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Chapter 1

Introduction

1.1 Why Compilers for Embedded Systems?

With each day, our lives become more and more dependant on digital systems. A land-
slide majority of today’s private households possess a computer which is used for a vast
variety of tasks. However, these gadgets represent the modest stake in this domain. Em-
bedded Systems are the information processing part of a larger product that are found
more frequently. They are digital systems which carry out their services "invisibly". Stud-
ies expose that we are in permanent interactions with digital systems. Andy Grove, an
Intel co-founder, recently speculated that an average American comes into contact with 72
microprocessors before lunch. Mobile phones or automobiles like the Mercedes S-class
with over 100 microprocessors are just some prominent examples. We are living in the
third era of computing. After mainframes and personal computers in the first and second
era, respectively, nowadays the digital technology recedes in the background. Thus, it is
justified to call this period the period of Ubiquitous computing [Mar06].

To sum it up, digital systems are divided into two sectors, namely the general-purpose
systems and the special-purpose systems (embedded systems). The former are traditional
computers covering ordinary PCs, servers and super-computers. Their common property
is that they can be programmed by a user and can be deployed for a large number of
different applications. But nowadays, new applications come into being which demand
characteristics that can not be provided by general-purpose systems for technical reasons.

To meet the requisites, special-purpose systems were developed. They are programmed
once and provide service for a specific task without any further interaction with the user.
Due to the demand of new and more efficient applications, embedded systems gain in
importance. In 2001, 4bn US $ were spent on embedded processors while in 2005, the
volume doubled occupying 95% of the entire processor market [Pet05].

Besides the already mentioned fields of application, special-purpose systems are
strongly used in the following areas:

– 1 –



2 Introduction

• Multimedia: DVD/MP3/CD players, video games, digital cameras, digital television

• Telecommunication: Internet routers, UMTS, speech codes, wireless protocols

• Automotive engineering: Engine control, automatic transmission, ABS, GPS, ESP

• Control applications: industrial process controllers

• Medical systems: heart pacemakers

In contrast to general-purpose systems, embedded systems usually have to meet some real-
time constraints making them real-time systems. The correctness of a real-time system is
by definition given as follows [BW01]:

The correctness of a real-time system depends not only on the logical result
of the computation but also on the time at which the results are produced.

In addition to the need of the obvious constraint of logical correctness, these time-critical
systems depend upon the point of time a result is generated. Especially in control ap-
plications where these computer systems are deployed to control and steer some essential
processes, a failure in providing the mandatory results on time can entail physical damage,
injury or in worst case loss of human life.

The importance of the time factor allows a distinction between those systems which
will suffer a failure if timing constraints are violated (hard real-time systems) and those
which will not (soft real-time systems). Hard real-time systems strictly rely on the amount
of time a program requires to finish. Missed deadlines make the delayed results useless and
eventually prevent from continuing the program in a correct fashion. As an example, a car
engine control system is a hard real-time system due to the fact that a delayed signal may
wreck the engine. On the other hand, soft real-time systems are used in the area where
concurrent access is an issue, but a missed deadline does not prevent the system from
proceeding. For instance, a delayed signal in a live audio system results in a degraded
quality but does not cause any damage.

Furthermore, the market demands high performance, energy efficient and low cost prod-
ucts making the time factor an important issue. The knowledge of the worst-case execution
time (WCET), which will be explained in detail in section 1.3, gives the real-time system
engineer the opportunity to use or design a hardware platform which is tailored towards the
software resource requirements like memory or clock rate. Thus, the production costs can
be slashed. Further advantages emerging from having the WCET available can be found
in the area of simulation and verification of time critical systems [EEN+99].

To meet the aforementioned efficiency-criteria, programmers used to write their code
in the assembly language. However, rising complexity of applications and the desire
for reusability of programs and program libraries shifted the focus away from assem-
bly programming towards high-level language programming, mainly C [ISO99] and C++
[ISO98]. Driven by this circumstance, the task to generate optimized and efficient machine
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code was moved from the programmer to a compiler creating new challenges for compiler
constructors.

1.2 Compiler Optimization

A compiler is a computer program that translates a program written in one computer lan-
guage (source language) into a semantically equal program written in another language
(target language). In the domain of embedded systems, C and C++ are predominantly
used as source language. Due to the need for highly efficient machine code, compilers
become the key component in an integrated development environment.

Compiler phases
A state of the art compiler shares a two-stage design consisting of a frontend and a back-
end. Within the initial phase, the frontend, the source code provided as input is analyzed
and translated into a medium-level intermediate representation. The second phase is the
backend which works with the low-level intermediate representation of the code to pro-
duce output in the target language, mainly the optimized machine code. The frontend
consists of multiple phases:

• Lexical Analyzer
A scanner reads an input string of characters (source code) and generates a sequence
of symbols (so called lexical tokens).

• Parser
The syntactical structure of the source code is identified by a parser and transformed
into a hierarchical structure, the parse tree.

• Semantic Analyzer
This phase verifies the meaning of the input and adds semantical information to the
parse tree. Based on this data, various checks are performed and compiler errors
issued.

• IR-Code Generator
Finally, the parse tree is read and translated into a medium-level representation.

In the next phase, the compiler passes the intermediate representation generated by the
frontend to the backend, which uses the code generator to translate the low-level inter-
mediate representation into the output language. Figure 1.1 gives a pictorial view of the
phases ran through by an optimizing compiler.

Optimizations
Besides the mandatory steps, a compiler performs multiple optimizations both processor-
independent and processor-dependent. Examples for the former which involve the
medium-level intermediate representation are:
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Figure 1.1: Structure of an optimizing compiler

• Inline expansion
For short and frequently used functions, it is beneficial to substitute the function call
directly by the function body. Thus, the overhead associated with the function call
is reduced.

• Dead code elimination
Any portion of program code which produces values that are never used at any point
of the program, can be removed in order to reduce code size.

int foo() {
int a = 1;
int b;
return a;
b = 2;

}

The assignment of the value 2 to the variable b can be removed since the code is
left after the return statement.



1.2. Compiler Optimization 5

• Constant folding
Constant expressions can be simplified by shifting their calculation from runtime to
compile time resulting in a reduced number of used instructions.

int a = 640 * 480 * 2;

A modern compiler would reduce the statement to int a = 614400 instead of
using two multiply instructions.

• Loop-invariant code motion
Computations which can be moved before or after a loop without affecting the
semantics of the program are called loop-invariant. This optimization results in a
smaller code providing a speed-up.

while ( i <= a + 5 ) {
// a is not modified here
...

}

Since the variable a is not changed in this expression, it can be placed before the
loop:

t = a + 5;
while ( i <= t )

In the next step, the backend translates the optimized code to a low-level intermediate
representation which is used by the code generator to produce code in the output lan-
guage. This is done in multiple steps comprising the performance of processor-dependent
optimization techniques. Popular optimizations are:

• Code selection
The code selection phase replaces operations from the low-level intermediate rep-
resentation by suitable assembly instructions. While selecting instructions, a cost
function is considered that is meant to be minimized.

• Register allocation
Due to the fact that the number of physical registers is limited to a small fixed num-
ber, this phase is mandatory. The register allocator decides whether operations are
to be performed on registers or in memory with the aim to make the execution of
a program as fast as possible. Usually, this is done by minimizing the number of
load and store instructions between the memory and registers. The most popular
approaches for this NP-complete problem used in modern compilers are the graph
coloring algorithm [Cha82] and Integer Programming algorithms [GW96].

• Instruction scheduling
To minimize the execution time of a program, instruction-level parallelism is ex-
ploited in the instruction scheduling phase. Taking instruction pipelines into ac-



6 Introduction

count, the order of instructions is rearranged so that parallel-working units are uti-
lized without violating dependencies.

The optimization techniques mentioned above are just a small example of what mod-
ern compilers are dealing with. For instance, a state of the art compiler, like the GNU C
Compiler, comprises more than forty optimizations which run either automatically or after
a user interaction [GCC05].

Typical concepts that present-day compilers focus on are the average time (also known
as average-case execution time, ACET) or the energy awareness. The latter was success-
fully realized in the encc compiler which was developed at the Embedded Systems Groups
of the Computer Science Department at Dortmund University [SW05]. Despite the impor-
tance of the worst-case execution time, there have not been any successful integrations of
the WCET within a compiler yet.

1.3 Compiler-Integration of Worst-Case Execution Time
(WCET)

By definition, the worst-case execution time is the longest execution time of a program
run on a specific hardware [Erm03]. This definition assumes that the program is executed
on an isolated system which is not disturbed by any external interactions like operation
system activities or user input. A related problem is the best-case execution time (BCET)
which is the shortest execution time of a program ever observed on a given hardware.
Finally, the average-case execution time (ACET) is an execution time lying somewhere
between the WCET and the BCET. The latter is typically the issue a home desktop-PC is
optimized for. Due to the fact that home computers do not rely on a guarantee to generate a
signal in a specific amount of time, they do not belong to the domain of real-time systems.
On a typical multimedia system running a number of applications in parallel, the limited
resources are not able to permit all processes to be executed in the optimal amount of time.
Thus, the most convenient way for a user to optimize all running applications in terms of
their average execution time is to reduce latency.

Timing analyses can not guarantee to evaluate the exact program execution time.
Rather, they aim to produce an estimation of the actual execution time in a reasonable
amount of time while consuming a reasonable amount of resources. There are two con-
straints to be met in order to receive a useful time estimation:

• Safeness
A timing estimate is meant to be safe when it is not underestimated in terms of the

the actual execution time. It states the reliability of the the result and is an essential
condition.

• Tightness
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The tighter the estimate, with respect to the actual execution time, the more realistic
the results are. Tightness describes the overestimation resulting from the deviation
between the real and the estimated execution time.

Applying these conditions to the WCET and BCET obviously results in an oppositional
situation. In terms of the worst-case execution time, an estimate is safe when it is larger
than the actual time and it is tight when the difference between the estimate and the actual
time is minimal. On the other hand, the BCET estimate is safe when it does not exceed
the actual time and it is tighter the smaller the difference between the actual time and the
estimate is. Figure 1.2 illustrates the different conditions.

safe BCET safe WCET

actual BCET

ACET

possible execution timeestimate estimate

actual WCET

0
tightertighter

calculated WCETcalculated BCET

Execution Time

Figure 1.2: Estimations and conditions for the execution time

In both cases, the violation of the safeness makes the estimate useless for a real-time
system since it can not be guaranteed to produce results in a given amount of time. The
consequences incurred can be of different extent, ranging from a neglecting failure in
a module up to a catastrophe that entails physical damage or loss of life. The research
activities in the domain of scheduling analyses involving the ACET are nowadays highly
sophisticated since they were the subject of study by innumerable scientists in the past
going back to the 1970’s. In contrast, the problem of estimating the worst-case execution
time remained unsolved for a long time. In recent years, the WCET analysis has gained
in importance, but is often strongly focused on some specific sets of problems, and few
versatile approaches are known yet.

The approaches to generate a WCET estimate are divided into two categories: dynamic
analysis and static analysis. The traditional state of the practice is the dynamic analysis
(also known as measuring) which is running the program to gain the timing data. Within
this empirical method, the first task is to find a subset of typical inputs which are sup-
posed to represent the worst case and therefore yield the longest execution time of the
program. The measurements are performed by using oscilloscopes or logic analyzers. The
advantages are that no additional applications have to be integrated in the design progress,
and the system does not need to be thoroughly understood but can be considered as a black
box. For this reason, the overhead for new hardware to be analyzed is reduced to the proper
integration of the measuring instruments and does not entail the development of new ap-
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plications. Nonetheless, the drawbacks overbalance the relatively simple integration of the
dynamic analysis. On the one hand, there is no guarantee that the used input data really
represents the worst input since, for technical reasons, not all possible combinations of
input data can be taken into account. Thus, the security risk remains that the real-time sys-
tem fails while operating in an authentic environment. On the other hand, data measured
by physical instruments is always afflicted with a measurement error leading to a deviation
from the actual values. Last but not least, the dynamic analysis requires the target machine.
Thus, the performance of the analysis is restricted to the locations the hardware is available
at. As a conclusion, it can be said that this approach is sufficient for soft real-time systems
that are not designed to operate in environments where a failure or violation of conditions
endangers human lives. This approach can also be used for hard real-time systems by mul-
tiplying the estimate by some safety factor to guarantee an adequate tolerance in order to
always meet the real-time conditions. It does not need to be mentioned that this increase
of the WCET is at the expense of hardware resources and therefore rises production costs.

The second class used to obtain a WCET estimate is the static analysis. The program
is not run, but its structure is analyzed formally using the flow information with the the
objective of obtaining the maximum execution path. In contrast to the dynamic analysis,
the estimate obtained by this approach ensures to be valid for all possible inputs. Further
extensive measurements are redundant and therefore avoid falsification of the results. Con-
sequently, the calculated WCET is guaranteed to be safe and tight reflecting the authentic
behavior of the program.

The worst-case execution time of a program depends upon both the hardware used
as a platform and the structure of the program. The former involves aspects such as the
processor speed, the amount and access time of memory, the bus system etc. In earlier
days, the analysis problem was often deemed a designer task, and oversized hardware was
chosen to fulfill the needs of the software. This led to a waste of resources but was not an
issue as the demands for minimal hardware were not given. With the advent of embedded
systems that require a small size and a low power consumption, the focus was shifted away
from the hardware choice to the optimization of software resulting in a more efficient code.
This enabled the execution of the software on downgraded hardware.

The structure of a program is represented by its program flow that describes in which
fashion the program code is executed. This involves loop iterations, function calls (and
eventually their recursion depth) and code execution concerning if-statements, etc. Be-
sides this data, a further phase is mandatory, namely the low-level analysis. The goal of
this phase is to determine the timing information of each atomic unit that is either exe-
cuted completely or not at all within an execution path of the program flow. Invariably,
atomic units on a low level are represented by so called basic blocks which are comprised
of instructions.

Another important aspect, which has to be considered to obtain a precise estimation,
is the underlying hardware architecture. A great number of research results within the



1.3. Compiler-Integration of Worst-Case Execution Time (WCET) 9

field of WCET estimation assume a simplified situation by neglecting hardware features
like branch prediction, caches and pipelines. This leads to substantial overestimates of the
WCET and thus a waste of resources. Since the research field of cache behavior is an
extensive issue, there is often a lack of this information forcing the researchers to elude
this hardware information. Older microcontrollers like the popular Intel 8051 guaranteed
a fixed execution time for each instruction. To obtain the execution time of a basic block,
a simple addition had to be performed. However, modern processors come usually with
the aforementioned features enabling the acceleration of the execution time of a program.
But on the other hand, they complicate the timing analysis since execution times for in-
structions are variable. Pipelines of a processor accelerate the throughput of a program
by splitting larger instructions into smaller ones and so permit an independent execution.
But this also leads to a variable execution time of an instruction which depends on the
current situation concerning other instructions processed in parallel. Similarly, a proces-
sor unit using cache memory yields variable instruction execution times since the memory
access time strongly depends upon the current situation, i.e. whether the data required by
the instruction is already stored in the cache memory (known as cache hit) or not and thus
has to be fetched from main memory (called cache miss). World-wide, there are just a
few vendors of analysis tools which incorporate the consideration of the above mentioned
processor features into their tools. One of them is the company AbsInt Angewandte In-
formatik GmbH [Abs05] located in Saarbrücken, Germany. Their sophisticated tool, the
aiT WCET Analyzer, is used in this master’s thesis as part of the framework. A detailed
description will be given in chapter 2.

The last step to calculate the estimated WCET is to combine the information gained
from the program flow and the low-level analysis. The flow information indicates parts of
the code which are never traversed (infeasible paths). Moreover, it provides information
on all potential paths depending on the state of the program which the machine can pass
through when the program is executed. Adding the timing information from the low-level
analysis to each basic block allows one to find the path which takes the longest time to
execute.

Three different calculation methods are widely spread, namely the Implicit Path Enu-
meration Technique (IPET), the Path-based and the Tree-based calculation method. The
Implicit Path Enumeration Technique (IPET) calculates the WCET estimate by maximiz-
ing an objective function while satisfying the given constraints. Each edge between two
basic blocks is assigned a WCET bound tedge giving the contribution of that part of the
code to the total execution time. Furthermore, cedge defines the execution count represent-
ing the number of control passes along edge between two basic blocks. The constraints are
given by the control structure of the program, e.g. concerning each node, the sum of the
incoming flows has to be equal to the sum of outgoing flows. Also, information about in-
feasible paths imposes additional constraints. Obtaining the global WCET aims at finding
the maximum sum of the products of the execution time and the execution counts:

global WCET = max( ∑
∀edge

tedge · cedge)
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The Path-based calculation generates an estimate for the WCET by calculating upper
bounds for possible paths in the control flow and finding the one with the longest execution
time. To do so, standard graph algorithms like Dijkstra’s algorithms are applied [EES00].
Finally, the Tree-based calculation employs a syntax tree representing the program whose
nodes characterize the structure of the program like loops or conditions and whose leaves
describe basic blocks. To generate the final WCET, the syntax tree is traversed bottom-
up and each node is transformed into an equation expressing its timing. Each calculation
approach has its assets and drawbacks and should be evaluated in order to determine the
most efficient one for a particular purpose.

As already mentioned, the increasing number of real-time systems demands informa-
tion on the worst-case execution time to minimize the risk of failure and shorten the needs
of the underlying hardware. It is desirable to integrate a timing analyzer into a compiler,
making it an ordinary part of the compilation toolchain akin to modules performing the
well known optimization techniques mentioned in section 1.2. Ideally, it should be up to
the programmer to steer the compilation progress by easily choosing the WCET optimiza-
tions he wants to enable. Possible issues could be:

• Resource needs
Optimizing the code in terms of the worst-case execution time decreases the re-
quirements of the hardware the program is to be run on. Thus, cheaper hardware
components may be used and thus cut the production costs.

• Timing factor
The worst-case execution time can be reduced at the expense of other resources. For
instance, a dual instruction set processor might be used for a tradeoff between the
WCET and the code size. This approach will be explained in more detail in section
1.4.

• Power Consumption
Knowing the WCET estimates, power consumption can be reduced by lowering the
clock rate of a processor to such an extent that the real-time constraints still are
guaranteed to be met [ZKW+04].

1.4 Related Work

Unlike the ACET, the number of WCET research and development groups is still narrow
due to the fact that this research field remained untackled for a long time. However, activi-
ties in the last years have shown that the subject of WCET gained in importance. Evidence
of this is a wish list [BH03] which is addressed to compiler vendors with the objective
of redesigning their software to provide data useful for timing tools. As already stated in
the last section, a static worst-case execution time analyzer requires both high-level infor-
mation from the source code and low-level information gained from the machine code or
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eventually the low-level intermediate representation. This data is available at the compila-
tion time and is used intensively by the compiler, assembler, linker and loader but is not
revealed to any other external tools. Thus, timing analyses have to reinvent the wheel by
reconstructing this information once again. The wish list presents requirements from the
WCET analysis community with the hope to influence compiler vendors to make this data
available in the form of an intermediate format.

There have been some attempts to incorporate the worst-case execution time in a com-
mercial compiler. [Bör96] designed a WCET module which in the first phase communi-
cates with the frontend of a C-compiler for an Intel 8051 microcontroller in order to receive
information on the control flow of the program in the form of pragmas. They have to be
added manually by the user in the source code before the analysis. In the second phase, the
WCET module passes this data to the backend in order to steer the code generation. Due
to lack of time and programming experiences, the analyzing tool could not be finished and
results are not available. Furthermore, this approach is less promising since it is desired to
have most of the work being carried out by the tools automatically, avoiding any tedious
tasks like adding pragmas to the source code by the user. Additionally, the prerequisite
of user annotations (pragmas) is unrealistic since it assumes that the user has a thorough
knowledge of the behavior of the program in any possible state.

[Eng98] addressed a similar problem considering the difficulties which come up when
the source code is compiled by an optimizing compiler. The binding between the program
source code and the object code becomes vague or even impossible to reestablish. To keep
track of this relationship, which is mandatory for the static timing analysis, a framework
has been designed based on a tight collaboration between the compiler and the WCET an-
alyzer. Like the work introduced above, this framework could not be completely finalized
within the given time. Essentially, the designed data structures were not powerful enough
to hold information on everyday source codes which were considered to be too complex.
Another drawback of this framework is its inhomogeneity where the WCET analyer coop-
erates with a third-party compiler. A more efficient solution is the use of a compiler which
was designed in the same fashion as the framework and implemented by one team giving
the opportunity of a tailored collaboration.

[LLPM04] proposed an approach to reduce the worst-case execution time at the expense
of the code size and vice versa. This trade-off is deployed on a dual instruction set pro-
cessor which supports both a reduced instruction set comprising 16-bit instructions and a
full instruction set consisting of 32-bit instructions. Compiling a program completely with
16-bit instructions yields a program with minimum code size but also with the longest exe-
cution time. In contrast, the full instruction set counterpart results in a minimum execution
time but a substantial increase in code size. The reason behind this controversial behavior
is that a program using the full instruction set consists of fewer instructions, since a 32-bit
instruction executes more operations than a 16-bit instruction.

The framework initially compiles the complete program using exclusively 16-bit in-
structions. The goal of the next step is to determine the set of blocks yielding the minimal
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WCET. For this purpose, all basic blocks are experimentally translated into 32-bit in-
structions, and the emerging mode switch instructions are taken into account. Finally, the
results are deployed and lead to a machine code with a mixed instruction set. To obtain
tight WCET bounds, a timing analyzer was implemented assuming simplified conditions,
namely the absence of cache memory and a simple pipeline structure of the processor. It
could be shown that the worst-case execution time of a program can be effectively reduced
by producing a relatively small increase in the code size.

The task pursued in [Byh04] is related to the present master’s thesis in terms of the
usage of the same WCET analyzer, AbsInt’s aiT Worst-Case Execution Time Analyzer.
Her studies aim at improving the determination of the WCET for real-time applications by
integrating the static analysis tool into a development environment. The timing analyses
could be successfully performed, but due to shortage of time and insufficient knowledge
on measurements (dynamic analysis), the estimates could not be verified.

There are still some more efforts to incorporate a WCET analyzer into a development
environment. But the author of this thesis is not aware of any successful result of a homo-
geneous framework where both the compiler and the timing analysis tool are tailored to
the needs of its counterpart and permit an efficient communication.

1.5 Goals

The survey of the related works from the previous chapter points out that there is a lack of a
homogeneous compiler framework with an integrated WCET analyzer. To accomplish this
goal, both a thorough knowledge in compiler construction and an expertise in the subject
of timing analysis is required. However, this combination is uncommon due to the fact that
most software developers and research groups merely maintain their focus on one of the
two issues.

The Computer Science Chair XII (Embedded Systems) at the University Dortmund
has concentrated it research in the domain of compilers and embedded systems for many
years and possesses a vast knowledge in this field. On the other hand, the company AbsInt
Angewandte Informatik GmbH located in Saarbrücken, Germany, is a leading software
developer of tools for validation, verification and certification of safety-critical software.
One of their award-winning products is the aiT WCET Analyzer which statically ana-
lyzes cache and pipeline behavior to generate safe and tight worst-case execution bounds.
Combining the skills of both teams yields a good starting point to create a WCET-aware
compiler.

The compiler framework developed at Chair XII comprises an intermediate represen-
tation called the Low-Level Intermediate Representation (short LLIR). Its counterpart, the
low-level intermediate representation used by AbsInt’s WCET analyzer is the CRL2 which
is a mnemonic for Control flow Representation Language. The main objective of this the-



1.6. Outline of the Thesis 13

sis is the enrichment of the LLIR by WCET information. To meet this requirement, a
conversion between both intermediate representations has to be established.

In detail, the goals pursued in this master’s thesis are:

• Integration of the WCET analyzer into a homogeneous compiler framework
The most efficient collaboration between a compiler and a WCET analyzer is ac-
complished when both modules are part of one homogeneous framework. There-
fore, a seamless integration of AbsInt’s timing analyzer is mandatory as well as a
conversion between the LLIR and the CRL2.

• Analysis of results generated by aiT
After passing the created control-flow graph in the form of a CRL2 file to aiT, the
generated analyzer results have to be evaluated.

• Extensions to the LLIR
The gained analyzer results must be transformed to the LLIR. For this purpose,
a generic interface will be developed. It should be versatile, easy to use and not
modify the existing LLIR code too extensively.

• Realization of the mutual collaboration
To enable a mutual information exchange between both intermediate representa-
tions, a converter (LLIR to CRL2) as well as its counterpart have to be developed.
Furthermore, the invocation of the analyzer toolchain must be preformed, and finally
a generic mechanism to extend the LLIR by the extracted analyzer results must be
developed.

