hardware/soft-
ware codesign and system synthesis, pages 143-148, New York, NY, USA,
2007. ACM.

138

http://www.lysator.liu.se/c/duffs-device.html
http://www.lysator.liu.se/c/duffs-device.html
http://www.gnu.org/

BIBLIOGRAPHY

[GEEOQ7]

[GWI6]

[HPO2]

[ICDO5]

[Inf07]

[JW99]

[Kir03]

[KKO08]

[Knu73a]

[Knu73b]

[KP04]

[KS86]

[KWOg]

[Lan92]

Jan Gustafsson, Andreas Ermedahl, and Jakob Engblom. SWEET
(SWEdish Execution Time tool) . Milardalen University, 2007.
http://www.mrtc.mdh.se/projects/wcet/sweet.html.

David W. Goodwin and Kent D. Wilken. Optimal and near-optimal global
register allocations using 0-1 integer programming. Softw. Pract. Exper.,
26(8):929-965, 1996.

John L. Hennessy and David A. Patterson. Computer Architecture: A Quanti-
tative Approach (The Morgan Kaufmann Series in Computer Architecture and
Design). Morgan Kaufmann, May 2002.

ICD - Informatik Centrum Dortmund, Dortmund, Germany. /CD-C Compiler
framework Developer Manual , May 2005.

Infineon Technologies AG. Tricore - 32-bit Unified Processor Core
Embedded Applications Binary Interface (EABI) , February 2007.
http://www.infineon.com.

Mark S. Johnstone and Paul R. Wilson. The memory fragmentation problem:
solved? ACM SIGPLAN Notices, 34(3):26-36, 1999.

Raimund Kirner. Extending Optimising Compilation to Support Worst-Case
Execution Time Analysis. PhD thesis, Technische Universitidt Wien, Treitlstr.
3/3/182-1, 1040 Vienna, Austria, May 2003.

Uday P. Khedker and Bageshri Karkare. Efficiency, Precision, Simplicity, and
Generality in Interprocedural Data Flow Analysis: Resurrecting the Classical
Call Strings Method. In CC, pages 213228, 2008.

Donald E. Knuth. The Art of Computer Programming, Volume 1: Fundamental
Algorithms. Addison-Wesley, 1973.

Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting and
Searching. Addison-Wesley, 1973.

Raimund Kirner and Peter Puschner. calc_wcet_167 - A WCET analy-
sis framework. TU Vienna, 2004. http://www.vmars.tuwien.ac.at/
~raimund/calc_wcet/.

Eugene Kligerman and Alexander D. Stoyenko. Real-time Euclid: a language
for reliable real-time systems. IEEE Trans. Softw. Eng., 12(9):941-949, 1986.

Timothy Kong and Kent D. Wilken. Precise register allocation for irregular
architectures. In MICRO 31: Proceedings of the 31st annual ACM/IEEE inter-
national symposium on Microarchitecture, pages 297-307, Los Alamitos, CA,
USA, 1998. IEEE Computer Society Press.

William Landi. Undecidability of static analysis. ACM Lett. Program. Lang.
Syst., 1(4):323-337, 1992.

139

http://www.infineon.com
http://www.vmars.tuwien.ac.at/~raimund/calc_wcet/
http://www.vmars.tuwien.ac.at/~raimund/calc_wcet/

BIBLIOGRAPHY

[LM95]

[LokO05]

[Mar03]

[Muc97]

[PK89]

[PPO7]

[Pro07]

[Pual6]

[Ram94]

[RND*05]

[Ros77]

[Rot08]

[Sch98]

Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded
software using implicit path enumeration. SIGPLAN Not., 30(11):88-98, 1995.

Paul Lokuciejewski. Design and Realization of Concepts for WCET Compiler
Optimization. Master’s thesis, Dortmund University of Technology, Depart-
ment of Computer Science 12, 2005.

Peter Marwedel. Embedded System Design. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2003.

Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

P. Puschner and Ch. Koza. Calculating the maximum execution time of real-
time programs. Real-Time Syst., 1(2):159-176, 1989.

Isabelle Puaut and Christophe Pais. Scratchpad memories vs locked caches in
hard real-time systems: a quantitative comparison. In DATE '07: Proceedings
of the conference on Design, automation and test in Europe, pages 1484—1489,
San Jose, CA, USA, 2007. EDA Consortium.

GNU Project. Documentation for binutils, 2.18 edition, August 2007.
http://sourceware.org/binutils/docs/1d/index.html.

Isabelle Puaut. WCET-Centric Software-controlled Instruction Caches for
Hard Real-Time Systems. In ECRTS ’06: Proceedings of the 18th Euromi-
cro Conference on Real-Time Systems, pages 217-226, Washington, DC, USA,
2006. IEEE Computer Society.

G. Ramalingam. The undecidability of aliasing. ACM Trans. Program. Lang.
Syst., 16(5):1467-1471, 1994.

Rajiv A. Ravindran, Pracheeti D. Nagarkar, Ganesh S. Dasika, Eric D. Mars-
man, Robert M. Senger, Scott A. Mahlke, and Richard B. Brown. Compiler
Managed Dynamic Instruction Placement in a Low-Power Code Cache. In
CGO °05: Proceedings of the international symposium on Code generation
and optimization, pages 179-190, Washington, DC, USA, 2005. IEEE Com-
puter Society.