The achieved results serve as a basis for future work concerning a WCET-aware com-
piler. In contrast to the state of the practice of using a compiler and an external WCET
analyzer, the main advantage of this homogeneous framework is that the machine code
is not the only interface between the WCET tool and the compiler. A compiler performs
numerous analyses and gains a deep knowledge of the structure of the program which can
be passed to the WCET analyzer resulting in more precise timing estimates. The extracted
WCET information offers the opportunity to develop novel algorithms with the objective
of optimizing the worst-case execution time of a program.

1.6 Outline of the Thesis

The thesis is organized in the following way:

• Chapter 2 introduces the aiT WCET Analyzer. Its in- and output data as well as its
workflow are briefly described.

• Chapter 3 presents the structure of CRL2, the intermediate format used by the aiT
toolchain to represent a program
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• Chapter 4 contains a description of the structure of the low-level intermediate rep-
resentation (LLIR) frequently used at Chair XII, including its supported analyses
and optimizations.

• Chapter 5 provides a thorough overview of the requirements in order to achieve
a WCET-annotated LLIR. Besides the conversion process between the two inter-
mediate representations, a novel generic interface is presented. It employs versatile
objectives as information carriers which can be simply interlinked with the LLIR by
so-called handlers.

• Chapter 6 describes the existing toolchain and presents the experimental evaluation
to verify correctness of the extracted WCET estimates.

• Chapter 7 concludes this thesis and provides an outlook on future work.



Chapter 2

aiT – AbsInt’s WCET Analyzer

Nowadays, there are only few vendors providing commercial WCET analyzers. Also, re-
search groups who focus on worst-case execution time analyses could not achieve any
remarkable results. The few available products differ by supporting different processors,
employing various calculation methods, as described in section 1.3, and cooperating with
different compilers.

One of the leading analyzers is the aiT Worst-Case Execution Analyzer developed by
the company AbsInt Angewandte Information GmbH [Abs05]. As the analyzer name sug-
gests, it is a tool to determine the WCET of a program by static analyses. Thus, the results
are valid for all inputs and each state of the program. In contrast to numerous other WCET
analyzers, AbsInt’s tool performs an analysis of the cache and pipeline behavior guaran-
teeing safe and tight timing bounds. To calculate the worst-case execution time bounds,
it uses the Implicit Path Enumeration Technique (IPET) combined with Integer Linear
Programming (ILP). At the time this thesis was written, aiT was available for various pro-
cessors, namely ARM7, HCS12/STAR12, PowerPC 555, PowerPC 565, ColdFire 5307,
TMS320C33, C166/ST10 and the Infineon TriCore DSP v1.3. The latter is the processor
this thesis is based upon. Although some parts of the software are tailored to this proces-
sor, the entire framework presented in this thesis can be easily ported to a different target
architecture, since most of the code is processor independent.

2.1 In- and Outputs

There are two alternatives to analyzing a program using aiT. The most common way is to
provide a binary executable of the program to be analyzed as input. To do so, the most
convenient manner is to use the graphical user interface which performs the required ex-
ecution of the toolchain in the background. It allows one to define the executable, spec-
ification files and further options that adjust the output of the result according to user’s
preferences. The specification file will be covered in section 2.2. There are several anal-

– 15 –
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yses which can be selected in the GUI to be performed on the executable. The user can
compute the call graph and the control-flow graph and have them both displayed in an
external graph browser. Furthermore, the WCET analysis can be run and either pipeline
states might be visualized, or the results can be merged into the graphs and displayed in
an external graph viewer [ait].

A more advanced approach, which is also pursued in this master’s thesis, is to invoke
each program of the toolchain manually. This requires a thorough understanding of each
tool, especially knowing the parameters which have to be passed on the command line for
the desired operation.

The input file is assumed to be a binary executable which was generated from a re-
stricted subset of ANSI-C without dynamic data structures or setjmp / longjmp state-
ments. Besides the already mentioned specification files, the start address has to be set
defining whether the entire program or just a snippet of the code will be analyzed.

Assuming that the program was run in an isolated environment without any external
interferences, the output data is an upper WCET bound specified in cycles. When the
clock rate is defined, the bound is additionally given in real time units e.g. seconds or
milliseconds. Moreover, the results might be viewed in an external tool indicating various
information like the worst-case execution path or the machine state at a particular point of
the program.

2.2 Annotations and Specifications

To get correct timing bounds, aiT has to be provided with hardware specifications and
user annotations, which can either be inserted directly into the source code or defined in
a specification file (called AIS file). Some are mandatory to enable the analysis, others
improve the precision of the results. However, this information should be carefully chosen
since it is not checked by aiT and can lead to incorrect results.

Exemplary specifications concerning to the underlying hardware are:

• Clock rate
The clock specification is essential to obtain WCET bounds in real-time units. It
can be either defined as a single value or as a range restricted by a minimum and
a maximum. Missing specifications result in bounds defined by cycles but with no
information on the real time.

• Memory areas and busses
To get precise results, the external memory areas with their minimum and maximum
access times should be specified. Furthermore, they can be defined as read-only,
write-only or containing either data or code.
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• Compiler name
The name is relevant for exec2crl, which is the first tool of the toolchain run by
aiT and which is responsible for creating the intermediate representation CRL2 (see
chapter 3) from a binary executable. Providing information on the compiler used to
generate the input file improves the understanding of the structure of the program
and yields a more precise representation of the program.

Besides the hardware specifications, various user annotations may be defined:

• Loop bounds
Although aiT tries to determine the number of loop iterations automatically using a
loop bound analyzer, this succeeds only for simply structured loops with constant
bounds. These loops consist of machine code matching particular patterns which
are expected to be generated by the supported compiler. The remaining loop bounds
have to be defined manually.

• Targets of computed calls and branches
To get a proper reconstruction of the control flow from a binary file, the target ad-
dresses of computed calls and branches have to be available. Usually, they are found
automatically, but for some non-trivial calls and branches, the addresses can not be
resolved. These targets have to be specified manually.

• Recursion depth
It is mandatory to define upper bounds for the recursion depths of all recursive rou-
tines. Missing depths prevent the WCET analyzer from progressing.

• Register values
The value analysis, as part of the toolchain, tries to determine register values for
every program point. In cases of failure, the values can be specified manually.

The aforementioned specifications are by no means complete. The full list can be found
in [ait].

2.3 Workflow of WCET analyses

The graphical user interface as well as the manual approach have to cope with the appro-
priate invocation of each tool representing a portion of the aiT toolchain. The analysis is
performed in six main steps, including the reconstruction of the control-flow graph, the
value analysis, the loop bound analysis, the cache and pipeline analysis and the path anal-
ysis [Fer04]. The structure of the framework is depicted in figure 2.1.

Reconstruction of the control-flow graph
The ordinary way a WCET analysis is performed begins by supplying aiT with a bi-
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Figure 2.1: Analyses performed by the WCET analyzer aiT

nary executable. AbsInt’s decoder (called exec2crl) reads the input file and reconstructs
a control-flow graph (CFG). In doing so, exec2crl relies on some known patterns which
are expected to be generated by a particular compiler, like for example specific instruc-
tions which represent branches and calls. Thus, the analysis framework uses specialized
decoders which are customized to a particular compiler. Finally, the graph is annotated
with data used in subsequent phases and is translated into AbsInt’s intermediate format
called CRL2.

One of the contributions of this thesis is the replacement of this reconstruction step
by a novel converter. As already pointed out in section 1.5, a program represented by as-
sembly or machine code serving as the only interface between the WCET analyzer and the
compiler framework is a less efficient approach. The reason for that is that beneficial infor-
mation available to the compiler is not handed to the analyzer. Within the framework pre-
sented in this thesis, all essential information required to generate the control-flow graph is
read out from the low-level intermediate representation of the compiler framework which
was created by the compiler in preceding phases. The remaining task to establish a sound
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basis for further analysis steps is to translate the control flow data into CRL2. This work
is carried out by the converter llir2crl.

Value Analysis
The value analysis investigates potential values in the processor registers for any possi-

ble program point and execution context. In some cases, explicit values are untraceable
leading to a definition of lower and upper bounds. The analysis is based on the model of
abstract interpretation, a theory of establishing approximations of the semantics of a pro-
gram in a static fashion without the need of performing the overall calculations [CC77].
In more detail, aiT is mapping the input states of each machine instruction to a more ab-
stract output state, resulting in a semantically equal but more suitable form of the program
representation for further analyses. The results serve various purposes in the subsequent
phases. The loop bound analysis expects register values in order to find upper bounds for
the number of loop iterations. The cache analysis requires predicted values to designate
possible accesses of data and indirect memory accesses. Last but not least, the predicted
values contribute to determining infeasible paths that result from conditions being true or
false at any point of the program.

Loop Bound Analysis
Apparently, the major part of the execution time of a program is spent in loops, making

their iteration numbers an important issue. aiT relies on precise bounds to be able to per-
form a WCET analysis at all. The loop bound analysis tries to find predefined patterns
for loops which are supposed to be generated by a certain compiler. Furthermore, it re-
verts to the results produced by the value analysis to determine the bounds for the iteration
numbers. This procedure is repeated as long as all loops are handled and eventually new
contexts are added. At the end, all relevant information is accumulated in order to per-
form the final stage of the value analysis. The detection of loops succeeds only for simple
structures and demands manual specifications of the iteration bounds in the form of user
annotations for the remaining loops. Both the value and the loop bound analysis are per-
formed by the tool tricoredaan.

Cache Analysis
The execution of this analysis step is optional and depends on the processor architecture of
the underlying hardware. Absence of cache memory makes the cache analysis redundant,
otherwise aiT statically analyzes the cache behavior of the program using a formal cache
model. Accesses to main memory are examined by an algorithm distinguishing among
sure cache hits and unclassified accesses. The proper analysis relies on the value ranges of
processor registers obtained from the value analysis. Like the value analysis, this approach
is based on the framework of abstract interpretion.

Pipeline Analysis
The last static analysis is the pipeline analysis which models the pipeline behavior. It is

based on the current state of the pipeline, the resources in use, the contents of prefetched
queues and the results received from the cache analysis. It aims at finding a WCET esti-
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mate for each basic block, which is assigned to the corresponding outgoing control flow
edge that relies on the context. Involving the theory of abstract interpretation, each basic
block is analyzed by taking the results of the pipeline states obtained from the preceding
basic block into account and by incrementally proceed with succeeding machine instruc-
tions. In the last iteration step, the final results are passed on to the next basic block.
Finally, the maximum of simulated cycles for each flow of instructions of a basic block is
determined; it designates the longest time the basic block takes to execute. The pipeline
analysis is managed by the application tricorepipe.

Path Analysis
The path analysis is based on the Implicit Path Enumeration Technique (see section 1.3).

For each context c and each edge e, the execution count C(e, c) is determined. Addition-
ally, the WCET estimates generated by the pipeline analysis are taken into account. They
are expressed by T(e, c), being the worst-case execution time for an edge e and a context
c. Thus, a specific path in a given context c including a limited set of edges e yields the ex-
ecution time which results from the sum of C(e, c) ·W(e, c) over all edges. The objective
of the path analyzer pathan2 is to determine the global WCET by maximizing the product
of C(e, c) and W(e, c) over all edge-context pairs for a feasible path. The condition of
a feasible path imposes constraints, which are accumulated to a linear constraint system,
and which are solved by integer linear programming with the support of the auxiliary tool
lp_solve. Basically, the conditions are derived from the structure of the program, the loop
bound analysis and user annotations specified in the AIS file and the source code.

The full run of the WCET analyzer comprises twelve sub-steps in total. Besides the main
six steps mentioned above, the remaining steps are outside of scope of this thesis and
therefore not considered in detail. For example, aiT offers the opportunity to view the
control-flow graph combined with the calculated results in an external graph browser, Ab-
sInt’s aiSee.
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CRL2 – AbsInt’s Low Level IR

Every analyzer and code generator operating on a program requires an intermediate rep-
resentation in order to apply analysis and optimization algorithms. Depending on the de-
mands, different levels of representation are employed. High-level intermediate represen-
tations directly correspond to the syntactic structure of the source language and are used
in the earliest stage, often in the form of an abstract syntax tree. A more abstract format
is the medium-level intermediate representation that uses a language-independent nota-
tion. In the compiler domain, a widespread optimization used at this level is the common
subexpression elimination. The low-level intermediate representation, as the third class,
is highly dependent on the processor architecture. The format is often based on machine
instructions and uses assembly mnemonics.

aiT applies its decoder to extract a safe and precise control flow from a binary exe-
cutable, and requires a low-level intermediate representation to hold the control flow graph.
CRL2 (Control Flow Representation Language, 2nd version) is a generic library used for
this purpose. It is a human-readable intermediate format representing a control-flow graph
for static analysis. Initially it was developed at the University of Saarland [Lan98] and is
now maintained by the company AbsInt. The format was designed with the objective of
providing a simplified interface for analysis and optimization algorithms at the assembly
level. Also, the structure of CRL2 is designed in a manner to support various hardware
architectures.

3.1 Key Components of CRL2

The control-flow graph is described by syntax elements, called items. The main item is the
CRL2 graph. It holds both the control-flow graph and the call graph, deploying various
other CRL2 components [CRL05]. Figure 3.1 illustrates the hierarchical structure of the
CRL2 library.

– 21 –
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Figure 3.1: Structure of the CRL2 intermediate representation

The CRL2 graph contains the global structures, blocks of data and meta information.
The data items store byte items which represent constant data used in the binary. These
data sections are extracted by the value analysis in order to analyze memory accesses.
Entities of the Meta class hold info items which accommodate symbol tables and complex
user annotations.

CRL2 routines, as the next component of the hierarchy, represent a sequence of basic
blocks and may have different origins. Like assembly procedures, the binary executable
and the resultant CRL2 intermediate representation are partitioned into routines which are
derived from ordinary functions of the source code. Although there are no strict conven-
tions for the routine names chosen by the compiler, the state of the practice is to label
them as a concatenated string of the function name and a preceding underscore. Another
origin of CRL2 routines results from the fact that the intermediate representation is gener-
ated from a file which was produced by the linker. To generate a binary executable which
can be interpreted by a machine, the linker merges all required source files as well as
libraries and adds specific start routines (called startup code) such as ’__main’ [Lev99].
Consequently, these auxiliary routines are read by AbsInt’s decoder exec2crl and are trans-
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formed into CRL2 routines. In addition to some special functions, which are spawned
by hand-written assembly routines, several routines result from the loop transformation.
This process, which consists of a repetitive invocation of the loop bound and value anal-
ysis, modifies the original control-flow graph by splitting up the loops into separate rou-
tines. These routines call themselves recursively. The goal of the loop transformation is
to improve the WCET estimates by creating additional contexts. This approach will be
explained in more detail in section 3.2.

Basic blocks, which are implemented as CRL2 blocks, form the nodes of a control-flow
graph. To complete the graph structure and allow to model execution paths of a program,
basic blocks are joined by CRL2 edges. Depending on the represented jump in the control
flow, the edges are categorized in various types. For instance, incoming and outgoing edges
are deployed to reflect loops, or the edge pair of call and return edges, which simulates the
proper program flow after a call instruction.

Like in the most intermediate representations, blocks consist of a sequence of CRL2
instructions which in turn are composed of CRL2 operations. Depending on the processor
architecture, an instruction might refer to a single operation or a set of processor opera-
tions which will be executed in parallel on e.g. a VLIW processor. For paged architectures,
instructions can be assigned both the base and the page address. This combined form desig-
nates the bus address of the instruction, before it is translated by the memory management
unit (MMU).

The elementary unit, the operation, is designated by a unique numerical identification
called the opcode. Furthermore, it accommodates a mnemonic, which is a human-readable
representation, and additionally a list of operands used in this operation. The operands can
be register names, constants or symbols. They are classified into source and destination
resources. Source resources represent resources of the operations which are read, namely
registers, constant values or abstract resources, like memory or stack (called symbols). On
the other hand, the vector of destination resources denotes resources which are written
by the operation, this is registers and symbols. Due to the nature of constants, they can
not be altered and are therefore not be considered as writable resources. In the CRL2 for-
mat, the structure of complex operations used with various processors can be illustrated
by a hierarchical representation. Notably in CISC architectures, some operations consist
of complex operands that are executed in a specific order. This extensive structure is mod-
eled by a hierarchy that is called an extension. Extensions are assigned to an operand and
hold, like other CRL2 items, various details. Besides the information on the order, each
operand is treated akin to an operation. It is denoted by an unique opcode and contains
its own lists of involved resources that again are classified in source and destination re-
sources. Moreover, further extensions can be added to operands that are already part of a
superior extension. In order to generate a proper representation of a CRL2 operation with
all mandatory declarations, the TF14NET framework and a particular specification file,
which is provided for each processor architecture, are employed. The latter, called a NET
file, holds all information on each operation specified in the instruction set architecture
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(ISA) of a particular processor. The specification file is based upon the corresponding ref-
erence manual and holds information on valid operands, addressing modes, cycles used
for the execution, latencies and the hierarchical structure represented by the extensions.
To create a CRL2 instruction, the TF14NET library is supplied with the involved operands
and the unique opcode. Based on this input data, the library reverts to the NET file, parses
it and finally calculates a fully structured operation wrapped in a CRL2 instruction.

Within the CRL2 framework, each item stores its characteristics in attributes. They are
used to accommodate all data required to represent a program on a low level. Further-
more, all results gained during the analysis process are stored in attributes. They serve as
an interface between individual analysis steps by exchanging the essential information.
For instance, the pipeline analysis calculates the worst-case execution time for each ba-
sic block and archives these values in the context-dependent attribute called pipe_cycles.
Subsequently, these results are used by the path analysis, in order to calculate the global
WCET.

3.2 Contexts

The issue of contexts plays a prominent role in the data-flow analysis (DFA). The latter op-
erates on the abstract representation of a program given by a control-flow graph. The task
of the DFA is to determine an objective function for each node of the graph which maps
any possible input data to a proper output. To do so, a system of data-flow equations for
each node is set up, expressing the relationship of the incoming and outgoing information.
In the final step, the system has to be solved.

The results from the data-flow analysis provide the basis for the static program analysis.
The abstract data-flow estimations for each node must not violate the actual state of the
program at any point. However, this condition might lead to oversized value ranges, which
in turn produce imprecise timing estimations, mainly for the WCET and BCET. A solution
to this dilemma is the use of contexts.

In general, contexts narrow the vast value ranges by splitting them up into smaller
sets, reflecting a more subtle view of the current state of the program. This allows to
perform multiple context-dependent analyses, which result in more precise timing estima-
tions. Contexts are assigned to CRL2 routines and are expressed by a string, the call string.
Call strings are comprised of previously created call strings, identifying the sequence of
calls, beginning with the entry point of the analysis. They are of the form "B −→ R",
where B is the basic block containing the call instruction to the routine R.

As already mentioned in the previous section, CRL2 routines may be derived from
source code functions. Due to the nature of functions, they have to cope with arguments
which are passed during the call. When contexts are not taken into account, the abstract
data-flow information must satisfy the large value range of all potential actual arguments.
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Notably, the value analysis suffers from this fuzzy specification. The investigation of pos-
sible values in the processor registers is limited to some bounds which hardly state the
realistic behavior of the program. Using contexts can substantially improve the results
generated by the value analysis. Assume, a routine is called twice with arguments 0 and
10, respectively. Without contexts, the interval [0, 10] designates the abstract specification
for the register r that stores the values of the routine argument. Thus, it is implied that
r might accommodate any value between 0 and 10, leading to imprecise conclusions. A
more efficient approach is to use two contexts, which define the corresponding intervals as
[0, 0] and [10, 10], respectively. This way, the value analysis is provided with precise input
omitting the redundant values of the interval [1, 9].

Furthermore, the adoption of contexts is beneficial for the path analysis. Considering
various contexts admits to find parts of the code which are never executed at a specific
point of the program. Assume the following C function (in a simplified view):

int foo( int x ) {

if ( x != 10 ) {
... // takes 100 cycles

} else {
... // takes 5 cycles

}

}

The function foo contains an argument x which affects the control flow within the func-
tion body. If x is not equal to 10, then the following block takes 100 cycles to execute.
Otherwise, the else-block with 5 cycles of execution time is traversed. Assume, foo is
called twice, with argument 10 for the first call and with argument y, which can not be
statically specified, in the second call. Regarding the less sophisticated scenario without
contexts, the worst case must be presumed in order to guarantee the safety of the WCET
estimates. This means that the worst-case execution time of the function foo always con-
stitutes at least 100 cycles, independently of the value of the function argument x. The
performance of the path analysis can be drastically increased by imposing contexts for
the distinct function calls. Context c0 denotes the call foo(10), the second context c1
the function call foo(y). The analysis, which traverses the control-flow graph, has the
ability to distinguish among different paths. Taking the first context c0 into account, the
function foo, omitting the then-block of the if-statement, contributes 5 cycles to the
accumulated WCET. For the second context c1, where y is still unknown, the analysis
carries on applying the worst case which enlarges the current WCET by 100 cycles. As
a conclusion, the introduction of contexts possibly means a reduction of the accumulated
WCET by 95 cycles. In present-day real-time applications which frequently encompass
several thousands lines of code, the neglect of contexts yields a notable overestimate of
the timing information.
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The proper handling of loops is of great importance since programs spend most of their
runtime in loop bodies. Like for routines, the loop transformation, which is an inherent
part of the aiT WCET analyzer, exploits the benefits of contexts in terms of loops. Due to
the processor cache, the execution time of the first loop iterations may vary. When the loop
is executed for the very first time, the cache is consulted and often found not to contain
any data of the loop. This situation is known as a cache miss and necessitates fetching the
information from memory. In the second iteration, it might happen that the loop data in
the cache is still altered. The reason for that are mechanisms performed by sophisticated
cache replacement algorithms, which are known as speculative prefetching. If the loop
iteration continues, the cache situation stabilizes and involves a direct data access from
the cache (called cache hits). To handle the individual conditions, the loops are virtually
unrolled by the loop transformation, which is based on the VIVU approach [MAWF98].
With the goal of enhancing the WCET estimates, aiT has to examine loops in a specific
fashion. Since contexts are exclusively assigned to CRL2 routines, loops are compelled
to be extracted. More accurate, basic blocks representing a loop are transformed from the
original routine into a newly created one. Thus, various contexts, reflecting the cache be-
havior, can be appended. This distinction of contexts entails a more precise estimate, since
context-dependent paths with distinct execution times may be taken into account. A thor-
ough description of the loop transformation is given in [ait]. Last but not least, it should be
mentioned that the loop transformation operates solely on an internal intermediate repre-
sentation of the binary executable, i.e. all modifications remain in the CRL2 data structure
and never affect the executable program by itself.

There are two sides of the coin when it comes to the increasing number of contexts.
As previously mentioned, the WCET estimates are positively affected by a more subtle
distinction of contexts. However, on the other hand, an enormous number of contexts de-
mands a longer analysis time. Programs with a complex calling structure or nontrivial
nested loops induce a high increase of contexts, and may disable an efficient timing anal-
ysis. Therefore, a trade-off between computation time and precision might be inevitable
for larger programs. aiT offers the opportunity to restrict the number of created contexts
by limiting the length of the call string. This is done by adding the option interproc max-
length = n to the AIS file, with n being the length of the call string. To control the number
of loop contexts created by the loop transformation, the parameter interproc unroll = n
may be appended to the AIS file. Furthermore, the parameters flexible and limited steer
the loop detection. The first parameter relies on the user annotations and the automatic
loop bound detection, whereas the latter coerces the analyzer into merely interpreting the
manually defined loop bounds, which, under these circumstances, must be given for every
loop.



Chapter 4

Existing Low Level IR (LLIR)

The Low-Level Intermediate Representation (LLIR) is an intermediate representation
which offers the opportunity to accommodate assembly code in the individual stages of
a compiler backend. The assembly code can either be received from a code selector or
might be directly imported from an assembly file. The elaborate structure of the LLIR
allows the modeling of dependencies among the elements which results in a control-flow
graph. Based on this representation, various modifications can be performed. Furthermore,
the LLIR library provides analyses and optimizations enabling the generation of optimized
code within a compiler framework. In addition to the import, the library provides functions
which export the modified assembly code into an assembly file. The overview of the el-
ementary sets of the LLIR (I/O functions, internal data base and library of analyses and
optimizations) is given in figure 4.1.

The software was developed by the Informatik Centrum Dortmund (ICD) [ICD05] and
has been successfully employed for various research projects at the Embedded Systems
Groups of the Computer Science Department at Dortmund University. For instance, it was
deployed in the design flow of an application specific processor (ASIP) for network proto-
col processing [NW04]. Moreover, the LLIR was involved for different issues, which were
subject of several master’s theses, e.g. for bit-level optimizations [Pyk03]. This intermedi-
ate representation is also the objective low-level intermediate representation which is used
for the present master’s thesis, as a counterpart to AbsInt’s CRL2.

4.1 Key Components of LLIR

Like most low intermediate representations, the LLIR is comprised of the key components
such as functions (equivalent to routines), basic blocks, instructions and operations. Due
to the analog structure of the CRL2, a transformation of control-flow graphs, involving
some minor adjustments, is feasible. The main difference among both representations is
the reconstruction of the CFG. The LLIR gains its data either from an assembly file or
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Figure 4.1: Structural overview of the Low-Level Intermediate Representation (LLIR)

obtains it from an intermediate representation which is operating on a higher level. In
contrast, the CRL2 library relies on data which was extracted from a binary executable.
The program file is converted into a readable format by using a disassembler. Thus, more
concrete information on the program is available, e.g. additional functions which were
used by the linker. Despite the absence of these specific details, the knowledge of the
program, which is accommodated in the LLIR, satisfies to serve as input for the aiT WCET
analyzer.

The general design of the LLIR is depicted in figure 4.2. The main class is the LLIR
which represents the entire assembly code. Due to the fact that further key components in
the structure hierarchy are positioned beneath this class, it offers a global view. Thus, most
analyses and optimizations, which will be described in section 4.2, are performed at this
level.

The subsequent class, the LLIR_Function, represents assembly procedures which are
ordinarily derived from source code functions. It is composed of a sequence of basic blocks
and manages their dependencies in the form of a control-flow graph. Basic blocks are rep-
resented by the class LLIR_BB which store straight-line code. They are designated by a
unique label name and contain a set of instructions realized by the class LLIR_Instruction.
In addition, they meet the constraint imposed by the CFG theory which grants jumps to
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be performed exclusively by the last instruction. Instructions hold one or more machine
operations which are executed in parallel. Depending on the processor architecture, an
instruction is assigned exactly one operation (most systems) or, as for VLIW architec-
tures, multiple operations. Machine operations, realized by the LLIR_Operation class, are
specified by a mnemonic and a list of involved resources, called parameters.

Figure 4.2: Class diagram of key elements of the LLIR

The class LLIR_Parameter distinguishes among four different types, namely constants,
labels, operators and registers. Additionally, parameters are characterized by their usage;
those resources which are written are denoted by DEF, those which are merely read
are called USE. Finally, parameters, which are both read and written, are designated by
DEFUSE. Constants represent standard integer constant values and, due to their nature,
are invariably of type USE. The other two elementary parameter types are labels and op-
erators which denote jump labels and architecture specific tokens, respectively. Registers,
as the last parameter type, are more complex and are modeled by the class LLIR_Register.
They are managed at the function level, i.e. each LLIR function contains references to all
registers that are involved in the underlying LLIR elements. This allows the comparison
of registers in related objects by a simple pointer comparison. Each register is identified
by a unique name and can be either a physical register of the underlying hardware or a
virtual register which is afterwards assigned a physical register name by the register allo-
cator. Furthermore, registers can be assembled into complex register hierarchies, e.g. for
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the Infineon TriCore DSP which supports extended 64-bit registers that are a compound
of two 32-bit data registers.

In addition to the program structure, the LLIR stores further details on the assembly
program. The information is either a simple string or an index to an enumeration of pre-
defined strings which is represented by the class LLIR_Pragma. The pragmas are summa-
rized hierarchically into the class LLIR_TaggedElement which serves as a base class for
all other classes expect LLIR_Parameter and LLIR_Register. Furthermore, basic blocks,
instructions, operations and pragmas might be tagged with information concerning their
location in the input file, that is the name of the assembly file and the corresponding line
number.

The Low-Level Intermediate Representation was designed with the focus on portabil-
ity. In order to adapt the library to a specific target architecture, a processor specification
file has to be modified. The mandatory steps concerning the specification file are described
in more detail in the following. The register set of the underlying target architecture is to
be defined. Besides the register names for the physical resources, internal registers, virtual
registers and the register hierarchy are to be specified. Internal registers are auxiliary hard-
ware resources which do not occur in the assembly file but might be helpful for internal
operations. Virtual registers, also called pseudo-registers, are auxiliary resources, which
are utilized by the code generator leading to a more flexible handling. For example, the
code selector emits code without taking care of the limited number of available physical
registers, by simply assuming that an unlimited amount of virtual registers is available. In
the subsequent step, the register allocator takes care of multiplexing the large number of
virtual registers onto a limited number of processor registers. Last but not least, supported
register hierarchies might be modeled. To do so, extended register names and the registers
involved in this relationship must be specified. Thus, complex registers can be either ad-
dressed as a whole or through their children. Another significant adaption is the definition
of the instruction set provided by the target architecture. Besides the enumeration of each
instruction, a cost table has to be defined. It indicates the cost of each instruction, usu-
ally corresponding to the individual memory requirements, and can be used within a tree
pattern matcher of the code selector. The remaining adoptions concern the operators and
predefined pragmas. Operators are special tokens which are used as operation parameters
for various purposes, e.g. to identify the used address mode. Application specific pragmas
might be predefined to customize supplementary information which can be tagged to most
of the LLIR components.

4.2 Analyses and Optimizations

Besides the possibility of transforming an assembly file into an object structure, the LLIR
provides mechanisms for analysis as well as for optimizations. The analyses proceed trans-
parently for the user, i.e. any modifications concerning an LLIR component, which affect
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the control-flow graph, are recognized automatically. The analysis results are then instantly
updated. The latter are mainly retrieved by the optimization algorithms which are notably
involved in the final stage of the backend. There are two typical process flows. In a homo-
geneous compiler framework, the program is passed from the code selector to the backend,
where it is optimized and finally stored as an optimized assembly code. The latter is sup-
plied to the linker. Another application which implies that the assembly code is already
given (by an independent code selector or written by hand), is the post-pass optimization
[NW04]. The assembly file is transformed into the LLIR, optimized and dumped out in
the form of a more efficient assembly code. The following sections briefly introduce the
supported analyses and optimization techniques.

Control-Flow Analysis
In order to traverse the control-flow graph, the class LLIR_BB provides data struc-

tures and functions to express dependencies in the form of incoming and outgoing edges
among basic blocks. There are three relationships between basic blocks which are man-
aged [ICD01]: reachability, domination relation and loop depth. Reachability indicates
whether the CFG contains a valid path between two given blocks and can be applied to
detect dead code. Domination relation is a concept of one basic block always being before
or after another given block on all execution paths. Finally, the loop depth represents the
loop nest level of a basic block.

Lifetime Analysis
The lifetime results are essential for the data flow analysis. They concern the relation of

definition and use points for a specific register [Mor98]. A register is called live on all
paths from its definitions to its uses. This information is notably relevant for register al-
locators, in order to detect virtual registers which are no longer used and hence can be
reallocated. The results are based on specifications for each register which point out the
def/use properties before and after the execution of the involved instructions.

Def/use Chain Analysis
A related approach is the def/use chain analysis, being also part of the data flow analysis.

Various optimization algorithms, as the value propagation optimizations, need to know the
relationships between the read access of a register, designated as USE, and the point where
it was written (known as DEF). The results are obtained by conducting the evaluation for
each operation and taking even complex register hierarchies into account. To get a picto-
rial view, the user might even create a def/use chain graph.

Loop-invariant Code Motion
The first code optimization technique moves assembly instructions which are located

within a loop, but are not affected by the loop statements before or after the loop body. In
order to fully exploit this approach, it should be applied in both the compiler frontend and
the compiler backend. The former is described in section 1.2. The objective of performing
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the code motion at the low level is to shift supplementary assembly instructions which
were added by the code selector as well as by the register allocator. Shifting the instruc-
tions outside of the loop results in a reduced number of executions which finally yields a
speedup.

Peephole Optimization
Code generators often produce code that is not efficient but contains redundant instruc-

tions. The peephole optimization is a simple but effective approach to eliminate these
redundant instructions. It improves the code locally by scanning short sequences of in-
structions and eventually substituting them by a shortened sequence. If the goal of the
optimization is to improve execution time rather than code size, the considered sequence
is replaced by a faster one which can cause an increase of the code size. The term peephole
refers to the size of the window which is moved on the target program [ASU86]. Due to
the fact that each improvement might produce new opportunities, the peephole optimizer
is run manifold. To use this technique with the LLIR, the optimization pattern, the peep-
hole size and further specifications must be supplied.

Code Compaction
This algorithm might be used to exploit parallelization of instructions. On the one hand,

it can be applied with VLIW architectures to force the execution of several operations of
one instruction in parallel. On the other hand, the assembly code of a target architecture
with a single operation per instruction might be optimized in terms of parallelization, by
replacing simple operations by a complex one. To do so, the LLIR is to be provided with
distinct parameters, e.g. operations that spawn a conflict when used at the same time.

List Scheduling
This scheduling mechanism forms the final stage of the backend optimizations. It verifies

whether all constraints concerning the mandatory latencies of instructions are met. The
constraints are to be modeled for each target architecture. For instance, it can be defined
that two instructions must have some delay cycles before being executed consecutively.
Whenever the list scheduler discovers a violation of the latency constraints, it either adds
the required number of NOP (No Operation) instructions or rearranges the order of in-
structions.



Chapter 5

Extensions to the LLIR

5.1 Introduction

The Low-Level Intermediate Representation (LLIR) was primarily designed to hold in-
formation extracted from an assembly file. The data exclusively represents the structural
elements of a program that are used to construct a control-flow graph. The LLIR pro-
vides algorithms to analyze and optimize the accommodated program and thus extends
the knowledge of the program structure. However, none of the auxiliary data concerns the
timing behavior of the structure elements.

As stated in chapter 1, timing information is essential for embedded system applica-
tions. It might be used to prove the correctness of a given system. Furthermore, timing
estimates like the worst-case execution time (WCET) must be known in order to design
optimized hardware. The absence of this information can have a harming effect on the sys-
tem in terms of both over- and underestimation. On the one hand, designers try to bypass
this dilemma by using oversized target hardware. Needless to say, the waste of resources
boosts the production costs and endangers the competitiveness. On the other hand, the
hardware might not suffice to meet all timing constraints. Their violation prevents the sys-
tem from a proper operation, ranging from a negligent degradation to a physical damage
or even a catastrophe.

In order to cope with real-time systems, the LLIR needs to be extended. The library
has to offer the opportunity to store supplementary information, notably those which con-
cern timing behavior. This data is obtained from AbsInt’s aiT WCET analyzer which was
introduced in chapter 2. The analyzer is incorporated together with the LLIR into a ho-
mogeneous framework. The LLIR exports the program it represents into a CRL2 file and
passes this to the WCET analyzer. Subsequently, aiT performs its WCET analysis and
provides its results in the form of a fully annotated CRL2 file which is finally re-imported
into the LLIR.

The main objective of the present thesis is to design and realize adequate concepts of
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extensions to the LLIR in order to hold worst-case execution time estimates. These exten-
sions enable the development of novel algorithms which can be employed in the domain
of WCET compiler optimizations. To accomplish this goal, the existing LLIR has to be
extended by elaborate data structures. Moreover, a generic interface has to be provided
simplifying the access to the WCET information. It is meant to hide the complex inner
access mechanisms from the user and design it as transparent as possible. The LLIR is
supposed to provide simple get functions which are invoked by the user (or by the opti-
mization algorithms) in such a manner that no redundant function arguments are required
to be passed. For example, to receive the WCET of a specific basic block, the user merely
invokes a universal get function of that block and specifies the additional information
which indicates that WCET data is sought.

By explicitly specifying the type of information searched or manipulated within the
LLIR, a flexible, generic and extendable interface is designed which is not restricted ex-
clusively to WCET data. This generic interface allows the development of new compiler
objectives - apart from WCET considered in this thesis - and to keep the simple access
concepts. Thus, a maximum degree of extensibility and reusability is provided making the
LLIR a convenient platform for distinct compiler optimizations. The remaining sections
of this chapter thoroughly explain the concepts and realizations which are involved in the
novel extensions to the LLIR concerning the WCET issue.

5.2 Conversion from LLIR to CRL2

The goal of the first phase is to supply the aiT WCET analyzer with a program which
is supposed to be analyzed in terms of its worst-case execution time behavior. As input
data, aiT demands a program in the form of its internal format, namely AbsInt’s CRL2
intermediate representation. The ordinary usage envisions a binary executable as input file
that is disassembled by AbsInt’s decoder (called exec2crl). Based on this information, a
control-flow graph and a call graph are constructed and stored in the CRL2 format. The
latter is passed to further analysis tools of the aiT toolchain and progressively extended by
the analysis results.

The general concern with external tools, which are integrated into a compiler frame-
work, is the lack of available information. In the beginning, the compiler is supplied with
a program which is written in a source language, mostly a high-level language like C or
C++. This program is transformed into an intermediate representation and various analysis
and optimization algorithms are applied which in turn construct and modify a control-flow
graph (CFG). This complex data structure is annotated with individual attributes which
reflect the results of the previous steps. Due to the fact that a lot of effort has gone into
the creation of the CFG, this stage presents the optimal point of entry for the integration
of an external analysis tool. To put it in other words, the most efficient way to analyze a
program is to provide this gained information as input for the external WCET analyzer.
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Using an inhomogeneous platform that contains the compiler framework on the one hand
and a separate WCET analyzer on the other hand leads to a waste of information. The
compiler generates a binary executable which contains merely the mandatory details of
the program in order to be interpreted by the machine. Supplementary information that
was gained during the compilation process is omitted. When this file is provided as the
only interface between the compiler and the WCET analyzer, valuable data gets lost. In
addition, the analyzer faces the chore of reconstructing the control-flow graph once again.

In contrast to the ordinary workflow, this thesis pursues a modified approach. To elude
the problem mentioned above, the framework developed in this thesis combines both
toolchains into one homogeneous system. In the first step, the source program is trans-
formed into the LLIR. Based on this control flow information, the developed converter
(called llir2crl) generates a CRL2 file that is used as input to the aiT WCET analyzer.
This implies, that the original workflow of aiT is shortened. The process of constructing
a CRL2 intermediate representation, which is originally carried out by AbsInt’s decoder
exec2crl, is skipped. The CRL2 representation created by llir2crl encompasses all required
information. It is handed to the next application in the aiT toolchain that follows exec2crl
in the ordinary workflow. The modified system is depicted in figure 5.1.

Figure 5.1: Modified workflow of the aiT WCET analyzer
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5.2.1 Specifications and User Annotations

At the very beginning, the converter reads the configuration file called wcetrc. The pur-
pose of this file is to provide external details which are beneficial or even inevitable for the
CRL2 file that serves as input for aiT. Basically, this file corresponds to AbsInt’s specifica-
tion file, called AIS, that is provided with the binary executable to the aiT WCET analyzer.
Numerous options, which can be defined in the AIS file, are not available for wcetrc since
there is no use for them. These options mainly serve AbsInt’s exec2crl to reconstruct the
control flow from a binary program. Also, the syntax of the specifications and annotations
used in both configuration files differs. The file used in this thesis operates on a simplified
syntax, that still satisfies the requisites.

To enhance the analysis, the name of the compiler, which is used to translate the source
program, can be defined. Different versions of compilers generate different patterns for
specific source code elements, such as loops. Providing the compiler name, aiT examines
its internal intermediate representation for known patterns which are supposed to be gener-
ated by a specific compiler. Recognized patterns protect aiT of a misleading interpretation
and thus assure the correctness of the WCET results. Currently, the only supported value
for the compiler name is GCC Tricore C compiler.

Furthermore, the clock rate of the underlying hardware can be defined. This results in
WCET estimates which are not only given in cycles but also in real time units, e.g. seconds
or milliseconds. This information is essential for the analysis of real-time applications
which rely on the authentic timing estimates.

Another option, which is significant for the WCET analysis, is the specification of the
memory areas of the underlying hardware. More accurately, memory area ranges that hold
program code and data as well as their access times have to be declared. aiT relies on these
specifications since it requires further details on memory addresses that are extracted by
exec2crl. The user has to consult the manual of the underlying hardware to figure out the
appropriate memory areas. The memory specifications are applied by the converter when
new CRL2 components are generated. aiT does not demand the exact memory location
of any element but necessitates the usage of valid addresses. For the very first element,
which is usually a CRL2 routine, the lowest address range is determined and assigned as
an attribute. Succeeding CRL2 elements are tagged adjacent memory addresses. Before an
address is assigned, it is checked if not exceeding the given memory ranges.

The calculation of new memory addresses must take the instruction type into account.
16-bit instructions, such as the CMOV instruction (Conditional Move) [Inf05], occupy 2
bytes. In contrast, 32-bit instructions like the ABS instruction (Absolute Value) demand
twice as much size, namely 4 bytes.

Loop bound annotations are another specification which is essential for the WCET
analysis of programs that contain loops. Missing annotations cause a failure of the WCET
analyzer, since many loop bounds can not be determined automatically. The loop anno-
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tations are manifold. Global specifications, which concern all loops that are found in the
source program, can be defined. The global bounds are defined by a minimum and a max-
imum representing the lower and the upper iteration bound, respectively. Thus, the loops
are not considered individually but annotated with identical bounds throughout the entire
program. This approach is adequate for some superficial tests in order to get a first no-
tion of the timing behavior of the program. Moreover, it allows one to perform the WCET
analysis at all since missing individual bounds lead to a program failure.

For more precise WCET estimates, the configuration can be extended by individual
iteration bounds for each loop. aiT expects each loop to be specified by a routine name
and the position of the loop within this routine. Each loop is enumerated, beginning with
the decimal number one for the first loop. Thus, the user is supposed to consult the source
code in order to determine the routine name and position of the loop he wants to specify.
In addition, akin to global loops, the individual lower and upper loop bound specification
has to be provided.

The manual annotations in terms of loop bound specifications represent a temporary
solution. They turn out to be a tedious chore since great care must be taken to identify the
appropriate loops from the source code. Furthermore, it is a difficult task to specify loop
bounds at all since, in certain cases, the number of loop iterations can not be determined
by solely reading the source code. The estimation of the worst-case execution time is still
a relatively new field of research and most of the few existing WCET analyzers demand
manual loop bound specifications. This annotation problem is well-known and has, for
example, been subject of criticism by [Byh04].

A final solution gets rid of manual specifications. The intent of a sophisticated compiler
framework is the support of automatic loop bound annotations. The internal mechanisms
of the framework recognize loops, analyze them and finally provide iteration bounds which
are automatically used in the low-level intermediate representation. A loop analyzer is a
complex application and thus beyond the scope of this thesis. However, it is intended to re-
alize this feature in the future compiler framework where the software modules developed
in this thesis will be integrated in.

Besides the loop bounds, two other options, concerning the applied contexts, influence
the analysis process. The parameter CALL_STRING restricts the length of the call string,
e.g. it defines whether all possible context branches or just a limited number should be
taken into account. Permissable values are decimals or the specifier inf which is short for
infinite. For complex source programs, a tradeoff between the precision of the estimates
and the analysis time is required. Longer call strings produce more precise results but also
increase the runtime of the analysis. Hence, best results are obtained with the parameter
value inf but they might entail an unacceptably long analysis time. A related configura-
tion parameter is UNROLL. It defines the number of loop contexts to be distinguished.
Especially the first loop iterations differ in terms of their cache behavior. The very first
loop iteration yields a cache miss since no loop data is available in the cache memory
yet. This data has to be fetched from the main memory. Due to speculative prefetching,
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it might happen that the cache content is still modified during the second loop iteration,
and another load of data into the cache is necessary. For further loop iterations, the cache
situation gets stabilized and does not differ remarkably. Thus, it makes sense to distinguish
at least among the first loop iterations. To do so, the parameter UNROLL is assigned a dec-
imal, representing the number of individual loop contexts. For example, UNROLL = 3
means that the first and second loop iteration are examined separately and the subsequent
iterations are combined into the third loop context.

The options mentioned above, which concern loops, are taken into account when the
LLIR is converter into the CRL2 representation. They are temporarily added to the CRL2
routines that contain loops. As will be described , the initial version of the CRL2 repre-
sentation is modified by the loop transformation which relies on these annotations.

5.2.2 Transformation of the CFG Structure

After processing the configuration file, the transformation of the LLIR structure to CRL2
is performed. As stated in chapter 3 and chapter 4, the structure of both the LLIR and
the CRL2 is highly analog in terms of the involved key components. Both intermediate
representations employ functions (called routines by CRL2), basic blocks, instructions,
operations and their operands, i.e. registers or constants. Thus, the process of the conver-
sion between the LLIR and the CRL2 is mainly based on the traversal of all components
in the form of nested loops.

First of all, the outermost loop iterates through all LLIR functions. They are derived
from functions that are used in the source program and bear the same name. Concerning
the fact that each LLIR function corresponds to a CRL2 routine, the converter creates
a new routine whenever a new LLIR function is analyzed. This new CRL2 routine is
assigned the same name as the LLIR function to keep track of both elements throughout
the analyses and conversion.

The next element in the hierarchy of a program structure are basic blocks. They repre-
sent a maximal group of statements so that one statement in the group is executed if every
statement is executed [KA02]. Each new consideration of an LLIR basic block leads to
the creation of a new CRL2 basic block. Like routines, each CRL2 block is denoted by
a unique label derived from the LLIR basic block. According to the definition mentioned
above, function calls finalize a basic block if the function may not return. Thus, two con-
trasting block structures may occur. In the high-level language C, it can not be predicted
at compile time, whether a function will return or not. The only way is to look it up in
the source code. Hence, conservative compilers assume that a call instruction will end
the basic block. In order to avoid a break of the control flow, the successive blocks are
combined by a CFG edge (see figure 5.2). Unlike C, the language C++ offers the oppor-
tunity to guarantee that a function will return to its caller by marking it with throw().
In that case, the low-level intermediate representation is not forced to split the basic block
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Figure 5.2: Call instruction ends basic block

after the call instruction, but may keep this instruction amid the other instruction within
the block. Figure 5.3 gives a pictorial view of the caller-callee relationship. Since aiT is
expecting input files written in C, the former block structure has to be applied.

Figure 5.3: Call instruction amid basic block

Next, the instructions are processed. Another loop walks through all LLIR instructions
of a basic block and creates a CRL2 instruction. Instructions do not have any unique iden-
tification like functions or basic blocks. However, they need to be relocated in the further
steps. For instance, the value analysis performed by aiT assigns potential value ranges to
each CRL2 instruction. It is highly desirable to import these results into the LLIR. To keep
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track of the original LLIR instructions and the belonging CRL2 instructions, an adoption
of a unique identification is essential. To solve this problem, LLIR pragmas are employed.
They serve the purpose of providing additional data that can be tagged to almost any LLIR
component. The information held by the pragmas is either an arbitrary string, which can
be generated by the user, or a predefined information that was defined in the initialization
phase of the LLIR. Every LLIR instruction is labeled with a unique string, consisting of a
prefix and an individual decimal number. The same label is added as attribute to the CRL2
instructions. Thus, at any point of the aiT analysis, the corresponding LLIR instruction can
be easily determined. This track-keeping is notably relevant for the conversion of analysis
results from the CRL2 to the LLIR which is carried out by the converter crl2llir.

At the bottom of the hierarchy, LLIR operations and parameters are analyzed. This
repetitive process is performed by the two innermost nested loops. Depending on the tar-
get hardware, the examined instruction might encompass one or several operations that are
executed in parallel. Each new LLIR operation causes the creation of its counterpart, the
CRL2 operation. Operations are not denoted by a unique identification. Unlike instruc-
tions, aiT does not produce any analysis results which would concern individual opera-
tions. So, at any time, there is no need to revert to a specific LLIR operation; therefore
their unambiguous specification is deemed redundant.

Each operation is comprised of resources that are involved during the execution. In con-
trast to the CRL2, the LLIR handles these resources in the form of a separate class. The
operation class in turn distinguishes among different types of parameters. Plain types are
covered by constants and labels, which merely hold their actual value, mainly an integer
number or a character string, respectively. A more complex parameter is a register which
is modeled by its own class. It does not suffice to know the name of the register. Compiler
backend analyses and optimizations rely on different preferences of used registers. For ex-
ample, the Lifetime Analysis and the Def/use Chain Analysis (see section 4.2) investigates
the usage type of registers at a specific point, e.g. the registers are checked if they are
employed for read accesses, write accesses or even both. These characteristics as well as
some others are modeled as class attributes.