Barry K. Rosen. High-level data flow analysis. Commun. ACM, 20(10):712—
724, 19717.

Felix Rotthowe. Scratchpad-Allokation von Daten zur Worst-Case Execution
Time Minimierung . Master’s thesis, Dortmund University of Technology, De-
partment of Computer Science 12, 2008.

Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley
& Sons, June 1998.

140

http://sourceware.org/binutils/docs/ld/index.html

BIBLIOGRAPHY

[Sch07]

[SGWT02]

[SMRCO5]

[Ste02]

[SWLMO02]

[Tid08]

[TIS95]

[Ull73]

[Ver06]

[VWMO04a]

[VWMO04b]

Daniel Schulte. Modellierung und Transformation von Flow Facts in einem
WCET-optimierenden Compiler . Master’s thesis, Dortmund University of
Technology, Department of Computer Science 12, 2007.

Stefan Steinke, Nils Grunwald, Lars Wehmeyer, Rajeshwari Banakar, M. Bal-
akrishnan, and Peter Marwedel. Reducing energy consumption by dynamic
copying of instructions onto onchip memory. In ISSS '02: Proceedings of the
15th international symposium on System Synthesis, pages 213-218, New York,
NY, USA, 2002. ACM.

Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen. WCET
Centric Data Allocation to Scratchpad Memory. In RTSS '05: Proceedings of
the 26th IEEE International Real-Time Systems Symposium, pages 223-232,
Washington, DC, USA, 2005. IEEE Computer Society.

Stefan Steinke. Untersuchung des Energieeinsparpotenials in eingebetteten
Systemen durch energieoptimierende Compilertechnik. PhD thesis, Universitit
Dortmund, 2002.

Stefan Steinke, Lars Wehmeyer, Bo-Sik Lee, and Peter Marwedel. Assigning
Program and Data Objects to Scratchpad for Energy Reduction. In DATE ’02:
Proceedings of the conference on Design, automation and test in Europe, page
409, Washington, DC, USA, 2002. IEEE Computer Society.

Tidorum Ltd. Bound-T timing analysis tool - Userguide, February 2008.
http://www.tidorum.fi/bound-t/.

TIS Committee. Tool Interface Standard (TIS) Executable and Linking Format
(ELF) Specification , May 1995. http://refspecs.freestandards.org/elf/.

Jeffrey D. Ullman. Fast Algorithms for the Elimination of Common Subex-
pressions. Acta Inf., 2:191-213, 1973.

Manish Verma. Advanced Memory Optimization Techniques for Low-power
Embedded Processors. PhD thesis, Dortmund University of Technology, De-
partment of Computer Science 12, 2006.

Manish Verma, Lars Wehmeyer, and Peter Marwedel. Cache-Aware Scratch-
pad Allocation Algorithm. In DATE ’04: Proceedings of the conference on
Design, automation and test in Europe, page 21264, Washington, DC, USA,
2004. IEEE Computer Society.

Manish Verma, Lars Wehmeyer, and Peter Marwedel. Dynamic overlay of
scratchpad memory for energy minimization. In CODES+ISSS '04: Proceed-
ings of the 2nd IEEE/ACM/IFIP international conference on Hardware/soft-
ware codesign and system synthesis, pages 104—109, New York, NY, USA,
2004. ACM.

141

http://www.tidorum.fi/bound-t/

BIBLIOGRAPHY

[WEE"T07] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-
mann, Tulika Mitra, Frank Muller, Isabelle Puaut, Peter Puschner, Jan Staschu-
lat, and Per Stenstrom. The Worst-Case Execution Time Problem - Overview
of Methods and Survey of Tools. Technical Report ISSN 1404-3041 ISRN
MDH-MRTC-209/2007-1-SE, Milardalen University, March 2007.

[Weg99] Ingo Wegener. Theoretische Informatik - eine algorithmenorientierte Ein-
fiihrung (2. Auflage). Teubner, 1999.

[Wei93] Mark Weiser. Some computer science issues in ubiquitous computing. Com-
mun. ACM, 36(7):75-84, 1993.

[Wil05] Reinhard Wilhelm. Determining Bounds on Execution Times. In R. Zurawski,
editor, Handbook on Embedded Systems, pages 14—1,14-23. CRC Press, 2005.

142

	Introduction
	Motivation
	Goals
	Outline

	Introduction to WCET analysis
	Worst-case execution time
	Approaches to WCET analysis

	WCET-aware tool chain
	Introduction to aiT
	Introduction to WCC
	TriCore1 architecture
	WCC extensions

	Static scratchpad allocation
	Related work
	Program analysis
	Towards a static optimization
	ILP Model
	Implementation

	Dynamic scratchpad allocation
	Related work
	Interprocedural lifetime analysis
	Towards a dynamic allocation
	ILP model
	Postprocessing
	Spill code
	Implementation
	Program transformation

	Results
	Benchmarks
	Methodology
	Results of static allocation
	Results of dynamic allocation
	Comparing static and dynamic allocation
	General limitations
	Specific limitations of the dynamic allocation

	Summary and future work
	Summary
	Future work

	Benchmark results
	Benchmark properties
	List of figures
	List of tables
	List of algorithms
	Bibliography