As mentioned above, the CRL2 format does not provide any classes for parameters.
Constants are handled by internal data types that basically express numerical values. Like-
wise, labels are represented by internal numerical data types. Due to the fact that the CRL2
library assumes a binary program as input, the labels are not treated as strings but as ad-
dresses which got resolved by the linker. And finally, registers are modeled by internal
string types that hold their name. At first view, the representation of operation parameters
by simple data types might seem to impose some restrictions. However, CRL2 is cooper-
ating with AbsInt’s NET library that provides a complex data base for each instruction of
a specific processor. Based on this data, it is sufficient to supply the NET library with the
register names in order to construct fully detailed CRL2 instructions. An in-depth descrip-
tion of the powerful NET library and its functions will follow in the next subsection.

With respect to the classification of operation resources, both intermediate represen-
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tations act in the same manner. The LLIR as well as the CRL2 distinguish between re-
sources which are exclusively read or written. The LLIR uses the notation USE and DEF
for read-only and writable resources, respectively. AbsInt’s CRL2 format designates re-
sources which are read by src and those which are written by dst. Due to the nature of
constants and labels, these operation parameters are solely marked as readable preventing
write accesses.

In addition to the registers, which occur in an assembly file, most low-level intermediate
representations operate on internal auxiliary registers that reflect the actual structure of an
operation more precisely. Moreover, these registers are used for the data flow analysis in
order to model dependencies which do not emerge with ordinary assembler registers. Thus,
they are essential for numerous optimization approaches which rely on the results from the
DFA. These internal registers are processor-dependent and must be predefined for each
target architecture. For instance, for the Infineon TriCore TC1910 DSP, the LLIR allows
the creation of the internal registers CSA and CSFR. The former denotes the Context Save
Area. It designates the memory area that is used by the processor to store a current context.
The memory area may consist of different processor registers which are statically defined
for each individual architecture. The CSA is employed for context and task switching. For
example, the TriCore instruction set architecture (ISA) involves the Context Save Area in
its CALL instruction to store the current register values and jump to another subroutine.
After the return to the caller routine, the saved values are loaded and the previous state of
the program is restored. The internal register CSFR addresses to the Core Special Function
Register which is a particular register that can only be accessed by some few specific
instructions, e.g. the instruction MFCR (Move From Core Register) involves CSFR at the
startup of the executable code.

These internal registers are omitted when it comes to the conversion of the LLIR into
the CRL2 format. The reason is that the NET library is aware of any resources that are
used with a particular operation. Since the internal registers are constant for a specific
instruction, they are not required to be known when a new CRL2 operation is created.
In contrast, the regular data and address registers, which are found in an assembly code,
differ since they represent an individual program. Depending on the prior assembly code,
the register allocator replaces virtual registers by physical registers that are currently not
used. Thus, to reflect the actual code, the involved register names have to be supplied.

5.2.3 The TF14NET Library

The aiT WCET analyzer performs its analyses based on AbsInt’s low-level intermediate
representation. This representation is called CRL2 and represents a versatile processor-
independent format (see chapter 2). To enable analyses for a particular processor, CRL2
requires further hardware information. This data is given in a so-called NET file that repre-
sents a unique specification for a certain processor. Due to the complexity of present-day
processors, the NET file possesses an elaborate structure. To simplify the retrieval of data,
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the tf14net library is applied. It can be interlinked with any processor specification file and
provides functions to read the NET file as well as to evaluate the gained information. A
prominent example is the collaboration with the decoder exec2crl that makes extensive use
of the library to construct a CRL2 control-flow graph from a binary executable program.

In this thesis, the tf14net library is used with the TriCore NET file. It cooperates with
the CRL2 library in order to generate appropriate CRL2 instructions. In addition to the
CRL2 library, both the tf14net library and the TriCore NET file have been provided by
courtesy of AbsInt.

The NET file holds numerous information on the processor architecture. In the very
beginning, possible register types are declared. Besides their classification in data, address
and extended registers, each register type is specified by its width and composition. In
addition to some other auxiliary declarations, each operation that is provided by an indi-
vidual processor is described in detail. The description is divided into two sections. The
first one encompasses attributes that are valid for the entire operation, e.g. the opcode,
the mnemonic, the addressing mode and the number of execution cycles. The second one
consists of specifications that concern single operands.

The attribute opcode, which is called op_id, serves the purpose of identifying an oper-
ation. It represents a unique binary number. Within this binary representation, which can
at most have 64 bits, the corresponding machine code bits are encoded. To put it in other
words, each operation is assigned a predefined unique number that is stored in the attribute
op_id. Depending on the target architecture, the structure of this binary number may dif-
fer. Some processors read the machine code byte-wise, others word-wise. Also, the byte
order scheme, namely little-endian and big-endian, affects the composition of this unique
identification number.

The usual workflow of retrieving the appropriate operation from a binary executable
program begins with the decoder exec2crl. Depending on the architecture, each operation
obeys a specific format called the operation format. The formats consist of groups of
bytes that represent either the operation ID or the used operands. Additionally, the global
attribute mc_bitmask, which is defined in the NET file for each operation, is required.
Again, it is a binary number which is used as a mask to determine the significant bits of
the attribute op_id. More precisely, each position of bits of mc_bitmask that are set to 1 is
also examined in the attribute op_id. If both attributes hold the value 1 in same positions,
a match is achieved which indicates that the appropriate operation was found. In the case
of a deviation, the considered operation does not match and the recognition algorithm
continues with the next one. This repetitive comparison is applied to the entire byte stream
of the binary program [The01].

If a valid operation is found, the decoder is still compelled to supply the involved re-
sources. Having all mandatory data available, the tf14net library starts to construct the
actual CRL2 operation. This process is highly complex and emphasizes the full strength
of the library. Each complex operation in the NET file is assigned a set of extensions. Ex-
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tensions are a hierarchical description of operands. Each operation may be comprised of
several operands which are accessed in a well-defined order. Furthermore, each operand
in turn may even have a complex structure which needs a hierarchical representation. The
complex structure as well as the access order are modeled by extensions. Due to the diver-
sity of possible operands, operations contain groups of extensions. The same bit-matching
algorithm, which carried out the identification of operations by their op_id, is responsible
for the selection of the proper extension. Together with the register names, the tf14net li-
brary is able to create a full CRL2 operation. Exactly this construction chore is done by
AbsInt’s decoder automatically. The byte stream extracted from the binary executable is
analyzed and passed to the tf14net library. The result is a sequence of CRL2 operations
which contribute to the reconstruction of the control-flow graph.

5.2.4 Instruction Recognition

The most appropriate way to create CRL2 instructions is to employ the functions which
are provided with the tf14net library. Like exec2crl, the developed converter llir2crl in-
corporates library functions to generate CRL2 instructions which are added to the corre-
sponding CRL2 basic blocks. The functions require two sets of data, namely the op_id and
the involved resources.

Within the TriCore NET file, each supported operation is designated by a unique op_id.
The classification of the operations rely on the mnemonic, the alignment of the operands
(called opcode format) and the addressing mode. In contrast, the LLIR merely accommo-
dates mnemonics and the addressing mode but does not hold any direct information on
the opcode format. Due to this missing information, a direct mapping of NET operations
and LLIR operations in not possible. For example, the class of AND operations provided
by the TriCore ISA encompasses 4 different unique operations. They are characterized by
their mnemonic and their opcode format. The addressing mode, as for most operations,
is not given, since the operations are not involved in the calculation of effective memory
addresses. In the current state of the LLIR, a direct mapping to the NET operation is not
unambiguous. As can be seen in figure 5.4, an LLIR operation with the mnemonic AND
could correspond to four different NET operations.

A solution to this problem is the determination of opcode formats based upon LLIR
data. For this purpose, the types and the alignment of operation operands must be analyzed.
The detailed proceeding will be described later.

Operations, which operate on memory addresses, are characterized by their addressing
mode. For example, the TriCore ISA supports 12 individual LD.W (load word) operations.
Five of them can be identified by the opcode format, the remaining ones are assigned a
unique addressing mode. Thus, besides the opcode format, the addressing mode, as further
search criteria, has to be taken into account.

AbsInt’s decoder exploits the full range of data that is given in a binary executable.
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Figure 5.4: Ambiguous assignment of LLIR and NET operations

Each byte of the program can be analyzed; this is extremely beneficial when it comes to the
recognition of the op_id. The read bits of the byte stream are examined by a bit-matching
algorithm in order to obtain the right operation. Thus, it is not required to analyze each
operation parameter to find the corresponding operation format. Since the LLIR does not
hold any information, which were gained from a program that was run against an assem-
bler and linker, the full information range from the byte stream is missing. Hence, the given
LLIR information serves as the resource to find the appropriate operation identification.

For the purpose of finding the proper op_id, an algorithm has been developed. It re-
quires the LLIR operation, which is supposed to be analyzed, as well as the NET file.
In the first phase, the significant data from the NET file is transformed into an internal
data structure in order to omit any data, which is not relevant, and thus to simplify the
evaluation. The attributes from the NET file, which are involved in the algorithm, are:
the mnemonic, the operation format, the addressing mode and finally the sought op_id.
Mnemonics represent the human-readable form of on opcode, e.g. ADD or ST.W (store
word). Although they substantially restrict the search for the actual operation, they still do
not yield unambiguous operations. This ambiguity results from the fact that there might
be several operations which are assigned the same mnemonic.

To get a more subtle specification, further operation characteristics have to be consid-
ered. The next attribute, which again decreases the number of potential candidates for the
sought-after operation, is the opcode format. The TriCore DSP distinguishes between two
classes of formats. As the attribute names suggest, the 16-bit and the 32-bit opcode for-
mats are incorporated in 16-bit operations and 32-bit operations, respectively. Each class
contains numerous formats which rely on the used parameters. For example, the TriCore
ADD instruction encompasses 8 different opcode formats which indicate whether the in-
struction has a width of 16 or 32 bit. Moreover, the formats differ in terms of the involved
parameters; they state if constants, regular data registers or even the implicit ata registers
D15 are used. The following listing illustrates some typical TriCore ADD instructions
which are assigned different opcode formats:

# 16-bit opcode formats
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ADD D3, D2
ADD D3, #126
ADD D15, D2, D3

# 32-bit opcode formats
ADD D3, D1, D2
ADD D3, D1, #126

Here, D1, D2 and D3 are regular data registers, whereas D15 represents the implicit data
register [Inf05].

The mnemonic and the opcode format are almost sufficient for an unambiguous iden-
tification of an operation. However, there are still some instructions which have an iden-
tical mnemonic and operation format parameters. The only distinction is their varying
addressing mode. Most machine languages refer to operands that are stored in memory.
The addressing mode specifies the calculation of an effective memory address of a certain
operation operand, using values held in registers and constants. Mainly load and store in-
structions make extensive use of the various addressing modes to operate on the memory.
The used target architecture in this thesis provides eight different modes such as the Pre-
and Post-increment Addressing Mode or the Short and Long Offset Addressing Mode.

To sum it up, the first phase of the opcode recognition algorithm reads the mnemonics,
the opcode formats, the addressing modes and the operation IDs from the NET file. These
attributes are stored in an internal data structure which is implemented in the form of
nested maps. The outer loop stores all mnemonics as map keys. The corresponding values
are again maps which accommodate the opcode format as a map key and refer to the core
map as a value. The core map as the innermost component stores addressing modes as
map keys and the sought operation IDs as map values. The data structures employed by
the algorithm are depicted in figure 5.5.

Figure 5.5: Overview of the internal data structure holding the operation ID

However, there are still some exotic operations which can not be unambigu-
ously identified. Notably multiplication operations correspond in their mnemonic
and their operation format, but are assigned no addressing mode. They dif-
fer exclusively in a specific identifier which indicates one of the possible
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multiplication modes. For example, the TriCore processor supports four cases:
Upper * Upper, Upper * Lower, Lower * Upper and Lower * Lower (see [Inf05]):

MADDR.H D[c], D[d], D[a], D[b] UU, n #opcode format (RRR1)
MADDR.H D[c], D[d], D[a], D[b] UL, n #opcode format (RRR1)
MADDR.H D[c], D[d], D[a], D[b] LU, n #opcode format (RRR1)
MADDR.H D[c], D[d], D[a], D[b] LL, n #opcode format (RRR1)

The syntax tokens D[a] - D[d] designate data registers while n symbolizes a multi-
plication result shift value. As can be seen, all four operations bear the same mnemonic
MADDR.H (Packed Multiply-Add Q Format with Rounding) and are denoted by the same
opcode format (RRR1). The only difference are the identifiers UU, UL, LU and LL which
occur as operation operators in the assembly code. Due to the fact that the total number of
these differently structured operations is relatively small, their recognition is static, i.e. the
algorithm data structures are not consulted but the appropriate op_ids are hard-coded.

In the second phase of the algorithm, the structure of each LLIR operation is analyzed.
Firstly, the mnemonic is determined and employed as search criteria for the outer map
of the internal data structure in order to retrieve the inner map that holds the operation
formats. Secondly, a set of rules is consulted to find the appropriate operation format. The
rules refer to the operation operands which, depending on their type and alignment, yield
a specific format. During the development of the algorithm, one of the main efforts was
the creation of the rule base. A thorough examination of each opcode format provided
by the TriCore DSP was performed. Firstly, different operand types had to be taken into
account. The main distinction relates to the basic operand types that are supported by
the LLIR, mainly registers, constants or labels. However, this superficial differentiation is
not sufficient to identify a unique format. For this reason, a more subtle analysis has to
be utilized. Further distinctions refer to the width of constants and the characteristics of
registers. For some formats, it is crucial to know whether a constant has a certain width,
e.g. 9 or 16 bits. Another decisive factor is the register type; among the distinction of
data and address registers, some formats are up to the precise register description, e.g. the
TriCore implicit data register D15.

5.2.5 Assembler Directives

Together with the hard-coded part of some exotic multiplication operations, the algorithm
has the ability to identify nearly all operations unambiguously. However, the TriCore in-
struction set still contains few operations which can not be determined explicitly with the
means provided by the LLIR. For instance, there are two versions of the MOV instruction:

# 32-bit instruction
MOV D[c], D[b]

# 16-bit instruction
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MOV D[a], D[b]

D[a], D[b] and D[c] denote arbitrary data registers. Within the LLIR, an operation
of this type merely holds two registers as operands. The registers are assigned a regular
name that is a concatenated string of the character D (designating a data register) and a
decimal number, ranging from 0 to 14, as suffix. The cause of missing detailed information
emanates from the nature of the LLIR. Due to the fact that the LLIR is supplied with an
assembly file as input, there are no precise information about the involved operations. The
crux of the problem is that the assembly code does not expose any details on the operation
width. Thus, it can not be inferred if a 16-bit or 32-bit instruction is utilized.

This ambiguity prevents a proper generation of CRL2 operations. The NET file contains
unique op_ids for each width-dependent operation. However, when it is unknown if the
assembly code represents a 16-bit or 32-bit operation, the op_id can not be exactly defined.
Incorrectly chosen operation IDs would yield CRL2 operations which do not reflect the
actual LLIR code (and thus the program to be analyzed). To prevent deviations between
both the LLIR and the CRL2 representation, consistent assumptions must be made. The
instruction set of the TriCore processor provides for the ambiguous 16-bit instructions
equivalent 32-bit instructions but not vice versa [EF94]. Thus, it will be assumed that each
ambiguous operation is handled in its a 32-bit version. Accordingly, care must be taken
that the generated CRL2 operations are employed in their 32-bit version. Consequently,
the assembler has to be forced to translate these assembly operations in appropriate 32-bit
machine code operations.

In this manner, a synchronization between the LLIR and CRL2 is achieved. It is guaran-
teed that the CRL2 representation, which is used as input to AbsInt’s aiT WCET analyzer,
operates on the same operations which are dumped out by the LLIR. This synchronization
is essential for proper timing results. To make things clearer, assume that the treatment
of ambiguous operations was omitted. It could happen that the converted llir2crl creates
a CRL2 operation that reflects the 16-bit version. On the other hand, the LLIR produces
assembly code and this code is handed to the assembler. Without any directives, the as-
sembler assumes the operation to be 32-bit and generates the corresponding machine code.
The result is a deviation between the actual binary program and the program analyzed by
aiT. Since the analyzer is operating on different operations, the calculated worst-case ex-
ecution estimates do not reflect the authentic timing behavior of the compiled program.

Due to the same reason, the overall burden of the tedious operation identification is
mandatory. At first view, it might seem that it would suffice to take the mnemonics exclu-
sively into account. Based on this information, one could easily select an arbitrary op_id
that is assigned to this mnemonic. Certainly, aiT would produce WCET estimates which
approximately reflect the actual timing estimates of the binary program. As mentioned
above, a deviation would arise from varying operations used for the program and for the
output to the analyzer. However, when precision is an issue, both the analyzer input and
the machine code of the compiled program must be identical. To put it in other words, both



48 Extensions to the LLIR

constructs must utilize exactly the same operations.

To solve the dilemma of unambiguous operations, assembler directives (often called
pseudo-operations) are employed. In addition to regular statements for machine instruc-
tions, present-day assemblers provide directives to steer the assembly process. To differen-
tiate between them from the regular assembly instructions, the directive names are prefixed
by a period. A large number of the assembler directives is processor-independent. For in-
stance, the directive .global makes a symbol visible to the linker and may be notably
applied to handle global variables that are given in a source code. Global variables, like
in the high-level language C, are defined outside any function and may be accessed from
other classes. To accomplish a global scope of a global variable, other partial programs,
which are involved in the linking process, have to be aware of that variable. This is exactly
done by the directive .global.

Other assembler directives are tailored to a specific target hardware and exploit their
characteristics. The TriCore assembler comes with some specific directives to steer the
translation process. .code16 and .code32 coerce the assembler into emitting a 16-bit
or 32-bit opcode for the subsequent operation, respectively [EF94]. These directives are
utilized in this thesis work to map out a specific operation in order to avoid ambiguity.

Whenever an operation representation is detected in the LLIR, which can not be exactly
determined, the LLIR is extended by a new pragma. Usually, LLIR pragmas are employed
to provide additional information on the key components, e.g. they are used as comments
that are passed to the assembly code. For this thesis, the pragmas have been slightly mod-
ified to serve the purpose of assembler directives. They are added to the LLIR and occur
in the assembly code that is generated by the LLIR as output. This code can be supplied
to the assembler which generates machine code that contains the predefined operations.

Of course, the algorithm, which is responsible for the generation of the proper op_ids,
takes the aforementioned special cases into account. Depending on the existence of appro-
priate assembler directives, the proper op_id is generated and passed to the tf14net library
which finally creates the sought CRL2 operation.

5.3 Required Extensions to the LLIR

This section discusses the extensions to the Low-Level Intermediate Representation
(LLIR) that are required to manage additional information on its elements. In the current
state, the LLIR serves the purpose of a pure compiler backend for regular systems that
do not rely on a precise execution time. The LLIR provides all essential data structures
to construct a control-flow graph of a given program and to perform data flow analyses.
Together with the available optimization techniques, the LLIR allows one to produce ef-
fective assembly code which provides an ample basis for further code transformations.

Unlike regular systems, real-time systems are time-critical platforms which rely on the
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observance of execution time bounds. In order to generate code for this type of systems,
the compiler backend requires details on the timing behavior of a program. This inevitable
information must be available for basic blocks which represent an atomic unit in regard to
the low-level consideration of a program.

It is desired to create a compiler that offers the opportunity to produce code for real-time
applications. To accomplish this goal, the current compiler framework must be extended.
More precisely, the extensions concern the low-level representation of the program to be
analyzed which is given by the LLIR. The extensions consist of new data structures that
accommodate timing information but also of appropriate mechanisms to read and write
this data.

The primary goal of this thesis is to design and realize concepts for worst-case execution
time compiler optimizations. That is, the LLIR must provide WCET details on its struc-
tural components. Basically, timing information is tagged to basic blocks since they are
regarded as an atomic unit which is executed entirely or not at all. However, for the sake of
simplicity, it is beneficial to provide WCET information also for LLIR components which
are on a higher hierarchical level. For example, LLIR functions, which are comprised of
at least one basic block, should expose the accumulated WCET of all their basic blocks.
Certainly, this goal can be achieved by examining all basic blocks separately and adding
their local worst-case execution times. This approach is very cumbersome, though, and
is therefore replaced by transparent functions which return the accumulated timing esti-
mates for a specific LLIR function. The performed calculations which are behind this get
function are hidden from the user.

Based on these extensions, the goal pursued in the present thesis can be accomplished.
The supplementary WCET estimates serve as basis for a compiler that optimizes code in
terms of the program execution time. By integrating the LLIR extensions and the various
software add-on modules, which have been developed within this thesis, one can develop
novel analysis and optimizing algorithms. Due to the simple interface, which will be de-
scribed in more details in section 5.4, the user can fully focus his work on the development
of the algorithms and is untroubled by a complicated retrieval of required data.

While designing the concepts for the extensions to the compiler framework, attention
was paid to both reusability and generics. Although the main goal of this thesis was to
extend the LLIR in terms of the worst-case execution time, the involved concepts allow an
easy upgrade to the backend software for other applications. This is made possible by the
use of an unchanging interface which is responsible for the connection between the LLIR
elements and the supplementary data.

The general idea is shown in figure 5.6. To achieve a separation between the LLIR and
the additional information, the concept of objectives is adopted. A thorough introduction
to objectives will be given in section 5.4. Objectives are individual units that store vari-
ous information, e.g. the worst-case execution time, the best-case execution time (BCET)
or the energy consumption. The structure of the objectives is not predefined and can be
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Figure 5.6: Interaction between LLIR and objectives

modeled arbitrarily depending on the given requirements. The user may create new types
of objectives which are tailored to a specific application. These objectives can have user-
defined functions and attributes. Each LLIR component is equipped with a handler which
connects the former with an arbitrary number of objectives. This means that the supple-
mentary information is not directly stored in the LLIR but handled by a connection to the
information carriers.

Assume that the LLIR is supposed to be involved in a foreign application field which
demands new details to the LLIR components. Instead of modifying the LLIR code, new
tailored objectives are realized which can be accessed by the handler. Thus, the LLIR
represents a central point for the retrieval of new information but remains unchanged by
itself. The entire compiler framework can be easily adapted to new applications by merely
providing the appropriate objectives. This circumstance serves the reusability and is highly
beneficial for the entire development process.

A huge advantage is given by the fact that the user is free to add or modify objec-
tives that are suited to his needs. The design process succeeds independently of the LLIR
structure. This circumstance fosters the simple and wide use of the objective framework.

Another aspect concerns the usage of the compiler framework by third parties who are
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not permitted to view the source code of the LLIR. If the availability to the LLIR code
was a prerequisite to produce new objectives, the entire framework would not be adequate
for release purposes. The circle of potential developers would be substantially restricted to
those who have full access to the source codes. Of course, this is rarely desired since the
LLIR should remain intellectual property.

In contrast to the limited concept described above, the developed mechanism of this
thesis allows an independent connection of customized objectives to the LLIR. The latter
may be provided in a compiled version protecting the program code. Third parties are free
to add new objectives that suite their needs without taking the LLIR directly in consider-
ation. Hence, this design concept makes the LLIR a multifunctional backend that offers a
wide range of application areas.

There is a great number of further potential applications where objectives, which serve
as auxiliary information carriers, might be employed. In addition to the worst-case exe-
cution time, a related problem is given by the best-case execution time (BCET). Notably
control systems may make extensive use of it. Often, lower time bounds have to be obeyed
when the control center communicates with other units, i.e. the transmitted signals must
not be received before a defined point of time [Erm03]. Due to the intensive correlation
between the BCET and WCET, the development of appropriate objectives does not im-
ply a high design and programming effort. The present WCET objectives can be basically
reused, if not even adopted almost unmodified. Like the WCET estimation, sophisticated
BCET analyzers perform their calculations on data expressed by context-dependent exe-
cution counts and local execution times. To generate precise results, the consideration of
individual contexts for loops is essential. Since all data structures that store these analysis
results already exist for the WCET objectives, they can be reused unchanged for the BCET
issue. The remaining task would be the realization of an application that reads the results
of the BCET analyzer and transforms them into the objectives.

Another field of application for objectives can be the optimization in terms of energy
consumption. Especially in the domain of portable embedded systems, like cellular phones
or pagers, batteries become a bottleneck. Their low performance prevents the reduction of
system cost and weight. To overcome this dilemma, low power design techniques have
to be applied [FV04]. Objectives, which hold appropriate energy information, would aid
the process of developing novel optimization algorithms. To accomplish this goal from a
simplified view, two problems have to be regarded.

Firstly, an energy model of the target hardware is required. For the sake of complete-
ness, it should be mentioned that this information is yet not available for every proces-
sor. Some hardware models are deemed confidential and not published by their vendors.
Among other details, the models expose the energy consumption of each instruction. This
kind of data is ideally suited to be stored in an objective. Individual energy consump-
tions are wrapped in objectives and interlinked via handlers to the corresponding LLIR
instructions. At this point, the strength of the developed handler-objective framework is
once again accentuated. The required data from the energy model which requires to be
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provided to the compiler backend does not entail any tedious modifications to the LLIR.
The objectives are developed independently and can be easily combined with instruction
objects. Also, the retrieval of the energy consumption details is simple due to the generic
functions.

The second problem that is inevitable for the energy-aware optimizing algorithms is
the specific order in which the instructions are executed. It turns out that different exe-
cution orders significantly affect the power consumption. In order to pay attention to this
circumstance, individual objectives have to be set in mutual relation to interchange data.
Thus, the execution order can be modeled. In summary, it can be ascertained that the ob-
jective framework is convenient as a basis for the development of energy consumption
optimization algorithms.

To refer back to the concept discussion, the separation between the objectives and the
LLIR eases the software maintenance. Both parts of the framework are developed au-
tonomously. New objectives are added to the LLIR which can even be available in a
compiled version. Similarly, the LLIR code can be maintained separately without any
knowledge of the existing objectives. This permits the incorporation of independent LLIR
versions into various projects. The developers expand their objective framework and con-
nect it to their version of the LLIR. Another developer team may work on the LLIR code
and provide new updates to the objective developers. Thus, a project structure with stand-
alone teams is achieved. None of the developer teams is constrained by others. In the case
of one single version of the LLIR, which served as basis for the integration of new ob-
jectives, a persistent synchronization would be mandatory. Each modification to the LLIR
performed by one team had to be taken into consideration by the remaining developers. To
keep the LLIR code consistent, each new modification would entail tedious consultations.

The handler is not only utilized to read objectives. The converter crl2llir creates new
objectives that accommodate the results produced by the aiT WCET analyzer. Due to
varying requirements, each type of an LLIR element expects a specific objective. After
the creation of the objectives, the corresponding handlers are determined and the new
objectives are appropriately interlinked.

In addition to the reusability, great attention was paid on generic concepts. The pro-
pelling idea was to provide a universal interface between the LLIR and the objective
framework which was valid for any type of objectives. As already stated in the discus-
sion on reusability, a strict separation between the LLIR and the objectives was pursued in
this thesis. Due to this fact, the mechanisms for the retrieval of information that are stored
in the individual objectives must remain constant. It is desired to have one identical get
function that is contained in each LLIR object. This function should have a unique name
and an identical return type.

As a result, the consistent functions simplify the access to the objectives. Each LLIR
object contains a function called getHandler. The function is derived from a base class
and is thus identical for all objects. Its purpose is to retrieve the corresponding handler
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which grants access to the objectives that are available. In this manner, a connection be-
tween the LLIR components and their information carriers is established and the additional
data might be read.

The main advantage of one single function is that the user does not need to care about
individual function calls. Regardless of the current LLIR element, there is invariably one
function which retrieves the corresponding handler that in turn reads and writes the ob-
jectives. If the handler was omitted and each objective was directly attached to the LLIR
elements, then a confusing class structure would emerge. For each new objective type,
individual interface functions were required. Moreover, all objectives which were ever
added to the LLIR, had to be available in order to guarantee a proper operation mode of
their LLIR functions. To jettison obsolete objectives, a tedious modification of the LLIR
code would be required. In contrast, the elaborate handler that was developed in this thesis
provides a function to check if a sought objective is available for a specific LLIR element.
Thus, the user is given an overview of all present objectives. However, if an objectives no
longer exists, there are no individual LLIR functions which refer to the missing objectives.
Hence, the removal of unused objectives does not induce any modifications to the LLIR
code.

To achieve a standard access to the objective handler, each LLIR class must hold the
same functions. The most efficient way to accomplish this goal is to add the handler func-
tion exclusively to one class which serves as basis for all other classes. The high-level
language C++, which is used to implement the LLIR, provides a form of software reusabil-
ity called inheritance. The programmer creates classes that absorb an existing class’ data
and behavior and enhance them with new capabilities. This existing class is referred to as
the base class. The inheritance mechanism is exploited for the realization of the handler
function. Each LLIR class derives its members from the class LLIR_TaggedElement. In
the past, this base class was employed to summarize multiple LLIR pragmas. The latter
are stored in a list of the base class and passed to the derived classes. As a result, the
pragma list requires to be created once and is automatically available in all newly created
LLIR classes. In the same fashion, the function getHandler is appended to the class
LLIR_TaggedElement. Hence, all LLIR components, except the register class which can
not be assigned pragmas, obtain an interface to the objectives.

It has been shown that the elaborate handler mechanism developed in this thesis benefits
both the reusability of the LLIR and the simplified access to the objectives. On the one
hand, the LLIR might be involved in independent projects which design and realize user-
defined objectives. On the other hand, the use of inheritance grants a standardized interface
to the objectives; thus read and write accesses can be easily performed.
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5.4 Objectives and Handlers

The developed mechanism of extending LLIR elements by further data is based upon
handlers and individual objectives. The latter are information carriers which are interlinked
with LLIR elements via handlers. They can be customized for various applications since
their structure is not subject to any restrictions.

A major task in the initial phase of this thesis is to design an appropriate concept for sup-
plementary information carriers. The primary goal concerns backend extensions in terms
of the worst-case execution time. However, the developed concepts should not merely
serve this single purpose but are supposed to provide a versatile utilization. The goal of
the extensions to the current compiler framework is a novel interface that can be reused
for further applications. More accurately, the implemented mechanisms should remain un-
modified when new types of objectives are added. Besides their independent development,
a versatile approach for interlinking with LLIR elements should be supported. To realize
these requirements, various concepts have been taken into account. In the following, the
evolution process is briefly outlined.

Figure 5.7: Concept of a single objective

The first idea was the design of a single overall objective for each involved application.
It would be assigned to the entire LLIR representation which is the top of the hierarchy.
At first view, this concept seemed to be the simplest and a sufficient solution. An objective
would store all desired data and could be accessed by a function stored in the LLIR class
(see figure 5.7). The main drawback arises from both the complicated storage and the re-
trieval of data. Since the information is not directly assigned to the LLIR components, all
accesses are compelled to consult the LLIR root object. In the current version of the LLIR,
only function objects possess a direct routine to retrieve its dedicated LLIR representation.
Other elements are required to traverse the hierarchy stepwise to get the top element. For
lower elements of the tree structure, it becomes a chore. For example, LLIR operations
had to read its encompassing instruction, then the corresponding basic block followed by



5.4. Objectives and Handlers 55

its function, and finally the root entity. To avoid these multiple function calls, the LLIR
elements could be extended by adequate functions. However, this step would violate the
condition of minimal modifications to the LLIR code. Furthermore, this concept would
significantly complicate the development of objectives. Each of them had to hold informa-
tion on all potential LLIR elements. Thus, complex data structures and functions had to be
provided. The emerging design and realization challenge of objectives would be several
times greater than the challenge that comes up with the current improved concepts.

A way out of the dilemma mentioned above is presented by a improved approach which
assigns individual objectives directly to the proper LLIR elements. Each information car-
rier accommodates merely data that is significant for its low-level representative. In this
fashion, both the structure of the objectives and their interlinking are substantially simpli-
fied. The objectives jettison their complex data structures since there is no need to store all
arising information depending on their LLIR elements. Moreover, the entire underlying
mechanism to integrate objectives and to fetch their data increases the ease of use. The
information is addressed directly by the LLIR components, and thus makes the cumber-
some retrieval of the LLIR root entity redundant. However, one disadvantage still remains.
Due to the fact that the objectives are directly assigned to LLIR components, each class
has to be separately extended by suitable functions. Besides the undesirable amount of
modifications to the LLIR code (see section 5.3), these extensions lead to an inconsistent
interface. Different types of LLIR elements provide varying functions and cause a difficult
handling of objectives. The final concept tackles the problem of the inefficient interface.
The framework is extended by the concept of a handler and results in a productive collab-
oration of the LLIR and their objectives. Its design and realization is thoroughly described
in the following.

Due to inheritance, each LLIR element is assigned an individual handler. It is imple-
mented in the class LLIR_TaggedElement which serves as a base class for most of the
other structural components. The general purpose of the handler is to provide a connec-
tion between particular objectives and its LLIR elements. Hence, a well-defined separation
is accomplished which allows an independent development of both software modules. To
obtain potential data that are placed in an objective, a two-step system is intended to be
run through. Firstly, it must be checked if the desired information is available at all. After
consulting the handler and receiving a positive response, the second step performs the ac-
tual read operation. The handler is involved again in order to establish a connection to the
objective that exposes its data.

Each handler manages the individual objectives that are assigned to a particular LLIR
component. In order to allow dynamic behavior, a list was chosen as data structure. It is not
constrained by a predefined fixed size but may be arbitrarily expanded. Thus, each handler
can hold any desired number of objectives. Besides, the handler class provides auxiliary
functions which aid to steer the linking process between the LLIR and their objectives.
The main functions are briefly introduced in the following paragraphs.

Each objective requires a unique identification in order to be distinguished by a handler.
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This is important to verify if an individual handler is already assigned a specific objective.
Moreover, this identification prevents to add multiple objectives of the same type to a
single handler. For this purpose, each objective is assigned a unique type, e.g. WCET or
BCET.

When a new objective is created, the corresponding handler must be notified. If the
objective type is integrated into the framework for the very first time, the class attribute
ObjectiveType must be extended by the type of the objective. After this adjustment,
all functions can be employed for the new type class. In the next step, the individual
handler of the particular LLIR object is retrieved using the function getHandler. After-
wards, its objective list is to be updated. For this purpose, the function addObjective is
invoked. It expects the newly created objective as function argument and appends it to the
handler list. The extension to the list succeeds only if there are no other objectives of the
same type already managed by the handler. This constraint makes sense since a particular
LLIR element may be assigned at most one objective of a specific type. For example, it
is practically infeasible that a basic block possesses more than one worst-case execution
time estimate for a single program. Hence, adding two WCET objectives to the handler of
a single basic block would be trapped by the function addObjective. This function is
notably involved in the converter crl2llir which transforms the results produced by the aiT
WCET analyzer from the CRL2 representation to the LLIR.

The function hasObjective determines whether a given objective type is present
in the current state of the list. As described above, it is guaranteed that each handler list
contains at most one objective of a specific type. For this reason, each list element is
unambiguously denoted by its type. For the sake of simplicity, the argument of function
hasObjective is therefore an objective type which is specified by the enumeration type
ObjectiveType. For example, if the user wants to know whether there is any worst-
case execution time information available for a given basic block, he calls the function
hasObjective with argument WCET. The return value is of type boolean and indicates
if the search was successful.

As a counterpart to the function addObjective, getObjective is responsible for
the retrieval of objectives which were added by the former function. In the same fashion as
hasObjective, the function is invoked with an objective type as argument. This unique
identifier allows a simplified handling. It is intended to call this function in conjunction
with hasObjective. In this two-phase model, the first step ensures that the sought
objective has been assigned to the LLIR element yet. If it is stored in the objective list of
the handler, the fetch process can be continued by performing the actual function call.

The substantial benefit of the handler is the clear separation between the objective
framework and the LLIR elements. Both parts can be developed independently since they
do not rely on each other. Due to the incorporation of the handler constructs to the base
class LLIR_TaggedElement, each newly created LLIR element is automatically equipped
with the handler mechanism. Also, the addition of new objectives can be easily accom-
plished. Basically, the list of supported objectives, which is an attribute of the handler, has
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to be slightly extended by the new newly added objective type. After these small modi-
fications, the objectives are interlinked with the LLIR and can be afterwards utilized. A
simplified overview is depicted in figure 5.8. The handler is managing three distinct ob-
jectives, where two of them are holding worst-case and best-case execution time data,
respectively.

Figure 5.8: Handler mechanism

Objectives can be freely designed to suit users’ requirements. They are not limited to
any design structures or paradigms. However, there are few functionalities that must be
available with any objective. These functions mainly serve the handler to enable a proper
collaboration with the different objectives. In order to observe these constraints, the con-
cept of abstract classes is applied. Abstract classes represent a generic or abstract concept
from which more specific classes are derived. They can not be instantiated themselves and
serve merely as a base class. To be referred to as an abstract class, the base class is com-
pelled to encompass at least one pure virtual function which has mandatorily to be defined
in all derived classes. To refer to the handler concept, the class Objective represents
the abstract class, whereas the actual objective classes (like the worst-case execution time
information carrier WCET_OBJ) are referred to as base classes. Each objective class must
provide a mechanism to expose its type. This task is carried out by the member function
getObjectiveType. Its return value is an objective type defined in the handler class. It
is the same attribute that is required to be extended when a new objective type is intended
to be supported by the handler. Thus, it serves as a unique identification. The aforemen-
tioned function is applied by the handler when new objectives are interlinked with the
LLIR elements. More accurately, in order to avoid the assignment of multiple objectives
of same type to an LLIR element, a check is performed. This procedure retrieves the type
of the new objective and compares it with the already accommodated types. In the case of
a correlation, adding of the objective is rejected.
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Besides the specification of the desired functions, abstract classes aid the process of
managing objectives of different types. This paradigm is called polymorphism. It enables
to write programs which process objectives of classes that are part of the same class hier-
archy in the same way as if they were all objects of the hierarchy’s base class. This feature
is exploited by the handler. On the one hand, all individual objectives of various types are
held in the same data structure and are treated equally. On the other hand, they provide a
broad spectrum of specialized functionalities.

Classes derived from the abstract class represent the actual objectives which are de-
signed for a specific field of application. The user is free to tailor them to his requirements
and is not required to meet any predefined constraints. There are only few specifications
the objectives are expected to accord to. These requirements arise firstly from the nature
of abstract classes; secondly, they emanate from the prerequisites of a unique objective
identification. Each abstract class contains mandatorily at least one pure virtual function.
This function must be defined in the derived classes. As mentioned previously, the handler
mechanism relies on a function that determines the objective type. Due to the fact that this
functionality must be supported, the function getObjectiveType is supposed to be
available in each objective entity. Another requirement refers to the constructor of every
objective class. The objective type is treated by the handler as a unique identification and
ensures that at most one specific objective is interlinked with an LLIR element. For this
reason, each newly created objective has to accommodate its type specification using its
constructor which can be accessed by the handler.

There are no limits to the diversity of objectives. Depending on the considered issue,
they may be purposively designed. Present-day compilers optimize code for various pur-
poses. Most of them are employed on desktop systems by average consumers who trans-
late source code written in a high-level language to a machine language. These types of
systems do not rely on execution time bounds that must be met, but try to increase the
average-case execution time (called ACET). Their compilers are not coerced into handling
time specifications for their low-level components like basic blocks. A prominent example
is the GNU gcc compiler [GCC05]. This versatile framework is developed by the Free
Software Foundation and encompasses different frontends and backends for numerous
high-level languages and machine languages, respectively. Also, the present version of the
LLIR satisfies the compiler requirements for non-time critical desktop systems. All essen-
tial information is given in the form of a control-flow and data-flow graph, and therefore,
there is no need for further supplementary objectives.

In contrast, real-time systems, which are part of embedded systems, depend on the
observance of execution time bounds. The most common issue involves the worst-case
execution time. It was the propelling problem statement which led to the present thesis.
Besides the already discussed extensions to the LLIR and the handler framework, the
first type of objectives, namely the WCET objectives, has been successfully designed and
realized. A thorough description of their structure and their creation process will follow in
section 5.5.
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5.5 Conversion from CRL2 to LLIR

This section elaborates on the back conversion of the WCET analysis results from the
CRL2 representation to the LLIR. The goal of this thesis is the extension of the current
LLIR by WCET information. Hence, the compiler backend will be suited for the develop-
ment of novel WCET compiler optimization algorithms as well as for the implementation
of time-critical applications. Moreover, a high value has been set to the development of a
homogeneous compiler framework. It allows one to exploit all available compiler analysis
results which may be passed to the WCET analyzer in order to obtain best results.

As described previously, the LLIR has been successfully converted by llir2crl to an
equivalent CRL2 representation. This CRL2 control-flow graph is supplied to AbsInt’s
WCET analyzer that performs its calculations and finally annotates the CRL2 graph with
the sought attributes. Furthermore, adequate LLIR extensions and an interlinking mecha-
nism between LLIR elements and the analyzer results have been realized. The remaining
step is the retrieval of CRL2 annotations and their import into the LLIR.

This transformation process is carried out by the converter crl2llir. Unlike llir2crl, the
converter uses the CRL2 graph hierarchy as basis. Basically, it walks through the graph
in a top-down fashion. In the beginning, each CRL2 routine and its elements are scanned
separately. The detection of valuable CRL2 annotations leads to the creation of new infor-
mation carriers called objectives. They are assigned these annotations and are interlinked
with the corresponding LLIR elements via handlers. The following paragraphs provide
a simplified introduction to the converter and its proceeding, and describes the emerging
problems in more detail.

The initial version of the CRL2 control-flow graph is constructed by the converter
llir2crl. The converter reads the LLIR control-flow graph and constructs an equivalent
CRL2 graph, i.e. there is a direct mapping between the elements of both intermediate rep-
resentations. Each LLIR function and each basic block cause the creation of corresponding
CRL2 routines and blocks, respectively. Besides, the tf14net library (see section 5.2.3) is
utilized to generate equivalent CRL2 instructions and operations. Furthermore, each CRL2
block is annotated with an attribute which holds the label name of its LLIR counterpart.
This identifier is used to achieve an unambiguous assignment of basic blocks accommo-
dated in both representations. Finally, the LLIR basic block successors and predecessors
are determined and deployed to model CRL2 graph edges.

The resembling control-flow graphs would allow a simple conversion of data between
both intermediate representations. If the results produced by aiT were attached to the initial
CRL2 graph, they could be easily forwarded to the LLIR elements. To do so, all CRL2
elements had to be traversed and their corresponding LLIR elements had to be retrieved
by merely comparing their identifications. Last but not least, the LLIR components had to
be equipped with the analyzer results.

However, aiT does not operate on the CRL2 file created by llir2crl. Before the inter-



60 Extensions to the LLIR

mediate representation is supplied to the WCET analyzer, it is possibly modified by an
auxiliary tool called crl2loop. This tool verifies if the CRL2 graph contains any loops. If
so, the graph is modified in terms of the loop transformation.

5.5.1 Loop Transformation

Loops are of prime importance for the execution time of a program. It is well-known that
most programs spend a large amount of time by iterating through loop bodies. Because of
this reason, handling of loops deserves a special attention. Especially in the recent years,
research in the domain of loop analysis has been propelled by modern speed-up processor
features, e.g. caches, branch predictors or multi-issue pipelines. They substantially accel-
erate the execution of a program and are considered an inherent part of most processor ar-
chitectures. However, they complicate the prediction of tight WCET bounds. Cache states
rely on the execution history of a program, i.e. depending on the previous instructions,
the cache content may vary. This circumstance yields cache hits and cache misses which
tremendously affect the execution time. Loops are a prominent example which demon-
strate the influence of caches. Iterations of the same loop, notably the first ones, indicate
different execution properties. The very first loop execution encounters a cache miss and
is compelled to fetch relevant data into the cache memory; this results in a relatively long
execution time. Due to speculative prefetching, it still might happen that the cache content
is modified while the second loop iteration is performed. For the next iterations, the situ-
ation stabilizes since the required data remains in the cache memory producing persistent
cache access times. Hence, the beginning loop iterations encounter different cache con-
tents than their successors. Due to this fact, a precise worst-case execution time estimation
must take a distinction of loop iterations into account. Unlike aiT, some WCET analyzers
treat the cache naively or even do not consider it at all. Their results are afflicted with a
large overestimation and are of no use for hard real-time systems.

To enhance the WCET bounds, AbsInt’s WCET analyzer examines various loop execu-
tion contexts. Originally, the loop code is located within a routine, i.e. the corresponding
basic blocks that represent the loop are treated like other routine blocks. However, this
structure does not enable a proper loop analysis. Thus, the control-flow graph is modified
to enable a simpler handling. More accurately, each recognized loop is extracted into a
separate CRL2 routine that can be assigned new contexts (see section 3.2) which in turn
reflect the contrasting loop iterations. This approach is called loop transformation and is
based on the Virtual Inlining and Virtual Unrolling algorithm [MAWF98].

An example clarifies the procedure of the loop transformation. Assume that this simple
for-loop, nested in a routine, is given in a pseudo code:

routine R {
BLOCK0;
for ( BLOCK1 )
BLOCK2;
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BLOCK3;
}

In the beginning of routine R, basic block BLOCK0 is executed. Subsequently, the loop
header BLOCK1 is evaluated and possibly the loop body referred to as block BLOCK2
is executed. Before the routine is left, basic block BLOCK3 is interpreted. Figure 5.9 de-
picts the corresponding control flow. The solid arrows symbolize the regular control flow.
The other arrows starting from the loop header (BLOCK1) denote the true and false edge,
respectively. As long as the condition of BLOCK1 is met, the control flow repetitively ex-
ecutes BLOCK2 that is reached by the true edge. Otherwise, the false edge to BLOCK3 is
traversed and the routine is left at the END block. One possible trace might be expressed
in the following way:

BLOCK0 −→ BLOCK1 −→ BLOCK2 −→ BLOCK1 −→ BLOCK3.

Figure 5.9: Control flow before loop transformation

This configuration complicates the data flow analysis (DFA) which is part of the WCET
analysis. The former sets up equations for each node of the control-flow graph. These
equations are obtained by calculating the output from the input and express dependencies
between different data elements that are modified by the program. Referring to loops,
the equation for the loop body is determined by combining the data flow value of the
loop entry and the loop exit point. Due to the fact that loops may begin their iteration in
a completely different state than encountered in further iterations, it is beneficial for the
DFA to separate them from the routine. This modification of the control-flow graph is done
by the loop transformation. The entire loop is shifted to a newly created CRL2 routine that
is called from the original one. Furthermore, the loop iteration is substituted by recursion,



62 Extensions to the LLIR

e.g. the loop calls itself before it returns to the loop header. In correspondence to the
aforementioned code, the pseudo code after the loop transformation is defined as follows:

routine R {
BLOCK 0;
call_loop_R.L1: call R.L1;
BLOCK3;

}

routine R.L1 {
if ( BLOCK1 ) {
BLOCK2;

recursive_call_R.L1: call R.L1;
}

}

The program has been split into two routines as can be seen in figure 5.10. The orig-
inal routine R calls routine R.L1 which represents the extracted loop. The routine name
was chosen deliberately since it corresponds to the naming convention that is used by aiT.
Loops in a routine are enumerated by decimal numbers, beginning with the decimal 1.
Each routine that is created by the loop transformation is assigned a routine name that
is a concatenated string of the original routine name, a colon and the enumerated loop
Ln. After evaluating the loop header BLOCK1, BLOCK2 is executed and finally the loop
calls itself recursively at recursive_call_R.L1. The recursion redirects the con-
trol flow back to the loop header. The false edge, which is traversed when the if con-
dition is not met, leads the program through the end block back to the loop call node
call_loop_R.L1 in routine R, where the further program execution is resumed.

The presented loop transformation is supposed to provide a first notion of the modifica-
tions applied to CRL2 loops. Besides simply structured loops, most applications employ
loops which contain multiple exits, i.e. the loop is not solely left at the end but may contain
several return statements which serve as exit points. Consequently, the loop transfor-
mation slightly differs but the general concept remains [ait]. As a counterpart to the latter
loop type, some few programs, notably library routines, operate on loops with multiple
entry points. However, this loop type is rarely encountered and thus not supported by aiT.

Typically, the loop transformation is performed by the decoder exec2crl. After reading
the binary program, the internal loop transformation modifies the internal control-flow
graph, i.e. the original program is left unchanged. As mentioned before, the objective of
the present master’s thesis is to convert the control-flow graph, which is stored in the LLIR
format, to CRL2. Therefore, exec2clr is not involved. However, the loop transformation is
essential for a successful WCET analysis and is required to be performed subsequently.
Once the initial CRL2 control-flow graph is available, it is passed to crl2loop which is an
auxiliary stand-alone tool provided by aiT but is also incorporated in exec2clr. It extracts
loops in the well-known fashion and generates an improved CFG for further analyses.
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Figure 5.10: Loop extraction by the loop transformation

The loop transformation complicates the mapping of LLIR and their belonging CRL2
elements. Before passing the code to crl2loop, there is a direct dependency of objects in
both representations. The converter llir2crl creates for each LLIR component an equivalent
CRL2 object. The situation, however, changes as soon as the loop transformation moves
CRL2 blocks to newly created routines. Firstly, the CRL2 loop routines have no corre-
sponding LLIR functions; secondly, the shifted CRL2 basic blocks changed their location
leading to a modified structure of the original routine.

A direct mapping of elements is essential for the converter crl2llir. It reads the CRL2 file
generated by the aiT WCET analyzer and imports the annotated analysis results into the
LLIR. More accurately, it extracts the results from the CRL2 elements and assigns them
to the corresponding LLIR components. To enable this conversion, the last step expects
a precise allocation of elements independent of previous transformations. Due to the fact
that the results are exclusively stored in CRL2 routines and basic blocks, no mapping of
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instructions and operations is required.

The absence of corresponding LLIR functions in terms of CRL2 loop routines arises the
question where to store analysis results. Each CRL2 routine that was created by crl2loop
is annotated with loop bound specifications. This information is of great importance and
should be transformed into the LLIR. However, a direct assignment to an LLIR function
is not possible. Therefore, an assumption is made. Each CRL2 loop routine is composed
of CRL2 basic blocks that correspond to LLIR blocks. Thus, the sole reasonable con-
nection between the modified CRL2 representation and the LLIR representation are the
basic blocks representing the CRL2 loops. Hence, instead of assigning gained information
from CRL2 loop routines to LLIR functions, the data is interlinked with the correspond-
ing LLIR blocks. More precisely, all desired information of CRL2 routines is added to the
appropriate LLIR block of the first CRL2 block representing this loop.

Figure 5.11: Assignment of CRL2 data to the corresponding LLIR block

This approach is depicted in figure 5.11. As can be seen, LLIR basic blocks B2 and
B3 have been transformed to CRL2 basic blocks with the same indication. These blocks
represent a loop. Therefore, they are moved to routine func.L1 by the loop transfor-
mation. The analysis results concerning the loop bound specifications are assigned to the
corresponding first block of the loop routine, namely the LLIR block B2. In this manner,
valuable annotations of loop routines do not get lost but are added to the corresponding
basic blocks by exploiting the relationship of blocks within the two intermediate repre-
sentations. To retain consistency, data from regular CRL2 routines is assigned to the first
LLIR basic block of the corresponding LLIR function.

The transformation of basic blocks by crl2loop provides another significant informa-
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tion. It recognizes CRL2 basic blocks that represent a loop, and turns them into separate
loop routines. Thus, due to the location of blocks, it can be inferred which LLIR blocks
belong to a specific source code loop. These block annotations can be used to get rid of the
tedious manual loop bound specifications. In the current state, AbsInt’s aiT provides anal-
yses for simply structured loops. Their bounds are automatically determined and employed
to the corresponding CRL2 routines. However, the analysis of loops, which are normally
implemented in everyday applications, often fails. In these cases, the user is compelled to
provide these specifications manually in order to enable the WCET analysis at all.

This current state is not desired in a sophisticated compiler framework. The manual
annotation process is tedious and error-prone, and incorrect annotations lead to wrong
analyzer results. Thus, it is intended to develop an algorithm that analyzes any kind of
loops and passes the loop bound specifications automatically to the WCET analyzer. Con-
sequently, the knowledge of blocks which represent a loop is highly beneficial.

The converter crl2llir anticipates the design of the future loop algorithm and converts
the information that indicates loop basic blocks into the LLIR. This data eases the devel-
opment of the loop analyzer since there is no more need to detect dependencies between
source code loops and their LLIR blocks. However, the realization of an efficient loop
analyzer is a complex process and goes beyond the scope of this thesis. Therefore, its
contribution is restricted to the provision of the supplementary block data.

It is not mandatory to find LLIR functions the CRL2 loop routines have been derived
from since all CRL2 routine annotations are attached to LLIR blocks. However, knowing
the origin of derived loop routines enables an efficient search of appropriate basic blocks.
Instead of walking through all LLIR functions to find the counterpart of the CRL2 block,
merely the proper routines that accommodated the blocks before the loop transformation
are examined. This results in a substantially minimized complexity of the developed con-
verters. The proceeding of crl2llir resembles the approach of the converter llir2crl. The
program hierarchy is traversed top-down i.e. a system of nested loops begins at the top of
the entire control-flow graph and reads then all CRL2 routines as well as their elements
successively.

As mentioned above, a mapping of CRL2 routines and LLIR functions is required to
allow an efficient search for corresponding basic blocks. Original CRL2 routines created
by the converter llir2crl allow a simple retrieval of their LLIR counterpart. Since both
objects bear the same name, a string comparison is sufficient. In contrast, CRL2 routines
created by the loop transformer possess a name with no correspondence to any LLIR
function. As mentioned previously, the routines created by the loop transformation observe
a predefined naming. Each loop stored in the source code is enumerated with a decimal
number beginning with the value 1. Even nested loops follow this rule. The outermost
loop is denoted by 1, inner loops are designated by an incremented number. This decimal
identifier is applied to generate the name of the routine created by crl2loop. Each loop
routine derives its name from its surrounding function. In addition, the aforementioned
identifier is used as suffix. To clarify the naming convention, consider this simple C code:
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int main() {
int i, j, k;
for (i = 0; i < 10; ++i )
for ( j = 0; j < 10; ++j )

for ( k = 0; k < 20; ++k )
}

The basic blocks, which represent the three loops, are moved to three separate routines.
The CRL2 block of the outermost loop using the integer variable i causes the creation of
a CRL2 routine that is named main.L1. Here, the prefix main comes from the function
name of the source code; the suffix .L1 is a concatenated string including the identifier
for the first loop. The CRL2 blocks of the second and third loop are placed in routines
called main.L2 and main.L3, respectively.

Knowing this convention enables an easy mapping of CRL2 routines and LLIR func-
tions. Basically, the suffix has to be removed to obtain the original name of the routine.
Hence, searching for LLIR blocks, which correspond to the CRL2 blocks moved by the
loop transformation, is restricted to one LLIR function. This is notably advantageous for
complex programs which are comprised of numerous functions and loops. Instead of com-
paring a large number of LLIR blocks with the corresponding CRL2 block, the search is
limited in a targeted way to one sole LLIR function.

Besides the examination of routines, the mapping of CRL2 and LLIR basic blocks is
mandatory. Basic blocks represent program units which hold numerous significant annota-
tions. Especially, timing analyses (like the WCET or BCET estimates) produce results that
are meant for blocks. For instance, AbsInt’s WCET analyzer calculates WCET estimates
and execution counts (number of block executions when critical path is traversed) which
serve as basis for the calculation of the global WCET. Both values are attached to basic
blocks.

Within an assembly file, basic blocks have unique labels. When the LLIR gains its
data from this file, it also imports the labels. They are stored as LLIR block attributes
and serve as their identification. Unlike the LLIR, CRL2 does not envision a unique name
for its basic blocks. However, as discussed above, the converter of this thesis relies on
an unambiguous mapping of blocks. Therefore, CRL2 blocks must be assigned the same
unique labels as given for the LLIR blocks. To do so, the possibility of annotating CRL2
elements with arbitrary attributes is exploited. Whenever a new CRL2 block is derived
from an LLIR block, the label of the latter is taken into account. In this manner, blocks
can be always relocated even if they have been moved by the loop transformation.

By means of the described techniques, an efficient mapping of basic blocks belong-
ing to the two intermediate representations is not an issue. Loop transformations, which
increase the precision of analysis results, can be performed without any restrictions. Al-
though the original hierarchical graph structure is modified, the well-known naming of
CRL2 loop routines and the auxiliary identification attributes of CRL2 blocks allow an ef-
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ficient retrieval of the appropriate LLIR elements. Hence, the back-conversion from CRL2
to LLIR can be easily performed.

After resolving the mapping problem spawned by the loop transformation, the main
task of crl2llir is now presented. The detection of valuable aiT results in the form of CRL2
component attributes demands a transformation to the LLIR. As stated earlier, the gained
data is not directly attached to the LLIR elements but is embedded in objectives and in-
terlinked via handlers. Objectives represent information carriers which are designed to
accommodate supplementary information. They are not bound to any conditions and may
therefore be tailored to numerous applications. However, this thesis concentrates on the
worst-case execution time and will restrict the subsequent descriptions to WCET objec-
tives.

The converter crl2llir is the first application in the developed framework which makes
extensive use of the objective-handler mechanism. The relevant information, which is de-
sired to be imported to the LLIR, is assigned by aiT to CRL2 routines, CRL2 blocks and
CRL2 edges. The lower elements of the CRL2 hierarchy, namely instructions and oper-
ations, are not observed since they do not provide any sought analyzer results. Like the
first converter of the developed toolchain, crl2llir utilizes nested loops to walk through the
entire graph hierarchy.

The top-down approach begins with CRL2 routines which are examined successively.
For each routine, its basic blocks are read. Whenever a valuable annotation is found, a new
WCET objective is created. In the first step, the converter calls the appropriate objective
function and passes the read annotation as argument in order to store it within the internal
objective data structures. In the subsequent step, the corresponding LLIR element is deter-
mined by means of the techniques described above. Next, the full strength of the handler
concept is exploited. Since the supplementary CRL2 results are not directly assigned to
the LLIR elements but use objectives, the converter is not compelled to invoke element-
dependent functions. It does not make any difference whether data, for example, is at-
tached to the LLIR graph directly or to single basic blocks. Instead, the converter retrieves
the individual LLIR element handler by using a standardized function (getHandler)
and passes the WCET objective as function argument. In this simple manner, the objec-
tives are interlinked with the appropriate LLIR elements.

After finishing the transformations, a fully annotated LLIR intermediate representa-
tion is available. It accommodates all essential WCET information that enable to draw
conclusions about the execution time of the represented program. Furthermore, details on
existing loops are provided. Together with the results stemming from the previous com-
piler analyses and optimizations, this homogeneous framework opens up new vistas, e.g.
the development of novel algorithms or real-time applications.

Figure 5.12 indicates the resulting annotated LLIR structure. As can be inferred from
the diagram, the original LLIR representation is composed of one function called func.
The latter contains three basic blocks. The right hand side of the figure shows the corre-
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Figure 5.12: LLIR annotated with supplementary information

sponding CRL2 representation which has already been modified by the loop transforma-
tion. CRL2 basic blocks B1 and B2, which form a loop, have been moved to a new CRL2
routine called func.L1. The ball-shaped entities represent individual WCET objectives.
They are derived from the CRL2 elements and are interlinked with LLIR elements via in-
dividual handlers. As an example, three different types of WCET objectives are depicted.
The objective at the top of the figure is attached to the entire LLIR graph and holds the
global worst-case execution time of the entire program. The second and the last objec-
tive are basic information carriers which provide the WCET and the number of execution
counts for a particular basic block. Finally, the objective bound to the LLIR block B1
serves two purposes; firstly, it stores the regular block values, viz. the WCET and the ex-
ecution count. Secondly, the objective holds loop bound specifications which have been
derived from the CRL2 routine func.L1. This solution of assigning CRL2 routine infor-
mation to LLIR basic blocks is mandatory since there is no corresponding LLIR function
which would enable a direct data exchange between the latter and the CRL2 routine.
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The current version of crl2llir supports the conversion of the following analyzer results:

• Global WCET for the entire program

• Contexts

• Context-dependent execution counts for single basic blocks

• Context-dependent WCETs of single basic blocks

• Designation of loop blocks

• Loop bound specifications

The enumerated objects as well as the way they are stored in the WCET objectives will be
introduced in the following.

5.5.2 Global WCET

The global worst-case execution time is the result of the path analysis which is part of
the aiT WCET analyzer toolchain. Its calculation, in turn, is based upon the results of
the pipeline analysis. To obtain precise WCET estimates, the aiT analyzer assigns its re-
sults for the CRL2 basic blocks not directly to the blocks but to their control-flow edges
which serve as connections between the blocks. The pipeline analysis determines T(e, c)
that designates the worst-case execution time for a specific edge e and context c. In ad-
dition, aiT annotates each control-flow edge with the execution count C(e, c). This value
expresses the number of control passes along edge e and context c.

To obtain the context-free WCET for a specific flow of the program, the execution
count for each involved edge e and context c must be known. The upper time bound for
this program execution is calculated by accumulating the products C(e, c) · T(e, c) over
all pairs (e,c). The evaluation of the global WCET for the entire program is an extension
of the previous problem. Instead of taking all edge-context pairs of a specific program
run into account, all feasible execution counts depending on their edges and contexts are
involved. To obtain the overall worst-case execution time, the longest execution path of the
program, which may ever occur, has to be found. To do so, all possible paths expressed by
the accumulated products of the worst-case execution time tedge and the execution count
cedge have to be analyzed. Finally, the maximal sum must be determined:

global WCET = max( ∑
∀edge

tedge · cedge)

Due to the nature of this optimization problem, a linear constrain system is set up and the
objective function is solved using integer linear programming (ILP) [Sch86].

This global WCET is assigned by aiT as a global attribute to the CRL2 control-flow
graph. The converter crl2llir reads this value, creates a new WCET objective, and calls
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the objective function setWCET with the WCET estimate as function argument. In the
next step, the handler of the LLIR graph is retrieved and the previously created objective
is handed. In this manner, the LLIR is extended by the worst-case execution time of the
program it represents.

This extension can be used for both the development of real-time systems and as a
helpful identifier during the development process of an optimizing algorithm. In the first
case, developers can prove if the hardware that will be used as platform for the software
is sufficient to meet all time constraints. This verification is highly important since the
violation of these constraints may lead to outright disasters. If the constraints can not be
met, either the hardware resources have to be increased or the complexity of the software
must be reduced. On the other hand, the global WCET may be used as an identifier to
measure the performance of new optimizing algorithms which aim at the reduction of the
WCET. New ideas and approaches can be involved and their impact may be evaluated with
this global identifier.

5.5.3 Contexts

WCET analyzers benefit from the use of contexts. Taking contexts into account, enables
a more subtle analysis and this results in enhanced worst-case execution estimates. To
be more precise, two parts of the timing analysis process, namely the value and the path
analysis, exploit contexts.

The goal of the value analysis is to determine possible values in the processor regis-
ters for any possible program point. Without contexts, maximal value ranges have to be
assumed in order to satisfy all potential program executions. Often, this leads to substan-
tially oversized ranges that do not reflect the actual program behavior and therefore falsify
the analysis results. Contexts tackle this problem by refining the value ranges. Instead of
considering ranges of maximal size, they are split into subtle portions which are restricted
by real values that occur for a particular point of the program. These ranges are assigned
individual contexts and can be analyzed separately. The result is an enhanced value anal-
ysis.

The path analysis pursues the goal of calculating the global WCET by finding the
longest feasible execution path. Its calculation is notably based on the execution counts
and the worst-case execution times of the blocks. In the case of omitted contexts, path
branches can not be analyzed properly. Due to the fact that one single context is con-
sidered, exclusively the worst case must be assumed in order not to violate the WCET
safeness criterion. Consequently, this yields less tight time bounds. Like for the value
analysis, the adoption of contexts offers the opportunity to assign individual contexts for
each branch. Thus, a more precise path examination is possible and this finally leads to
improved analysis results. The aforementioned paragraphs present by no means a com-
plete description of contexts. They merely serve the purpose of an introducing repetition.
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A thorough context specification is given in section 3.2.

While the aiT toolchain operates on the CRL2 file, it expands the intermediate repre-
sentation stepwise by new contexts. A context is stored in the form of a call string that
is a sequence of calls starting from the call in the entry routine. More accurately, call
strings are comprised of subsequent terminals which represent a pair of a CRL2 basic
block and a CRL2 routine. These terminal blocks contain a call instruction which directs
the program flow to the corresponding terminal routine so that the following call string
structure emerges: bX −→ rX, bY −→ rY . . . (b and r designate blocks and routines,
respectively). To clarify the structure of contexts, consider figure 5.13, which represents a
simplified CRL2 control-flow graph, as an example.

Figure 5.13: Representation of CRL2 contexts

Each of the CRL2 routines contains a basic block which in turn holds a CALL in-
struction. The CALL instruction in block b1 performs a jump to routine r1. The latter
accommodates basic block b3 which uses its call instruction to redirect the program flow
to routine r2. The resulting context call string is composed of two terminals and looks as
follows:

b1 −→ r1, b3 −→ r2
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Contexts are essential for a proper statement of the results generated by aiT. The two
basic specifiers used for the estimation of the global WCET, namely the WCET and the
execution counts of a basic block, rely on contexts. To point out the context issue, consider
the storage of context-dependent values within the CRL2 as example:

path_cycles<c2>=5, wce_count<c2>=6

This exemplary extract is assigned to the control-flow edge between two CRL2
basic blocks and defines that the execution count for context c2 denoted by
path_cycles<c2> constitutes 5 control passes. Furthermore, the corresponding
WCET estimate for one control pass in the same context indicated by wce_count<c2>
is 6 execution cycles.

Needless to say that the maintenance of contexts is inevitably significant for the LLIR
elements. In case of the absence of contexts, the aforementioned context-dependent results
can not be stored in a sensible manner. They would occur in the LLIR without any rea-
sonable dependencies, i.e. there would be no unambiguous assignment between the pair
elements executions count and WCET estimation (see previous example). To meet these
requirements, this thesis presents concepts and realizations which enable an elaborate in-
tegration of contexts into the LLIR.

Routines may be called with different arguments. This leads to varying initial states of
the hardware, e.g. the content of processor registers or caches. These individual states are
represented by contexts which are consequently assigned to CRL2 routines. If the CRL2
structure was not modified by the loop transformation due to additional routines, it would
make sense to attach the context information to the corresponding LLIR functions. How-
ever, as mentioned previously, a direct mapping between both intermediate representations
is not always feasible. Newly created CRL2 loop routines do not possess adequate LLIR
functions. Therefore, a solution to this problem is the assignment of CRL2 routine data to
the corresponding LLIR elements.

For the purpose of representing contexts within the LLIR, a new class has been de-
signed. Like CRL2, the developed context class allows the storage of call strings. As in-
troduced above, CRL2 call strings are represented by a sequence of block-routine pairs.
To achieve the same structure, the new context class utilizes a lists of pairs as internal data
structures. Each pair holds an LLIR basic block and an LLIR function as first and sec-
ond element, respectively. To obtain a sequence of block-function pairs, these pairs are
stored in a list. Due to this dynamic data structure, the call string list can be arbitrarily ex-
tended. Furthermore, each context is assigned a unique identification. As can be seen in the
aforementioned CRL2 example, this identification is employed to enable an unambiguous
representation of context-dependent aiT results. To support an adequate identification, the
context class implemented in this thesis provides an attribute that can be assigned a unique
specifier. Figure 5.14 gives a pictorial view of the developed class structure.

The integration of contexts takes place in two phases: the translation of available CRL2
contexts into the LLIR and the interlinking with context-dependent attributes. In an ini-
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Figure 5.14: Overview of the class structure representing an LLIR context

tialization phase of the converter crl2llir, the entire CRL2 representation, which has been
annotated with analysis results by AbsInt’s WCET analyzer, is scanned for contexts. To do
so, each CRL2 routine is checked. When a CRL2 context is found, the converter crl2llir
creates a new LLIR context. Subsequently, the CRL2 context is analyzed, i.e. each block-
routine pair is considered separately and its elements are extracted. After determining
the corresponding LLIR block and LLIR function, these two objects are passed to the
WCET objective function addContextTerminal. Finally, the ID of the CRL2 con-
text is determined and used as argument for the call of the WCET objective function
setContextID. As a result, an LLIR context object, which reflects the corresponding
CRL2 context with its call string and ID, is available. In the next step, a new WCET ob-
jective is created. It is passed the previously generated LLIR context by calling the WCET
objective function appendContext. In the case of multiple CRL2 contexts assigned to
a CRL2 routine, the sequence of steps to create an LLIR context is repeated and each of
them is added the the WCET objective.

The final step of the first phase is the interlinking of the created WCET objective to the
appropriate LLIR element. For well-known reasons, the WCET objective is not assigned
to an LLIR function but to an LLIR block. First, the first CRL2 block of the considered
CRL2 routine is determined. Second, its corresponding counterpart, an LLIR block, is
searched. Finally, the individual handler of the LLIR block is exploited to interlink the
context information, which is embedded in the WCET objective, to the LLIR. At the end
of the initialization phase of the converter, each of the LLIR blocks that correspond to the
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very first CRL2 block of a CRL2 routine is annotated with context information (see figure
5.15). Hence, a basis for further steps is provided.

Figure 5.15: Assignment of context information

For the sake of efficiency, context data is not attached to each LLIR basic block of
a routine but merely to the first one. The remaining LLIR blocks can yet call the func-
tion getContexts of their WCET objective to retrieve a list of available contexts. The
mechanism behind this function verifies if the calling objective contains a non-empty con-
text list. If so, the list is returned. Otherwise, a further distinction between basic blocks
that represent a loop and non-loop blocks is required. In the first case, all basic blocks
located in the same loop as the calling block must be identified. This feature is provided
by examining the WCET objective function getLoopPosition. From this set of LLIR
blocks, the first one is determined since it accommodates the context list. The calling basic
block consults the first loop block and obtains in this manner the sought list of contexts.
Otherwise, non-loop blocks demand the first block of the LLIR function they are part of
and request its context list.

After the initialization phase, the converter crl2llir proceeds with the second traversal of
the CRL2 control-flow graph. This time, the well-known approach of obtaining aiT results
and interlinking them via handlers is performed. Besides the context-free LLIR extensions
like the loop bounds and the designation of loop blocks, the attributes execution count and
block WCET expect the specification of a context. Before they are added to the LLIR
block, the converter consults the context list to receive the corresponding element. Thus,
both the aiT result and the belonging context are attached to the LLIR basic block. The
description of handling context-dependent execution counts and WCETs is presented in
the following sections.
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5.5.4 Execution Counts

The specifier execution count indicates the number of control passes between two basic
blocks. To obtain more precise WCET estimates, the indicator is coupled to control-flow
edges between two blocks. Moreover, an enhancement of the WCET analysis is achieved
when contexts are taken into account. Therefore, each execution count attribute is specified
by both the corresponding edge and context. Expressed as a function of edge e and a
context c, it is defined as follows: E(e,c).

Execution counts are employed to calculate the global worst-case execution time of an
entire program. Together with the block WCET, both values are used by the path anal-
ysis to find the longest execution path. For some particular cases, namely for loops, the
total number of execution counts for a limited set of basic blocks may be defined by user
annotations. AbsInt’s WCET analyzer as well as the developed converter llir2crl may be
supplied with loop bound specifications. These values are retrieved by the loop transfor-
mation which turns the blocks that represent a loop into separate routines. Obviously, the
loop bound specifications steer the number of loop iterations, and therefore correspond to
the accumulated execution counts for this block set.

aiT determines execution counts during the pipeline analysis and assigns the calculated
values to CRL2 edges. These context-dependent annotations occur in the CRL2 represen-
tation in two forms: pipe_cycles<cX>=Y and pipe_impasse<cX>=Y (Y and X
designate a decimal number). The former declares Y execution counts for the correspond-
ing CRL2 edge in context cX. The second representation signalizes that a path traversal
through this edge in context cX is not feasible and must not be involved in further calcu-
lations.

The converter crl2llir carries out the transformation of CRL2 execution counts to the
LLIR. A direct assignment, however, may not be performed since the LLIR does not ex-
hibit control-flow edges to the user. The LLIR CFG is based upon a graph data structure
but does not permit direct access to its edges. Instead, the edges can be retrieved indirectly
by determining the successors and predecessors of a basic block. For this reason, execu-
tion counts are added to the LLIR blocks that correspond to the CRL2 blocks which serve
as starting point for the CRL2 edge.

In order to extract the sought CRL2 annotations, each CRL2 block as well as its edges
are examined. CRL2 basically distinguishes between two types of edges, namely TRUE
edges and FALSE edges. They are applied to model control-flow branching points. Ordi-
nary edges between two basic blocks, which do not rely on any conditions, are treated in
the same manner as TRUE edges. A prominent example for different edge types is the con-
ditional if-statement of high-level languages which causes the program either to execute
the subsequent if-block or to skip it. Another example are loops which iterate through the
loop body as long as the loop header conditions are met. On the low-level representation,
the loop body is repetitively entered by the TRUE edge and finally skipped by the FALSE
edge. Due to the absence of LLIR edges, a sensible storage of edge-dependent execution
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counts demands a distinction of LLIR block annotations.

This requirement is met by providing corresponding WCET objective functions. When
a non-zero CRL2 execution count annotation is detected, the type of its belonging control-
flow edge as well as its CRL2 context are determined. Afterwards, the converter ver-
ifies if the corresponding LLIR block is not already interlinked with a WCET ob-
jective (created during the transformation of CRL2 contexts to the LLIR, see section
5.5.3). If not, a second objective is created, otherwise the existing one is selected1. Re-
lying on the edge type, either the objective function setExeuctionCountTRUE or
setExecutionCountFALSE is called. By passing the numerical value of the CRL2
execution count and the corresponding LLIR context as function arguments, the WCET
objective is extended by this context-dependent attribute. This means that some particular
LLIR blocks are interlinked with WCET objectives which accommodate both a TRUE and
and FALSE execution count for a single context.

Figure 5.16: Mandatory distinction between TRUE and FALSE control edges

Figure 5.16 illustrates the necessity of distinguishing between both types of CRL2
edges. As can be seen, the figure depicts a CRL2 routine created by the loop transforma-
tion (see section 5.5.1). The loop is iterated ten times in total; nine loop iterations traverse
the TRUE edge, the last one uses the FALSE edge to exit the loop. Besides the varying
execution counts, both edges take a different amount of time to execute, namely 5 and 20
execution cycles for a single control flow, respectively. To reflect the analysis results in a
reasonable fashion, the information of both edges may obviously not be merged. The sole
solution is the storage of both values in separate WCET objective attributes.

1It should be emphasized that it is of great importance to operate on already existing WCET objectives.
If a new objective was created and attempted to add to the LLIR block handler, the underlying mechanism
would prohibit this operation, since a multiple assignment of objectives of the same type is not permitted.
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5.5.5 WCET of Basic Blocks

aiT results concerning the worst-case execution time of single basic blocks resembles the
CRL2 execution count annotations. AbsInt’s WCET analyzer calculates the WCET for a
single execution of a basic block in a specific context. The WCET can be expressed as a
function which relies on the edge and the context: T(e,c). Together with the correspond-
ing context-dependent execution counts, Integer Linear Programming (ILP) is applied to
determine the longest execution path which is indicated by the global WCET.

The WCET estimates generated in the final phase of aiT are again attached to CRL2
edges. They are designated by the well-known syntactical notation wce_count<cX>=Y
that defines a time bound of Y execution cycles for a certain edge traversed in context cX.

The converter crl2llir handles the WCET estimates akin to the execution counts.
For each CRL2 block, its control-flow edges are inspected. Due to different edge
types, the requirement of accommodating edge-dependent WCET estimates within the
LLIR emerges. For this purpose, the WCET objective class provides two functions,
namely setBlockWCETTrue and setBlockWCETFalse, which enable the storage
of context-dependent time bounds. Before adding the CRL2 annotations, crl2llir proves
if the corresponding LLIR block is not already assigned a WCET objective that holds
context information. Depending on the result, either a new WCET objective is generated
or the converter proceeds with the already existing one. Finally, the corresponding LLIR
context is determined and passed together with the actual WCET value to the objective.

In addition to the edge WCET estimates, objectives hold the overall basic block WCET.
This indicator is not directly provided by aiT, and thus needs to be calculated seperately.
While a CRL2 block is analyzed by crl2llir, the gained execution counts and WCETs are
buffered. More accurately, for all available outgoing CRL2 edges of a particular basic
block, the products of the execution counts and the edge WCETs sorted by contexts are
temporarily stored and finally summed up. This accumulated value represents the upper
time bound that might occur when this basic block is executed. Since this value indirectly
includes all available contexts, it is stored as a context-free LLIR extension. The storage
process is performed by invoking the WCET objective function setBlockWCET which
merely expects a decimal value as argument.

Figure 5.17 illustrates the resulting situation after the converter crl2llir performed its
transformations. For the sake of simplicity, both the LLIR and the CRL2 are composed of
one function/routine which, in turn, contains three basic blocks. To store both CRL2 con-
texts, the converter generates two equivalent LLIR context objects. They are added to the
WCET objective of the corresponding first LLIR basic block. The context-dependent an-
notations, namely the execution count and the single block WCET estimate, are retrieved
from the CRL2 control-flow edge between Basic Block 0 and Basic Block 1
and are added together with the already present context c1 to the WCET Objective 1.
The latter is finally interlinked via a handler with the LLIR Basic Block 0. Addition-
ally, the figure indicates the efficient storage of contexts. As mentioned previously, context
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Figure 5.17: Context-dependent WCET objective framework

information is exclusively held in the corresponding first block of a CRL2 routine. There-
fore, the context list of WCET Objective 2 does not accommodate any elements. In
order to obtain the required contexts, the objective is compelled to consult the context list
of WCET Objective 1.

The LLIR extensions discussed so far suffice to provide a WCET-aware LLIR represen-
tation. However, the aiT toolchain generates further beneficial annotations which notably
concern loops. Although the transformation of these extensions neither presents the prime
goal of this thesis nor is directly advantageous for the current state of the developed WCET
framework, it is of great importance for the future work. To enhance the quality of the com-
piler framework, the manual loop bound annotations have to be substituted by automatic
mechanisms. To accomplish this goal, a sophisticated loop analyzer must be developed.
The following LLIR extensions substantially aid the process of realizing this project.
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5.5.6 Designation of Loop Blocks

The current state of the LLIR does not provide any approaches to analyze loops at the low-
level. The converter llir2crl generates an equivalent CRL2 representation with an identical
structure where each LLIR function and each LLIR block has a corresponding CRL2
routine and CRL2 block, respectively. For well-known reasons, the CRL2 graph is mod-
ified afterwards. Blocks that represent loops are shifted to newly created routines. The
naming of the latter follows a well-defined convention: aiT enumerates each loop in the
source code beginning with the decimal number 1 (see example in section 5.5.1). Thus, by
analyzing the CRL2 routine name, it can be inferred which source code loop is addressed.

This fact is exploited by the converter crl2llir. Whenever a CRL2 loop routine is de-
tected, its name is tokenized in order to extract the loop number. For each CRL2 block
that is part of this routine, the corresponding LLIR block is determined. Afterwards, the
converter retrieves the handler of the LLIR block and checks if it already possesses a
WCET objective. If not, a new objective is created, otherwise the present one is reused.
By using the objective function setLoopPosition, the loop basic blocks are annotated
with the loop number.

This extension to the LLIR blocks leads to a clear classification of blocks that are
involved in a loop and those that are not. By default, the WCET objective construc-
tor sets the object attribute, which indicates the associated loop, to the value 0. When a
CRL2 basic block has not been shifted by the loop transformation, the aforementioned
attribute remains unchanged. Otherwise, it is assigned the corresponding non-zero loop
number. After the converter crl2llir finishes its conversion, the WCET objective function
getLoopPosition can be employed to retrieve the belonging loop number. LLIR ba-
sic blocks with the value 0 indicate that they are not involved in any loop. The remaining
blocks, on the other hand, identify the loop they partially form.

The transformation of the loop membership can be considered as a preparatory work
with the goal of achieving an annotation-free compiler framework. In the current state,
neither the LLIR nor aiT have the ability to analyze loop automatically and to provide
their results to other parts of the toolchain. For this reason, the user is compelled to sup-
ply the loop bound specification manually. This approach is highly error-prone and may
lead to incorrect analysis results, let alone the tedious chore. The annotation problem is
well-known and often subject of criticism [BH03, KP05]. However, no sufficient solutions
could be presented yet. Most available WCET analyzers fail when it comes to the deter-
mination of loop bound specifications of ordinary loops that are employed in everyday
real-time applications.

Due to the fact that the development of sophisticated loop analyzers is a highly complex
issue, its development is beyond the scope of this thesis. It is, however, intended to begin
with the construction of a loop analyzer in the near future. The already presented designa-
tion of LLIR basic blocks provides a basis for this intention: it simplifies the investigation
of loops substantially since the involved basic blocks are already known.
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5.5.7 Loop Bounds

The transformation of loop bound specifications resembles the designation of loop blocks.
Due to a missing loop analyzer, the loop transformation reads the annotations which have
been derived from the configuration file wcetrc (see section 5.2.1) and which were added
by llir2crl to the corresponding initial CRL2 routine. The configuration defines local and
global loop bound specifications including the names of the source code functions. When
the converter creates a new CRL2 routine from an LLIR function, it checks whether there
is a loop bound specification which is assigned the same function name. If so, the loop
bound specifiers are attached as CRL2 routine attributes. These specifications are manda-
tory since their absence prevents the WCET analyzer from proceeding.

When aiT is analyzing the initial CRL2 representation, the loop transformation retrieves
these annotations and transforms them together with the CRL2 blocks to the new loop
routines. The back converter crl2llir recognizes these routines and their loop bound speci-
fications. However, it can not transform any data directly to an LLIR function, since there
is no corresponding function available. As mentioned in section 5.5.1, a way out of this
dilemma is the assignment of loop annotations to LLIR basic blocks. At the beginning,
the first CRL2 block of the loop routine is sought and its corresponding LLIR block is
determined. Next, crl2llir retrieves the handler of the LLIR block and verifies whether
it already contains a WCET objective. If not, a new objective is created, otherwise the
converter reuses the existing one.

The loop bound specifications are imported into the WCET objective by calling its
functions setLoopBoundMin and setLoopBoundMax. Figure 5.12 depicts a corre-
sponding example for basic block B1. Its objective accommodates the WCET estimation,
the execution count and the information on the CRL2 loop routine func.L1.

In the current state, the presence of loop bound specifications is not directly advanta-
geous for the LLIR. The specifications are merely read from the configuration file and do
not represent any analysis results. However, the data structures of the WCET objectives
that accommodate the loop data are intended to be reused in the future. As mentioned
previously, the development of a loop analyzer would significantly improve the quality of
the entire WCET compiler framework. The system would get rid of manual user annota-
tions by replacing the error-prone assignment process by automatic mechanisms. The loop
bound specifications generated by the loop analyzer require data structures to be stored.
The already existing objective functions and attributes could be reused for this purpose.
This results in a shortened development process.



Chapter 6

Experimental Evaluation

6.1 Existing Toolchain

This section provides a brief introduction to the toolchain used in this thesis. It describes
the interaction between the individual software modules and gives a simplified overview
of the generated outputs. The goal of this thesis is the design and realization of concepts
for WCET compiler optimizations. To meet these requirements, the low-level intermediate
representation LLIR is enriched with WCET data produced by AbsInt’s WCET analyzer
aiT.

However, the current toolchain is a temporary solution. The most powerful system is a
homogeneous compiler framework that is comprised of a high-level and low-level inter-
mediate representation which directly collaborate with each other. In such a framework,
maximal amount of information on the structure and the behavior of the source program is
available [BH03]. This data can be passed without any restrictions to the WCET analyzer
and enables the generation of most precise timing results. The achievement of this con-
figuration is required for the final stage. For this purpose, the development of a complete
compiler framework, which employs the LLIR as backend software, has been started at the
Embedded Systems Groups of the Computer Science Department at Dortmund University.
However, at the time this thesis was written, the compiler framework was not entirely fin-
ished. Thus, a temporary toolchain had to be constructed. Instead of obtaining code from a
high-level intermediate representation of the compiler frontend, the tricore-gcc is in-
volved. It does not expose all available information stored in its internal representation but
its data supply is sufficient for the realization of the collaboration between the LLIR and
the WCET analyzer aiT. The existing toolchain is depicted in figure 6.1 and is described
in more detail in the remaining section.

The entire developed framework is steered by one central application called
wcet2llir. It is supplied with a C source code which represents the program to be an-
alyzed. Further input data is the configuration file wcetrc that contains specifications of
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loops occurring in the source code. After a full run of the framework, a WCET-annotated
LLIR file is generated as output.

Figure 6.1: Overview of the existing toolchain

In detail, the source code is passed to the tricore-gcc compiler. As mentioned
above, this approach represents a temporary solution. In the future version of the homoge-
neous framework, the tricore-gcc will be removed and completely substituted by a
frontend which cooperates with the compiler backend LLIR. To obtain currently an LLIR
representation of the supplied program, the workflow of the tricore-gcc has to be
modified. The latter is a collection of cooperating applications which serve the purpose to
translate source code to machine code. After preprocessing, the TriCore compiler (called
tricore-cc1) generates assembly code and hands it to the assembler tricore-as,
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which, together with the linker, translates the code and generates a binary executable.
Due to the fact that the LLIR can be constructed from assembly code, the information
exchange between the compiler tricore-cc1 and the assembler tricore-as is ex-
ploited. More accurately, the original assembler is replaced by a shell script written by
[Pyk03] which receives assembly code as input. Additionally, the script invokes the al-
ready existing converter gcc2llir which reads the assembly input and transforms it to
an LLIR control-flow graph. Finally, the converter llir2crl is invoked; it reads the cre-
ated LLIR file and produces an equivalent CRL2 representation. In addition, the converter
possibly extends the LLIR by assembler directives (see section 5.2).

In the subsequent step, the central application wcet2llir passes the created CRL2
file to the aiT toolchain. It performs a loop transformation (optionally), a loop bound
analysis, a value analysis, and a pipeline and path analysis. Finally, the CRL2 is provided
to the linear integer solver that generates a WCET-annotated CRL2 representation.

Afterwards, wcet2llir invokes the existing converter llir2gcc. It transforms the
modified LLIR file into an assembly file that is supplied to the assembler and linker. The
latter continues the transformations of a regular workflow of the tricore-gcc and fi-
nally generates a binary executable. This step is optional and may be skipped by providing
appropriate command line parameters.

The remaining step is the integration of results produced by aiT into the LLIR. For
this purpose, the converter crl2llir is invoked. It reads the annotated CRL2 file and em-
ploys the objective-handler framework to interlink the supplementary information with
the corresponding LLIR elements. The final result is the sought WCET-annotated LLIR
representation. It holds timing information as well as details on existing loops. To obtain
an overview of the additional LLIR extensions and their corresponding LLIR elements,
wcet2llir may be configured to write a log file.

6.2 Results

This section presents the experimental evaluation of the developed software modules. In
order to employ the developed framework for realistic applications, its correctness has
to be proven. On the one hand, the generated CRL2 representation must be evaluated. It
serves as basis for the aiT WCET analyzer. Therefore, it is highly important to supply
an error-free CRL2 file in order to guarantee proper analysis results. On the other hand,
the integration of the results into the LLIR must be verified. The proper conversion is
also highly significant since the imported annotations of the LLIR are involved in further
research projects.

Prior to presenting the evaluation results, the workflow of the tests is briefly outlined.
In the first phase of the framework, the converter llir2crl analyzes the available LLIR rep-
resentation of a program and transforms it to an equivalent CRL2 control-flow graph. The
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proper operation of the LLIR has been verified in the past and is assumed to be error-
free. Therefore, the tests are restricted to the evaluation of the generated CRL2 file. To
accomplish this goal, the analyzer results generated on the basis of this framework must
be compared with results that are obtained by executing the regular workflow of aiT. More
precisely, a program to be analyzed can exist in different representations. The most ab-
stract form, the source code, represents a program at the high-level. After translating it by
a compiler backend, the program is given in its hardware-dependent low-level representa-
tion. The final step is the compilation of the program into machine code that is presented
as a binary executable. All three forms model the same program with equal characteristics.

Consequently, the control-flow graph of the program accommodated in the LLIR re-
sembles the one given in the form of a binary executable. AbsInt’s WCET analyzer ex-
pects the input program in the CRL2 format which is AbsInt’s low-level intermediate rep-
resentation. This representation may be constructed either by converting the LLIR or by
extracting information from a binary. The first option was chosen in this thesis, the second
is conducted in a regular run of the aiT toolchain. To sum up, the correctness of the CRL2
file generated by llir2crl is proven by comparing it with the CRL2 file generated by aiT
directly from a binary executable. However, an accurate correlation of both versions is not
mandatory and even not possible because the executable file provides more information
than the LLIR. Rather, a correspondence of the analyzer results based on both CRL2 files
is desired. Due to technical reasons, slight deviations of both results are permissable, as
will be described later.

In order to compare the CRL2 representations, and thus to prove the correctness of the
developed software modules, different types of programs were involved in the evaluation.
They are supposed to represent specific classes of source code constructs to cover a large
number of real applications. In addition, it was intended to verify the developed converters
by applying them to particular applications which are notably found in the domain of em-
bedded systems, e.g. a complex matrix multiplication, an MPEG4 Motion Estimation or a
Fast Fourier Transform. However, at the time these tests were conducted, AbsInt’s WCET
analyzer for the TriCore processor was still in a development phase. Each extension of
processors supported by aiT yields an extensive adoption of the processor-specific WCET
analyzer. aiT works in a proper manner for the already fully supported hardware, but al-
lows currently a restricted usage for the TriCore architecture. Staff at AbsInt intensively
work on upgrades for the present software and intend a full support for the TriCore pro-
cessor in the next weeks. In its present state, however, aiT merely enables the analysis of
simply structured programs and particularly fails with nested loops. Due to this reason, the
analysis of most authentic applications failed and therefore did not enable the inclusion of
the embedded system applications mentioned above. Furthermore, it turns out that most of
the desired programs written for the evaluation could not be analyzed as well. Therefore,
they had to be reorganized and shortened, but still great attention was paid to provide the
maximal complexity in order to maximally exploit the analyzer.

Besides the main goal of comparing WCET results, these values emphasize the signifi-
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cant impact of the optimization levels applied with the TriCore compiler to generate code.
The tremendous reduction of execution time for advanced compiler optimizations arises
from two conditions. Firstly, an increase of optimization levels leads to a compaction of
the given source code without modifying its semantics. The result is a shorter code with
less operations than given in the original source code. Needless to say, this compression
yields a shorter execution time of the program. Secondly, aiT benefits from the optimized
code. A source code that was compiled with no optimizations may contain structures, no-
tably for loops, which are difficult to analyze. In such a case, it might happen that aiT does
not recognize a loop structure. This complicates further analyses and may lead to falsified
and overestimated WCET results. In contrast, if standard compiler optimizations are ap-
plied, the present code is reorganized by predefined rules which finally produce standard
structures. They are recognized more easily by aiT and contribute to the generation of
realistic and tight time bounds. Due to this reason, it is recommended to supply code to
AbsInt’s analyzer that was compiled with at least the first optimization level (-O1).

The conduction of the consistency checks will be described in the following. A program
in the form of a C source code is supplied to the developed framework. It generates both
a CRL2 file which is supplied to the aiT toolchain as well as a binary executable which
was optionally annotated with assembler directives (see section 5.2.5). This binary file is
manually supplied to the regular aiT toolchain. In this fashion, analyzer results of both
CRL2 representations are obtained. The results from the binary executable are taken as
reference and are compared with those resulting from the framework of the present thesis.

It can not be expected that both results are identical. Firstly, the binary executable ex-
poses a wider range of information on the program than the converter llir2crl. For instance,
constant global values that are deployed by the value analysis are gained by AbsInt’s de-
coder from the binary executable and supplied to aiT. The LLIR also holds these values,
but in its current state there are no direct functions that would return these constants. To
retrieve them, a complicated procedure is required. Thus, the constants are omitted in the
current version of llir2crl. Secondly, the operations involved in the machine code are not
always chosen sensibly by the linker. Therefore, these extracted elements might slightly
differ from those that were generated by the converter llir2crl. For clarification, consider
the following TriCore assembler operation:

ST.W [%a10] 4, %d0

To realize this STORE operation, the linker may choose between two resembling versions
which are provided by the TriCore instruction set:

ST.W A[b], off10, D[a]
ST.W A[b], off16, D[a]

The specifiers A and D designate an address and a data register, respectively. offn denotes
an offset value of n bits. As can be easily seen, both instruction versions differ solely in the
size of their offset value. To refer to the aforementioned TriCore assembler operation, the
offset value constitutes 4. Hence, it would make sense to deploy the first version with the
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offset value of 10 bits. This decision is made by the converter llir2crl. It assigns operations,
which have an offset value smaller than 10 bits, the first instruction version. Otherwise, if
the offset value does not exceed 16 bits, the second version is chosen. However, the Tri-
Core linker proceeds differently. It assigns the second version of the STORE instruction to
the given example. Consequently, AbsInt’s decoder, which analyzes the binary executable,
extracts exactly the second instruction. As a result, both the CRL2 representation gener-
ated by aiT and the one constructed from LLIR data slightly differ. As will be indicated
later, this entails minimal deviations in the WCET analyzer results based on both CRL2
files.

The following sections present the results of the experimental evaluation. Due to fact
that the set of feasible code is restricted by the current development state of aiT, some
simplified test files were taken into account. Each of them will be briefly described and
the results are presented in table form. The tests are performed under various conditions.
On the one hand, the files were compiled with different TriCore compiler optimizations
(tricore-gcc -On). On the other hand, the user specifications from the configuration
file wcetrc were varied. More accurately, the length of the context call string as well
as the number of contexts distinguished by the analyzer were assigned different decimal
numbers. Increasing values enhance the timing results but, on the other hand, boost the
runtime of the WCET analyzer as well.

In addition, to achieve a comparable basis for wcet2llir and aiT, the information which
is added by the linker to the executable file has to be omitted. For instance, any calls to
the start-up routines like __main must not be considered. To prevent such routine calls,
the configuration of aiT may be extended by routine names which should not be analyzed.
These settings were defined and are applied to all test cases.

Arithmetic operations on array elements

The first test file performs arithmetic operations on integer elements of an array. They
are surrounded by a loop. The maximal number of loop iterations as well as the size of the
array are defined by the same specifier and the performed operations rely on the current
loop counter. The tests were performed with different options. Firstly, the loop bound spec-
ifications were modified. The iteration bounds were set to the values 10, 100 and 1000.
This was achieved by modifying the configuration file wcetrc as well as the source
code. Consequently, the array size was assigned the same value. Secondly, the configura-
tion specifications CALL_STRING and UNROLL were adopted. Each test for a particular
loop bound specification was performed once with the value pairs (CALL_STRING=1,
UNROLL=1) and in a second run with (CALL_STRING=inf, UNROLL=n) where n cor-
responds to the current loop bound specifications. The purpose of these settings was to in-
dicate to which extent the consideration of contexts affect the WCET results. The first pair
of settings forces AbsInt’s analyzer to consider context call strings of a minimal length,
namely 1, and to distinguish at most one loop context. These settings lead to highly over-
estimated results. In contrast, the second run is performed with settings which yield most
precise results. In this case, CALL_STRING is assigned the value inf (meaning no re-
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Options wcet2llir aiT
10 iterations, lowest precision [cyc] 966 967

10 iterations, highest precision [cyc] 957 958
100 iterations, lowest precision [cyc] 9516 9517

100 iterations, highest precision [cyc] 9417 9418
1000 iterations, lowest precision [cyc] 135017 135017

1000 iterations, highest precision [cyc] 134018 134018

Table 6.1: Array operations without compiler optimizations

Options wcet2llir aiT
10 iterations, lowest precision [cyc] 362 363

10 iterations, highest precision [cyc] 360 361
100 iterations, lowest precision [cyc] 3242 3243

100 iterations, highest precision [cyc] 3240 3241
1000 iterations, lowest precision [cyc] 32042 34043

1000 iterations, highest precision [cyc] 32040 32041

Table 6.2: Array operations compiled with optimization level -O1

strictions to the length of the context call string), and UNROLL is set to a value which
corresponds to the current loop bound specifications. Of course, equivalent settings were
defined in the configuration file of aiT.

Table 6.1 presents results which were obtained by compiling the program without
any compiler optimizations. The middle column indicates the results in execution cy-
cles which were calculated by supplying the program to the developed framework called
wcet2llir. The corresponding results produced by the ordinary workflow of aiT are
shown in the third column. Moreover, lowest precision is referred to as the settings of
CALL_STRING and UNROLL which are assigned the value 1. In the second case, highest
precision refers to configuration settings with maximal values as described previously.

The second test series evaluated the same source code which, this time, was compiled
by applying the first compiler optimization (tricore-gcc -O1). As expected, the orig-
inal code was highly compacted and leads to tremendously reduced time bounds. Table 6.2
indicates the WCET estimates for the array manipulation.

Further compiler optimization levels produced no remarkable enhancement in terms of
the timing results and were therefore omitted. The results from both tables accentuate the
proper generation of the CRL2 file by the developed converter llir2crl. The time bounds are
almost identical for both aiT and the framework wcet2llir. The minimal deviations arise
from the varying generation of operations as described previously. The TriCore assembler
translates assembly operations in a less sensible way than the converter llir2crl. It does not
exploit the full TriCore instruction set and does not involve the most suitable operation.
As can be additionally inferred from the results, the deviating operation is outside the
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loop. Despite the increasing loop bound iterations, the results of both frameworks differ in
exactly one cycle. Thus, the CRL2 representation which forms the loop is identical in both
cases. In spite of these inevitable differences, this issue can be neglected since it does not
significantly falsify the analyzer results and still provides a meaningful basis for WCET
information.

Moreover, the influence of contexts is depicted. An increase of both the length of con-
text call strings and the number of distinguished loop contexts enhances the precision of
the WCET analyzer. The improvements are relatively modest and can be explained by the
fact that the test program merely contains one single loop and one function (the main
function). Thus, the full strength of contexts can not be exploited. As can be seen from the
results, the test program, which was compiled at the first compiler optimization level, ben-
efits less from the contexts than the first test series compiled with no compiler optimiza-
tions. An interpretation is hindered by the circumstance that aiT is still in the development
state and may generate falsified results. One attempt to shed light on the varying results
might be the modified program structure which was produced under the affect of the com-
piler optimizations. The second test series is based on a program code which encompasses
simplified loop structures that do not benefit from contexts and therefore do not improve
the estimated time bounds remarkably.

Last but not least, table 6.1 indicates a non-consistent sequence of timing results. By
increasing the first loop bound specification by a magnitude of 10, the WCET estimates
approximately grow by the same factor. However, by multiplying the loop bounds once
again by a factor of 10, the WCET results do not increase by 1000 percent as expected
but by almost 1400 percent. The reason is not an error in the existing aiT analyses but the
absence of a cache analysis and the impact of the code generated by the TriCore compiler.
The current version of aiT does not support a cache analysis yet. This feature will be pro-
vided in a later version. Due to the missing cache analysis, AbsInt’s analyzer assumes that
every operation always requires the same number of cycles to be executed, i.e. cache hits
and cache misses do not influence the operation execution. Consequently, a proportional
increase of the WCET cycles depending on the loop bound specifications would be ex-
pected. However, as can be seen from the WCET estimates of table 6.1, the time bounds
grow unproportionally. Instead of the expected approximately 95000 WCET cycles for
1000 loop iterations, the aiT analyzer calculated more than 134000 cycles.

This inconsequent result can be explained by considering the assembly code that is gen-
erated by the tricore-gcc. Comparing the codes of the test file for 10 and 100 loop
iterations, the only major difference is a MOV operation which handles the loop counter. It
operates on the constant value 9 for the first case, and holds the value 99 for the second
test case. The remaining code is basically identical. In contrast, the assembly code gen-
erated for 1000 loop iterations differs substantially from the previous test cases. Besides
the aforementioned MOV operation, the basic block, which notably represent the source
code loop, highly diverges from the previous test cases. Due to the peculiarities of the Tri-
Core compiler, the source code is translated in a different fashion and the assembly basic
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block representing the loop is composed of a greater number of operations. This circum-
stance clarifies the results given in table 6.1. Because of the lacking cache analysis, aiT
treats every operation equally, independent of the actual cache behavior. Consequently,
the enlarged code, as a result of the TriCore compilation process, yields increased WCET
estimates.

In contrast, table 6.2 shows a proportional increase of time bounds with respect to the
growing loop bound specifications. An examination of the corresponding assembly codes
generated with the first optimization level indicates a consistent program structure. All
three program representations differ essentially in the MOV instruction which is respon-
sible for the handling of the loop counter. As mentioned previously, the missing cache
analysis leads to a simplified treatment of operations. Thus, the increase of loop bound
specifications results in both an enlarged program control-flow graph and adequately in-
creased WCET estimates.

Traversal through multiple loops

This test file is composed of two functions each of which holds two loops. Within these
loops, simple arithmetical operations are performed. The main function calls the second
function and passes a decimal number as argument which serves as loop bound speci-
fication. The test order resembles the first evaluation described above. The test file was
firstly compiled with no optimizations, secondly the first compiler optimization level was
involved. The terms lowest precision and highest precision denote the combination of the
configuration parameters CALL_STRING and UNROLL (see previous test series). Further-
more, the test with 1000 loop iterations has been performed with a medium precision, i.e.
100 contexts have been considered.

In addition, the loop bound specifications were modified. All tests were performed with
global and local settings. A global loop bound specification defines an overall value which
is applied to all program loops. On the other hand, local specifications may be used to set
individual loop bounds to the existing program loops. For this test series, the global loop
bounds were set to 10 and 1000. The local settings mixed the values, i.e. the loop bound
specifications for the main function were set to 10 and were assigned the value 1000 for
the loops of the second function.

Table 6.3 shows the WCET results obtained when compiling the test program with-
out any compiler optimizations. First, the time bounds verify the proper generation of the
CRL2 representation by the converter llir2crl. As can be seen from the table, the time
bounds for wcet2llir and aiT are very similar. Depending on the impact of the test parame-
ters, both sets of results change in the same manner. To put it in other words, the influence
of the parameters on the aiT time bounds is the same as on the wcet2llir WCET estimates.
Second, the results infer that aiT was not able to interpret the present program properly
since a decrease of loop bound iterations did not result in reduced WCET estimates. The
analysis for the global specification of 1000 loop iterations yielded a time bound of 22025
cycles. After decreasing the iteration number of the first two loops from 1000 to 10 (lo-
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Options wcet2llir aiT
global 10 iterations, lowest precision [cyc] 245 246

global 10 iterations, highest precision [cyc] 245 246
global 1000 iterations, lowest precision [cyc] 22025 22026

global 1000 iterations, 100 contexts [cyc] 22025 22026
global 1000 iterations, highest precision [cyc] 22025 22026

local 10/1000 iterations, lowest precision [cyc] 22003 22004
local 10/1000 iterations, highest precision [cyc] 22003 22024

Table 6.3: Multiple loops compiled without compiler optimizations

Options tricore-tsimb
global 10 iterations [cyc] 3321

global 1000 iterations [cyc] 42921
local 10/1000 iterations [cyc] 23121

Table 6.4: Simulated runtime of multiple loops compiled without compiler optimizations

cal specifications), consequently a reduction of the WCET was expected. However, aiT
produced an implausible time bound of 22003 cycles that resembles the previous test case.

To verify the failure of the aiT analyses and to exclude other disruptive factors, the
simulated runtimes of the test program were considered. The goal of this simulation was to
indicate that a decreased loop iteration number results in a reduced runtime of the program.
Consequently, a decreased program runtime must yield a reduced WCET estimate.

To obtain the runtime of the test program, the TriCore simulator tricore-tsimb
was consulted. This application is supplied with a binary executable generated by the

compiler tricore-gcc and produces the simulated number of execution cycles for the
input program.

The simulator results are depicted in table 6.4. The tests were performed with 10 and
1000 loop iterations for all loops as well as with 10 iterations for the first two loops and
1000 iterations for the second two loops. The obtained program runtimes indicate the
expected program behavior. An increase of the global loop bound specifications from 10
to 1000 iterations entailed a noticeable incline of the total program execution time. Due to
the fact that the simulator takes cache behavior into account, an increse of loop iterations
by a factor of 100, does consequently not result in a proportionally equal increase of the
program runtime. The third test case provides the significant results. It indicates that an
intensive reduction of the iteration number for the two loops of the main function led
nearly to a bisection of the program runtime. Therefore, the conclustion can be drawn
that the control-flow graph of this test program was significantly reduced. Consequently,
an adequate behavior was expected for the WCET results. However, the results of table
6.3 show that the time bounds were not remarkably affected by the reduction of the loop
iterations in the form of local loop bound specifications. This leads to the conclusion that
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Options wcet2llir aiT
global 10 iterations, lowest precision [cyc] 264 260

global 10 iterations, highest precision [cyc] 256 252
global 1000 iterations, lowest precision [cyc] 22044 22040

global 1000 iterations, 100 contexts [cyc] 22036 22032
global 1000 iterations, highest precision [cyc] 22036 22032

local 10/1000 iterations, lowest precision [cyc] 10142 10138
local 10/1000 iterations, highest precision [cyc] - -

Table 6.5: Multiple loops compiled with optimization level -O1

Options tricore-tsimb
global 10 iterations [cyc] 3042

global 1000 iterations [cyc] 16902
local 10/1000 iterations [cyc] 10962

Table 6.6: Simulated runtime of multiple loops compiled with compiler optimization level
-O1

the aiT anaylses failed to interpret the program properly.

Table 6.5 presents the WCET results for the same test program compiled with the first
compiler optimization -O1. As with the previous test series without compiler optimiza-
tions, the similar time bounds for wcet2llir and aiT emphasize the proper generation of the
CRL2 file based on the LLIR data. They also indicate that the reduced iteration number
for the two loops of the main function caused by the local loop bound specifications was
correctly recognized by aiT. The reduction of the loop iterations from 1000 to 10 yielded
almost a bisection of the time bounds from 22044 to 10142 cycles.

But the results in table 6.5 still confirm the incompatibility of the aiT analyzer. On
the one hand, the WCET analysis for the local loop bound specifications, which were
performed with parameters to obtain a high precision, failed. On the other hand, there
was no reduction of the WCET estimates compared to the test cases that were performed
without any compiler optimizations (see table 6.3). Worse yet, the time bounds slightly
increased.

It is well known that a program compiled with compiler optimizations yields a de-
creased program runtime compared to the same program compiler without any compiler
optimizations. Therefore, is was expected that table 6.5 presents lower time bounds than
table 6.3. However, the comparison of both tables shows that there was no reduction of the
WCET estimates for the program compiled with -O1.

To verify once again the failure of the aiT analyses, the results of the TriCore simulator
are considered. Table 6.6 shows the runtimes of the test program compiled with the first
compiler optimization -O1. As expected, the reduced program code caused by the compiler
optimizations resulted in a decreased program runtime compared to the results in table
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Options aiT
global 10 iterations, lowest precision [sec] 0.34

global 10 iterations, highest precision [sec] 0.40
global 1000 iterations, lowest precision [sec] 0.35

global 1000 iterations, 100 contexts [sec] 1.56
global 1000 iterations, highest precision [sec] 1875.02

local 10/1000 iterations, lowest precision [sec] 0.35

Table 6.7: Analysis time of benchmarks compiled with optimization level -O1

6.4. A properly working WCET analyzer would consequently produce decreased WCET
estimates. However, a comparison of results in table 6.3 and table 6.5 does not foster this
assumption. Rather, it violates the logical consequences since aiT generates larger WCET
estimates for a program that possesses a reduced program runtime. Hence, it could be
shown that AbsInt’s WCET analyzer produced falsified results when evaluating program
loops.

Furthermore, it turns out that the WCET estimates produced by aiT are lower than those
calculated by the TriCore simulator. Comparing the values in table 6.4 and table 6.3 for
1000 loop iterations, it can be seen that the test program takes 42921 cycles to execute
in its current state and that its WCET constitutes approximately 22000 cycles. Of course,
these values are not feasible since the WCET estimates must always be equal or greater
compared to the program runtime calculated by the simulator. The violation the the WCET
safeness criterion arises from the current state of aiT. In contrast to the TriCore simulator
tricore-tsimb, aiT currently does not operate on a realistic model of the TriCore
processor core; neither caches, busses and other peripheries are taken into account yet. The
enhancement of the processor core as well as the support of the aforementioned hardware
features will be provided in the following aiT versions. At the moment, the simplified
consideration of the TriCore processor leads to the unrealistic results mentioned above.

Table 6.7 presents the corresponding runtimes of the analyses. The tests were performed
using AbsInt’s analyzer aiT on the multiple loops program which was compiled with op-
timization level -O1. The tool provides the output of the total analyses runtime. A system
with an AMD Opteron 2.0GHz processor and 2000MB RAM was used as test platform.
The time results allow to draw two main conclusions. Firstly, they show that the WCET
analysis for a low and a medium precision may be performed in a feasible time. Hence, the
analysis can be deployed for real applications. Due to the minimal runtime for even 1000
loop iterations, the WCET can be also estimated for more complex program structures in
an acceptable amount of time.

Secondly, the results emphasizes the tremendous increase in runtime when a large num-
ber of contexts is taken into account. The test case, which was performed with the objective
of achieving the highest precision, took 1875 seconds to estimate the WCET of the pro-
gram. In contrast, the same program, which was analyzed with the distinction of a single
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Options wcet2llir aiT
No compiler optimizations [cyc] 185 189

Compiler optimization level 1 [cyc] 94 100
Compiler optimization level 2 [cyc] 76 81

Table 6.8: Collection of functions compiled with various compiler optimizations

context, required only a fraction of the aforementioned runtime, namely 0.35 seconds.
Similarly, the WCET analysis distinguishing 100 contexts yielded a runtime of 1.56 sec-
onds. On the other hand, the difference between the WCET results for all three tests is
negligible. Thus, the increased complexity caused by the context distinction is not justi-
fied. The enhanced precision of WCET results is out of all proportion to the enormous
jump of runtime. Hence, it is reasonable to make a trade-off between the precision and
the runtime. As can be inferred from the presented tables, best results are not mandatorily
achieved by configuring the analyzer to consider the largest number of contexts.

In summary, it can be said that this test case was still beneficial for the evaluation.
Although the produced results are less sensible in terms of the execution time of the pro-
gram, they indicate that the CRL2 representation created by llir2crl matches the one which
is extracted from a binary executable. Moreover, this test indicated the feasibility of the
analyses which could be performed in an acceptable amount of time.

Collection of various functions

The last test program represents a collection of functions which perform various arith-
metic operations on the program variables. Besides, address operators like C references
are deployed. Due to the fact that the program exploits a large number of C operations, it
is used to verify the proper generation of various low-level CRL2 operations by the con-
verter llir2crl. Since the program does not contain any loops, this test series is restricted to
the variation of compiler optimizations. The latter contribute additionally to the evaluation
of a proper CRL2 generation since specific compiler optimizations reorganize the code
individually and thus lead to different low-level representations. This, in turn, compels the
converter llir2crl to transform a large number of various LLIR operations to CRL2. A cor-
respondence between time bounds of both wcet2llir and aiT emphasizes the correctness of
the developed framework.

Table 6.8 presents the analyzer results. All tests were performed with an infinite context
call string length in order to guarantee best results. The first row reflects the time bounds
for the test program generated with no compiler optimizations. The second and last row
indicate the results for the same program compiled with the first and second optimization
level, respectively. As expected, more advanced compiler optimizations reduce the code
and result in tighter WCET estimates. Moreover, the minimal deviations between the time
bounds of the second and third column are derived from the well-known difference of the
operation generation between the converter llir2crl and the TriCore linker. They can, how-
ever, be neglected since the results still provide significant information on the program
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execution time. To sum up, the provided results point out the correctness of the developed
converter; despite the slight differences, results produced by both frameworks highly re-
semble and indicate adequate time bounds.

Back conversion
After supplying the generated CRL2 representation to AbsInt’s WCET analyzer, the
objective-handler mechanism interlinks the results with the LLIR elements. To prove the
correctness of the linking mechanism, the annotated LLIR must be completely traversed
and each individual objective handler has to be invoked to retrieve the corresponding ob-
jective. Subsequently, the available data accommodated in this information carrier has to
be read and compared with the CRL2 file.

For this purpose, the central application wcet2llir was extended by the feature of writing
a log file. This option reads the fully annotated LLIR, after it has been processed by the
converter crl2llir, and dumps all relevant information into a file. More accurately, it lists
all LLIR elements including their supplementary analysis data. In detail, it retrieves the
context-dependent execution counts and the belonging WCET estimates including their
contexts, the global WCET as well as the loop specifications.

To verify the transformed annotations, the content of the log file was compared with
the corresponding CRL2 representation of the array manipulation program used for the
first test series. The annotations in both representations matched exactly. Furthermore, the
information in the log files and the belonging CRL2 representations of the two other test
cases were compared in extracts. Also, they indicated a correspondence. Thus, it can be
inferred that the developed objective-handler mechanism operates properly.

It can be concluded that on the one hand, the performed tests successfully showed
that the developed converter llir2crl generates a formally correct CRL2 file which enables
a proper WCET estimation. On the other hand, the interlinking mechanism converts the
CRL2 annotations appropriately to the LLIR. For these reasons, it could be proven that the
objective of this thesis was successfully accomplished and that the developed framework
wcet2llir may be employed without any restrictions for further research.



Chapter 7

Summary and Conclusions

This thesis presented concepts for the extension of the compiler backend LLIR in terms
of the worst-case execution time. For the first time, a successful collaboration between a
compiler framework and a WCET analyzer has been achieved. Section 7.1 summarizes
the developed solutions and briefly evaluates the results. Finally, section 7.2 concludes the
present thesis by discussing ideas for future work.

7.1 Summary and Contribution to Research

Nowadays, embedded systems are ubiquitous in our life. Their fields of application are
manifold. In particular, when they serve as real-time systems, which rely on time con-
straints, the knowledge on the execution time becomes an issue of high importance. Ap-
plications that violate predefined time constraints endanger the entire surrounding system.
Traditionally, the runtime of a program is determined dynamically by involving measur-
ing devices like oscilloscopes or logic analyzers. However, this approach is error-prone
and does not guarantee to find the longest execution time. Static WCET analyses, as the
more sophisticated procedure, produce tight and safe estimates and are therefore deemed
future-proof . For these reasons, it is desired to integrate static WCET analyses into a com-
piler framework.

To obtain most precise results from the static timing analyses, both high-level and low-
level information is required. Due to the fact that compilers process the source code on
both levels, they are able to provide all data on the structure and the behavior of a pro-
gram. Hence, a seamless integration of a WCET analyzer into a compiler framework en-
ables an optimal collaboration. This issue has not been sufficiently solved yet and was the
propelling impulse for this work.

The prime objective of this thesis was the design and the realization of concepts for
WCET-aware compiler optimizations. To accomplish this goal, this work was focused on
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the compiler backend LLIR. More accurately, it was intended to extend the current LLIR
by data structures and mechanisms to provide WCET information on the accommodated
program. The sought timing data is produced by AbsInt’s WCET analyzer called aiT. It
is composed of several autonomous applications which analyze the code successively and
annotate it with their results.

aiT demands a binary executable program as well as user annotations as input data. The
first program of the aiT toolchain, a decoder, converts the object code to a control-flow
graph and stores it in AbsInt’s intermediate representation CRL2. To establish a collabo-
ration between aiT and the LLIR, this decoding process is skipped. Rather, a conversion
of the LLIR data to CRL2 has to be provided. This requirement presents the first main part
of this thesis. Both intermediate representations had to be analyzed in order to design and
realize a converter that translates a program stored in the LLIR to CRL2. All relevant com-
ponents as well as the underlying graph structure had to be adequately transformed. The
remaining step of the first phase was the appropriate manual invocation of the shortened
aiT toolchain.

The result is a unique incorporation of a WCET analyzer into a compiler. The devel-
oped framework successfully supports an efficient information exchange by exploiting all
compiler analyses data and supplying it to the timing analyzer. To prove correctness, tests
have been conducted. They compared the results generated by the WCET analyzer for
both program representations, namely the binary executable (regular usage of aiT) and the
LLIR. The tests yielded adequate worst-case execution time estimations for both cases and
hence it can be inferred that the transformation of the LLIR into CRL2 performed by the
developed converter proceeds properly.

To achieve the actual objective of the present thesis, the WCET results generated by
aiT had to be shifted back from CRL2 into the LLIR. For this purpose, several concepts
were required. The LLIR had to be extended by data structures which accommodate the
supplementary WCET information. After evaluating different approaches, it was decided
to provide a generic interface between the LLIR and the WCET results. Instead of modify-
ing the LLIR code and assigning the timing results directly to the LLIR elements, a more
sophisticated concept was developed. The supplementary WCET data is stored in objec-
tives, which are versatile information carriers, and is interlinked with the backend elements
by individual handlers. Unlike the direct modification of the LLIR code, this objective-
handler framework offers numerous benefits. The objective structure is not restricted to
any constraints and may be applied for the storage of various information required by indi-
vidual applications, e.g. the best-case execution time (BCET) or the energy consumption.
Furthermore, due to the separation of the LLIR and the objectives, the latter can be devel-
oped independently, i.e. teams are offered the opportunity to work autonomously on the
LLIR code as well as on various objective types. Last but not least, the handler, as the in-
terlinking mechanism between the LLIR elements and the gained WCET analyzer results,
provides a generic and simplified interface.

The final step to obtain a WCET-annotated LLIR, was the development of a back con-
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verter which reads AbsInt’s CRL2 representation containing the analyzer results and inter-
links the information with the LLIR. Due to modifications to the CRL2 control-flow graph,
which were performed by aiT to enhance its analyses, the mapping of LLIR elements and
corresponding CRL2 turned out to be a challenge. However, elaborate techniques were de-
veloped which enable an appropriate transformation of CRL2 annotations into the LLIR.

The prime analyzer results concerning the execution time of a program are the execu-
tion counts and the WCET of a single pass trough a basic block. Both values rely on
contexts and demand a context-dependent storage in the LLIR. Thus, a new class has been
designed that allows the modeling of LLIR contexts. During the transformation of the an-
alyzer results, they are taken into account and serve as additional specifiers. Besides the
aiT results concerning the WCET, the analyzer annotates the CRL2 representation with
supplementary information which are highly advantageous for further research, notably
for the development of a loop analyzer (see section 7.2). Like the aforementioned timing
data, details on loops are passed to objectives which are finally interlinked via handlers to
the corresponding LLIR elements.

The result of this thesis is a novel WCET-aware compiler backend. After a full run of
the developed modules, a program originally supplied in the form of a high-level source
code is annotated with WCET information. On the one hand, this timing information can
be involved in the development process of WCET optimizing algorithms. On the other
hand, it provides a basis for the design and realization of real-time applications. To the
best of our knowledge, this work is the first one presenting techniques for a tight and
successful integration of a timing analyzer into a compiler infrastructure.

7.2 Future Work

In the current state, the compiler backend LLIR as well as the WCET analyzer are in-
tegrated in a framework that employs the tricore-gcc compiler as frontend (see section
6.1). Based on this configuration, the maximal amount of information on the program to
be analyzed can not be exploited. To obtain an optimal information exchange, a seamless
collaboration between the high-level and low-level intermediate representation is manda-
tory. Therefore, it is intended to incorporate the developed framework composed of the
modified LLIR, the objective-handler mechanisms and AbsInt’s WCET analyzer into a
homogeneous system.

For this purpose, at the time this thesis was written, the development of a homogeneous
compiler framework at the Embedded Systems Groups of the Computer Science Depart-
ment at Dortmund University was started in parallel. It encompasses a frontend which
reads a C source code and hands its representation to the LLIR that finally generates as-
sembly code for the Infineon TriCore processor. Due to the high complexity of developing
a compiler, work on the framework has not finished yet. Thus, the tricore-gcc frontend
was employed as a temporary solution. However, the current development state of the ho-



98 Summary and Conclusions

mogeneous compiler framework indicates that an integration of the WCET modules will
follow in the near future.

The resulting WCET-aware compiler called wcc will serve as basis for the development
of optimizing algorithms which aim at reducing the worst-case execution time of a pro-
gram. The emerging timing bounds may be used as indicators for the performance of the
algorithms. The final objective is the integration of these optimizations into the ordinary
compiler workflow. This would enable a simple and user-friendly usage avoiding tedious
user interactions, and possibly the algorithms would evolve into standard techniques for
future WCET compilers.

The main drawback of the current framework is the absence of a sophisticated loop
analyzer. AbsInt’s aiT includes this feature which, however, merely copes with simply
structured loops and fails to analyze more complicated loop structures. Hence, the user
is often compelled to provide loop bound specifications manually. This error-prone and
tedious chore decreases the quality of the software and may even result in erroneous ana-
lyzer results. Obviously, it is desired to jettison the user annotations by replacing them by
automatic loop bound detections. Thus, the development of an autonomous loop analyzer
is a sensible extension. Due to the preparatory work of this thesis (see section 5.5.6), a
basis for this intention is already given.

Last but not least, another feature of the aiT toolchain might be exploited. AbsInt’s
value analysis determines valid value ranges for processor registers at a specific point of
the analyzed program. This information resembles the other aiT results and is attached to
the CRL2 elements. It could be interlinked with the LLIR by the well-known objective-
handler mechanism. This data can be involved in the development of data-flow analysis
algorithms. At the current state of the developed framework, the value analysis results
are not taken into account. The reason is the absence of appropriate LLIR retrieval mecha-
nisms. In order to enable aiT to generate the sought results, it must be supplied with further
program data, other than the information on the control-flow structure, e.g. global program
constants. These values are extracted from the assembly file and are stored in the LLIR.
However, the current state of the LLIR does not provide any specified functions that would
retrieve the sought values directly. The values are stored as LLIR pragmas and require a
cumbersome string parsing to be extracted. To obtain these values in a convenient manner,
the LLIR needs to be extended by new function. Since these extensions are beyond the
scope of this thesis, they have not been taken into account but might be subject of future
projects.
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